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The Quantum Ultimatum Game
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A quantum version of the ultimatum game is studied. Both a restricted version
with classical moves and the unitary version are considered. With entangled initial
states, Nash equilibria in quantum games are in general different from those of
classical games. Quantum versions might therefore be useful as a framework for
modeling deviations from classical Nash equilibrium in experimental games.
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1. THE ULTIMATUM GAME

Classical game theory is a mathematical framework for decision prob-
lems with rational rules and rational players. It is used in many situations
in economics, social sciences, communication and biology. An important
item, leading to a solution, is the notion of non-cooperative Nash equi-
librium. Given a payoff matrix P , a strategy vector x∗ is a Nash equilib-
rium if no player can improve his payoff by changing his strategy, when
the strategies of the other players are fixed. That is, denoting by Pi and
xi the payoff and strategy of player i
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for all xi #=x∗
i , this condition holding for all players.

The Nash equilibrium solutions correspond to the purely self-inter-
ested attitude where each player tries to maximize his gains regardless of
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what happens to the other players. It is the rational expectations attitude
of what has been called the Homo oeconomicus, a notion which is at the
basis of many theoretical economics constructions. It is therefore impor-
tant to check the applicability of such notion in human societies. Experi-
ments have been carried out and the problem is that in many cases, when
played by human players, games have outcomes very different from the
Nash equilibrium points. An interesting case is the ultimatum game. (1–5)

A simplified version of this game is the following: One of the players (the
proposer) receives 100 coins which he is told to divide into two non-empty
parts, one for himself and the other for the other player (the responder). If
the responder accepts the split, it is implemented. If the responder refuses,
nothing is given to the players. Consider, for example, a simple payoff
matrix corresponding to two different proposer offers

R0 R1

P0 |00〉 |01〉
a, c 0,0

P1 |10〉 |11〉
b, b 0,0

(2)

with a % c, a + c = 2b (for example a = 99, c = 1, b = 50). For future refer-
ence the players’ moves are labeled |··〉.

It is clear that the unique Nash equilibrium is |00〉, corresponding to
the greedy proposal (a, c). However, when the game is played with human
players, such greedy proposals are most often refused, even in one-shot
games where the responder has no material or strategic advantage in refus-
ing the offer.

In this paper a quantum version of the ultimatum game is discussed.
Both a restricted and the full unitary and trace-preserving versions are
considered in Sections 2 and 3. Then, a final ‘remarks’ section discusses
the sociological context of deviations from Nash equilibrium and how
(and why) the notion of entanglement might play a role in the modeling
of sociological situations.

2. THE QUANTUM ULTIMATUM GAME. RESTRICTED VERSION

Quantum games(6,7) not only enlarge the space of strategies but also
provide a compact way to code for the environment where the players’
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moves take place. The basic difference between a classical and a quan-
tum game is that whereas in a classical game the players’ strategies are
coded in a discrete set or a simplex (in the case of mixed strategies), in
a quantum game they are coded as vectors in a Hilbert space H. In the
ultimatum example (with the payoff matrix (2)) the two options (|0〉 or
|1〉) of each player are a basis for two two-dimensional linear spaces HP

and HR . The space of the game is then the four-dimensional tensor space
H=HP ⊗HR , with basis {|00〉 , |01〉 , |10〉 , |11〉}. In the classical case, the
game outcome ψ is one of these four states (for pure strategies) or a point
in the simplex defined by these points (for mixed strategies). In the quan-
tum case, the outcome of the game may be any linear combination with
unit norm

|ψ〉= c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 (3)

|c00|2 +|c01|2 +|c10|2 +|c11|2 =1.
The game is set up in the following way: An initial vector |φ〉 defines

the game environment. Then the players apply their allowed moves to the
|φ〉 state transforming it into some other state |ψ〉 (the game outcome).
The payoffs of the players are then computed by projection on the basis
states |〈ij | ψ〉|2 , weighted by the entries of the classical payoff matrix,
namely

