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ABSTRACT. In this paper we study the stochastic transport equation of convolution type.
For general initial condition and its coefficients we give an explicit solution which is a
well defined generalized stochastic process in a suitable distribution space. Under certain
assumptions on the coefficients we also write the obtained solution as a convergent series
of integrals.
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1. Introduction

The aim of this work is to study the solution of the following Cauchy problem corre-
sponding to the stochastic equation modeling the transport of a substance which is dispers-
ing in a moving medium

(1)






∂
∂tX(t, x, ω) = 1

2σ2∆X(t, x, ω) +∇X(t, x,ω) ∗ V (t, x,ω)

+K(t, x,ω) ∗X(t, x,ω) + g(t, x,ω)

X(0, x,ω) = f(x, ω),

where X(t, x,ω) is the concentration of the substance at time t ∈ [0,∞) and at the point
x ∈ Rr, r ∈ N, 1

2σ2 > 0 is the dispersion coefficient (constant), ∆ (resp. ∇) is the Lapla-
cian (resp. the gradient) with respect to the spatial variable x, ω = (ω1, . . . ,ωd) is the
stochastic vector variable in the tempered Schwartz distribution space S′d := S′(R, Rd)
with the standard Gaussian measure, d ∈ N, ∗ is the convolution product between gener-
alized functions (see Subsection 2.2 below), f is the initial concentration of the substance,
V = (V1, . . . , Vr) is the vector velocity of the medium, K is the relative leakage rate and
g is the source rate of the substance.

The Cauchy problem (1) was analyzed by many authors from different point of view,
see e.g., [7], [14] and references therein for more details and historical remarks.

Recently Ouerdiane et al. [12] obtained the solution of (1) in the particular case when
V = g = 0 in terms of the convolution exponential as a well defined generalized function
in a suitable distribution space. In addition for the case when K is a positive family of
generalized stochastic processes the corresponding solution is given as a limit of integrals,
see [13] for details and also [1], [2] for related topics.
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The starting point is the following Gelfand triple

F ′θ(N ′) ⊃ L2(M′, γ) ⊃ Fθ(N ′),

where N ′ is the dual of a complex nuclear Fréchet space N , θ is a Young function, γ
is the usual Gaussian measure on M′ which corresponds to the real part of N ′. The
test function space Fθ(N ′) is defined as the space of all holomorphic functions on N ′

with an exponential growth condition of order θ. The generalized function space F ′θ(N ′)
represents the topological dual of Fθ(N ′). In the following we will choose the nuclear
space N = (Sd × Rr)C, the complexification of the real nuclear space Sd × Rr, which is
adapted to our situation. We would like to stress that all differential operators involved in
equation (1) are interpreted in the generalized sense.

Using the Laplace transform L we may define the convolution of two generalized
functions Φ,Ψ ∈ F ′θ(N ′) as

Φ ∗Ψ = L−1(LΦ · LΨ)

which allows us to introduce the convolution exponential of Φ denoted by exp∗ Φ as an
element in F ′ϕ(N ′), where the Young function ϕ = (eθ∗)∗ and

(2) θ∗(x) := sup
y≥0

(yx− θ(y))

denotes the polar function associated to θ, see e.g., [8].
For positive generalized stochastic process Φ = (Φ(t))t≥0 there exists a family of

Radon measures µ = (µt)t≥0 (see e.g., [11]) on M′ which represents V such that the
Fourier transform of µt, t ≥ 0 is given by

〈〈Φ(t), exp(iξ)〉〉 = µ̂t(ξ) =
∫

M′
exp(i〈y, ξ〉)dµt(y),

where 〈〈·, ·〉〉 denotes the duality between F ′θ(N ′) and Fθ(N ′) and corresponds to the ex-
tension of the inner product of L2(M′, γ).

The paper is organized as follows: in Section 2 we review some of the terminology
and theory necessary for the stochastic model and its calculus. In particular, we define
the Laplace transform, the convolution product on the space of generalized functions and
establish some of its properties, i.e., the characterization of generalized functions and con-
volution exponential. These are the contents of Subsections 2.1 and 2.2. In Section 3
we give a general scheme for solving the convolution type equations as e.g., the Cauchy
problem (1). Finally in Section 4 we write the solution of (1) as a limit of integrals.

2. Preliminaries

2.1. Test and generalized functions spaces . In this section we introduce the frame-
work and tools which is suited for the applications which are intended in later sections.
For a general account on the distributions spaces and convolution calculus presented here
the interested reader is referred to [5], [3] and the references quoted there. We start with a
separable real HilbertH space which we choose to beH = L2(R, Rd)×Rr, d, r ∈ N with
scalar product (·, ·) and norm |·|. More precisely, if (f, x) = ((f1, . . . , fd), (x1, . . . , xr)) ∈
H, then

|(f, x)|2 :=
d∑

i=1

∫

R
f2

i (u)du +
r∑

i=1

x2
i = |f |2L2(R,Rd) + |x|2Rr .

Let us consider the real nuclear triplet

(3) M′ = S′(R, Rd)× Rr ⊃ H ⊃ S(R, Rd)× Rr = M.
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The pairing 〈·, ·〉 between M′ and M is given in terms of the scalar product in H, i.e.,
〈(ω, x), (ξ, y)〉 := (ω, ξ)L2(R,Rd) + (x, y)Rr , (ω, x) ∈M′ and (ξ, y) ∈M. Since M is a
Fréchet nuclear space, then it can be represented as

M =
∞⋂

n=0

Sn(R, Rd)× Rr =
∞⋂

n=0

Mn,

where Sn(R, Rd) × Rr is a Hilbert space with norm square given by | · |2n + | · |2Rr , see
e.g., [6] or [4] and references therein. We will consider the complexification of the triple
(3) and denote it by

(4) N ′ ⊃ Z ⊃ N ,

where N = M+ iM and Z = H+ iH. On M′ we have the standard Gaussian measure
γ given by Minlos’s theorem via its characteristic functional: for every (ξ, p) ∈M

Cγ(ξ, p) =
∫

M′
exp(i〈(ω, x), (ξ, p)〉)dγ((ω, x)) = exp(−1

2
(|ξ|2 + |p|2)).

In order to solve the Cauchy problem (1) we need to introduce an appropriate space of
generalized functions. We borrow this construction from [9]. Let θ = (θ1, θ2) : R2

+ → R,
(t1, t2) ,→ θ1(t1) + θ2(t2) where θ1, θ2 are two Young functions, i.e., θi : R+ → R+

continuous convex strictly increasing function and

lim
t→∞

θi(t)
t

= ∞, θi(0) = 0, i = 1, 2.

For every pair m = (m1,m2) with m1,m2 ∈]0,∞[, we define the Banach spaceFθ,m(N−n),
n ∈ N by

Fθ,m(N−n) := {f : N−n → C, entire, ‖f‖θ,m,n = sup
z∈N−n

|f(z)| exp(−θ(m|z|−n)) < ∞},

where for each z = (ω, x) we have θ(m|z|−n) := θ1(m1|ω|−n) + θ2(m2|x|). Now we
consider as test function space the space of entire functions on N ′ of (θ1, θ2)-exponential
growth and minimal type

Fθ(N ′) =
⋂

m∈(R∗+)2,n∈N0

Fθ,m(N−n),

endowed with the projective limit topology. We would like to construct the triple of the
complex Hilbert space L2(M′, γ) by Fθ(N ′). To this end we need another condition on
the pair