PP = a |c00|2 +0 |c01|2 +b |c10|2 +0 |c11|2
PR = c |c00|2 +0 |c01|2 +b |c10|2 +0 |c11|2

(4)

PP and PP being the payoffs of proposer and responder. Despite its usual
connotation as being related to quantum physics, quantum decision algo-
rithms are just another computational scheme. In short, it is just another
way for decision making in probabilistic computation. I refer to the excel-
lent paper by Bernstein and Vazirani(8) for a discussion of quantum com-
plexity theory stripped from its quantum physics overtones.2

Besides the rule (4) for computing payoffs, the game also requires a
specification of the allowed moves and the game environment. The allowed
moves are the transformations with which each player may act on the
vectors of his part of the space, that is, transformations of the proposer
in HP and transformations of the responder in HR. Here I consider two
cases: the classical moves and the unitary moves.

In the classical moves case, the players are allowed to apply the matri-

ces M0 =
(

1 0
0 1

)
and M1 =

(
0 1
1 0

)
or probabilistic combinations thereof

2For a shorter version of some of the main ideas see ref. 9.
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(for mixed strategies). That is, they are allowed to make permutations of
their basis states. These are called classical moves because they coincide
with the classical operations in the discrete set of classical outcomes. How-
ever, here, the effect of these moves may be different because they are now
operating in the full Hilbert space.

In the unitary case, each player is allowed the full set of unitary
matrices in his part of the space. This is not yet the most general case,
that being the full set of completely positive trace-preserving maps.(10,11)

The restriction to classical moves might be the most appropriate one
for human decision problems, because it is not clear how to interpret gen-
eral unitary or trace-preserving operations in terms of human decisions.
I will concentrate in this case, which I call a restricted quantum game
(RQG).3 The unitary version of the game is discussed in Section 3.

The |φ〉 state defines the game environment. For the RQG there are
three different types of |φ〉 states.

(i) |φ〉=|i〉⊗ |j〉=|ij〉, i, j =0 or 1. In this case |φ〉 is one of the basis
states of H = HP ⊗ HR . By the classical moves the players may always
convert |φ〉 into any one of the basis states. Therefore, the unique Nash
equilibrium is |00〉 and this game coincides with the classical game with
PP =a, PR = c.

(ii) |φ〉 is a factorized state, but not one of the basis states. Factorized
states are states that may be written as a product

|φ〉={a0 |0〉+a1 |1〉}⊗ {b0 |0〉+b1 |1〉} (5)

Let (µ,1−µ) and (ν,1−ν) be the probabilities for proposer and respon-
der to use moves M0 and M1. Then, their payoffs are, respectively

PP = µ(a −b)
(
|a0|2 − |a1|2

)(
ν |b0|2 + (1−ν) |b1|2

)

+ν
(
a |a1|2 +b |a0|2

)(
|b0|2 − |b1|2

)
+

(
a |a1|2 +b |a0|2

)
|b1|2 (6)

PR = PP {a → c}

the notation a → c meaning that PR is obtained from PP by the replace-
ment of the payoff a by c.

From (6), by maximizing PP in µ for fixed ν and then PR in ν for
that same µ, one easily concludes that there is, in all cases, a unique Nash
equilibrium for pure strategies. The values of the Nash equilibrium µ′s
and ν′s are listed in the following table:

3A restricted quantum game might also be described in purely classical terms. However, the
quantum version may provide a more compact coding of the game environment, in particu-
lar by the use of an entangled initial state.
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|b0|2 > |b1|2 |b0|2 < |b1|2

|a0|2 > |a1|2 µ=1, ν =1 µ=1, ν =0

|a0|2 < |a1|2 µ=0, ν =1 µ=0, ν =0

(7)

the equilibrium payoffs being

PP =
{
a |amax|2 +b

(
1− |amax|2

)}
|bmax|2

PR = PP {a → c}
(8)

|amax|2 and |bmax|2 being the larger of |ai |2 and |bi |2.
One sees that, although obtained for pure strategies, the payoffs are

already substantially different from those of the classical game.
(iii) Finally, a distinct situation is obtained when |φ〉 is an entangled

state. An entangled state is a state that cannot be expressed in the factor-
ized form (5). A general state

|φ〉= c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉

is entangled if and only if

|c00|2 |c11|2 +|c01|2 |c10|2 −2Re
{
c00c

∗
10c11c

∗
01

}
#=0 . (9)

Here I analyze the cases

|φ1〉=α1 |00〉+β1 |11〉

and

|φ2〉=α2 |01〉+β2 |10〉

which for αi ,βi #= 0 satisfy (9). Furthermore, consider that neither coeffi-
cient is too small, more precisely4

|αi |2 , |βi |2 >
c

b+ c
.

4When this condition is not satisfied, that is, when the φ-states are very close to a basis state,
there are pure strategy solutions.
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For the φ1-state, assuming as before that (µ,1−µ) and (ν,1−ν) are the
probabilities for proposer and responder to use moves M0 and M1, the
payoffs are

PP = µ(a −b)
(
ν − |β1|2

)
+ν

(
b |α1|2 −a |β1|2

)
+a |β1|2

PR = PP {a → c}
(10)

Let ν > |β1|2. Then the proposer best reply is µ= 1 but then, for that µ,
the responder best reply is ν =0, which contradicts ν > |β1|2. The conclu-
sion is that there is no equilibrium in pure strategies. However, there is an
equilibrium for mixed strategies at

µ = b|α1|2−c|β1|2
b−c ,

ν = |β1|2 ,
(11)

with payoffs

PP = |α1|2
(

1− |α1|2
)

(a +b) ,

PR = |α1|2
(

1− |α1|2
)

(c+b) .
(12)

For the φ2-state the analysis is identical, with mixed strategy equilibrium
at

µ = b|α2|2−c|β2|2
b−c ,

ν = |α2|2 ,
(13)

and payoffs

PP = |α2|2
(

1− |α2|2
)

(a +b) ,

PR = |α2|2
(

1− |α2|2
)

(c+b) .
(14)

Already with the simple payoff matrix (1) a range of different equi-
librium points is obtained. A even wider range of possibilities and payoff
structures may be obtained by increasing the number of possible proposer
offers. For the restricted quantum game, the three situations discussed
above appear quite different from one another. In all cases the self-inter-
est mechanism of payoff maximization leads to a solution, but the solution
strongly depends on the game environment coded by the φ-state.

A practical question is how to relate the coding φ-state to the devi-
ations from classical Nash equilibria in experimental games. That is, how
do the players’ environment constraints (or preferences) might be related
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to particular structures of the initial state. To relate and quantify the play-
ers’ preferences to the mathematical properties of the game model, it is
convenient to use not a particular φ-state but general properties of these
states.

From the examples that were studied one infers two general proper-
ties. For factorized states, one has a measure of uncertainty for proposer
and responder given by

SP = − |a0|2 log |a0|2 − |a1|2 log |a1|2
SR = − |b0|2 log |b0|2 − |b1|2 log |b1|2

and the compound uncertainty SP +SR. Even if in the model the solution
corresponds to an equilibrium pure strategy, the setting-up of this game
environment is equivalent to a compulsion to fluctuating decisions by the
players.

Whereas in the factorized states, each player has no effect on mea-
surements made on the space of the other player, that is not the case for
entangled states. Therefore, the constraints imposed by an entangled game
environment are much stronger. Entanglement (for a two-player game) is
quantified by the entropy of the reduced density matrix.(12) Namely, one
computes

λ± = 1
2

± 1
2

√
1−4 |c00|2 |c11|2 −4 |c01|2 |c10|2 +8Re

{
c00c

∗
10c11c

∗
01

}

and then the entanglement measure is

E=−λ+ logλ+ −λ− logλ−

In conclusion: what this framework suggests is that the players uncertain-
ties (SP ,SR) and the entanglement measure (E) are quantities that might
be used to quantify, at least, some of the deviations from classical Nash
equilibrium in experimental games.

3. THE UNITARY AND TRACE-PRESERVING GAME

In a unitary game, the players would be allowed to operate on the φ-
state with the whole set of unitary transformations in HP and HR, which
may be parametrized by matrices

(
ei(α+β)/2 cos θ

2 ei(α−β)/2 sin θ
2

ei(β−α)/2 sin θ
2 ei(α+β)/2 cos θ

2

)

(15)

and global phase transformations.
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If φ is a factorized state, the proposer may always, by an unitary
operation, transform it to a state |0〉 |ζ 〉 and then the best reply of the
responder leads to |0〉 |0〉. The conclusion is that, for factorized φ-states,
the unitary game is equivalent to the classical game.

The situation is different for entangled states. Let φ be a (maximally)
entangled state

|φ〉= 1√
2

(|00〉+|11〉) . (16)

Using the parametrization (15) the payoffs are computed to be

PP = 1
2






a
∣∣∣ei

βP +βR
2 cos θP

2 cos θR
2 − e−i

βP +βR
2 sin θP

2 sin θR
2

∣∣∣
2

+b
∣∣∣ei

−αP +αR+βP +βR
2 sin θP

2 cos θR
2 − ei

αP +αR+βP −βR
2 cos θP

2 sin θR
2

∣∣∣
2





,

PR=PP {a → c} .

(17)

Given any responder strategy, the proposer may always choose αP ,βP to
reduce his payoff to

PP = 1
2

{
a cos2 1

2 (θP + θR)+b sin2 1
2 (θP + θR)

}

PR = PP {a → c}
(18)

and then, choosing θP = θR, obtain his best reply. But then, the responder
spoils this situation by choosing θP + θ

′
R = 0, and so on. The conclusion

is that, for the unitary game with maximally entangled states there is no
Nash equilibrium in pure strategies.

For mixed strategies, we no longer have unitary operations, but rather
fall in the framework of completely positive trace-preserving maps.5 In this
case we have transformations

|φ〉 〈φ|→
∑

µ,ν

K(P)
µ ⊗K(R)

ν |φ〉 〈φ|K(P)†
ν ⊗K(R)†

µ (19)

with the (Kraus) operators, satisfying
∑

µ

K†
µKµ =1. (20)

5Mixed ‘unitary’ strategies are simply the case where the Kraus operators are proportional to
a unitary one.
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Choosing a basis of hermitean operators

K
(P)
µ =

∑
ν k

(P )
µν σν

K
(R)
µ =

∑
ν k

(R)
µν σν

(21)

and defining

pνν′ =
∑

µ k
(P )
µν k

(P )∗
µν′

rνν′ =
∑

µ k
(R)
µν k

(R)∗
µν′

(22)

the payoffs are

PP =
∑

µναβ pµνrαβ

{
a 〈00|σ (P )

µ ⊗σ
(R)
α |φ〉 〈φ|σ (R)

β ⊗σ
(P )
ν |00〉

+b 〈11|σ (P )
µ ⊗σ

(R)
α |φ〉 〈φ|σ (R)

β ⊗σ
(P )
ν |11〉

}

,

PR = PP {a → c} .

From (20) and (22) it follows |pνν′ |2 ≤ 1, |rνν′ |2 ≤ 1. The compactness and
convexity of the sets {pνν′} and {rνν′} and the multilinearity of the payoff
now implies, by Kakutani’s theorem, the existence of Nash equilibria for
the trace-preserving game.(11)

4. REMARKS

The classical Nash equilibrium solution is closely related to the
rational decisions notion of Homo oeconomicus, which is a basis of many
theoretical economics constructs. Based on the observed deviations from
classical Nash equilibrium in the ultimatum game and in other human sit-
uations (public goods games, etc),(13) Bowles and Gintis (14,15) developed
the notion of strong reciprocity (Homo reciprocans(16)) as a better model
for human behavior. The general notion, as stated by these authors, is that
Homo reciprocans would come to social situations with a propensity to coop-
erate and share but would respond to selfish behavior on the part of others
by retaliating, even at a cost to himself and even when he could not expect
any future personal gains from such actions.

In addition to ‘laboratory’ experiments with university students and
other volunteers(17–19), an ‘ultimatum game experiment’ was also carried
out in 15 small-scale societies around the world.(20) Consistently different
results were obtained in different societies and the conclusion is that Homo
oeconomicus is rejected in all cases, the players’ behavior being strongly
correlated with existing social norms and market structure in their socie-
ties. Apparently, human decision problems involve a mixture of self-inter-
est and a background of (internalized) social norms.



10 Mendes

What is the environment, or background of social norms or prefer-
ences, that the ultimatum game is testing? Throughout many generations
of interaction, evolution has created in humans cognitive heuristics for
repeated play with other humans. However, striking deviations from Nash
equilibria occur in one-shot games where strategic considerations, related
for example to creating a reputation for future play, cannot be invoked.
It might be thought that somehow the players do not take full conscience
of the one-way nature of the game and just apply their learned heuris-
tics. This hypothesis has been experimentally disproved.(13) The players do
indeed understand the nature of the game. However, their inequality-aver-
sion or sense of reciprocity triggers an emotional response that outweights
self-interest considerations. It is indeed a background of social norms or
social preferences that is at play, not a conscious or unconscious strate-
gic consideration. The feature that the ultimatum game specifically tests is
negative reciprocity. This applies to the actions of both the responder and
the proposer. The responder is ready to sacrifice his own money to punish
an unfair offer and the proposer, who is also aware of the negative reci-
procity trait, anticipates this reaction and raises his offer accordingly.

Cooperative or coalition modalities of classical game theory do not
seem appropriate, because strong deviations from classical Nash equilib-
rium are found in one-shot games, when one is not dealing with a direct
accord or negotiation between the players. What changes is not the non-
cooperative nature of the game but the background environment where it
takes place. And this environment is not the result of the actions of the
present players, but of many previous generations, maybe even genetically
encoded in the Pleistocene.(14)

Given that strong reciprocators may act even at a cost to themselves,
an interesting question is how this trait developed and why(14,15) (and
when(21)) it is evolutionary stable. A neurological basis for this kind of
behavior has been found,(22,23) which lends some support to the view that
strong reciprocity might have evolved from reciprocal altruism by a reduc-
tion in discrimination.

It is then clear that, in addition to material self-interest, the utility
functions determining the payoff matrix in human games must include
some other components expressing sentiments like fairness, envy, pleasure,
etc.

An open question is how does one code for social norms and sen-
timents in mathematical games. There is no claim that quantum games
provide a full solution to the discrepancy between classical games solu-
tions and actual human behavior. However, by providing a wider frame-
work they allow for the coding of additional constraints. In particular, the
notion of entangled initial states establishes an interdependence between
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the players’ actions that might in some cases be used to code for a par-
ticular social environment. The strength of interdependence of the players’
actions would then be measured by an entanglement measure as discussed
in Section 2.

It might be argued that because humans are macroscopic objects,
their environment is classical, not quantum. However, it must be pointed
out that quantum concepts are not restricted to the world of micro-
physics. The quantum paradigm is in fact a modality of knowledge that
applies whenever there are sets of incompatible observables (in the sense of
observables that cannot be simultaneously specified). For example in Eco-
nomics, price (in the sense of actual monetary value) and ownership are
incompatible observables, because price is only well defined when a trans-
action takes place, that is, when ownership is changing.

Also, as stated before, quantum decision algorithms are just another
computational scheme. They are another way for decision making in prob-
abilistic computation.(8) Therefore there is, in principle, no reason why
quantum games might not be used to code for social norms and senti-
ments in mathematical games. Even in cases where a classical description
is possible, a quantum game framework might provide for a more compact
coding, in particular exploring the entangled initial states feature.
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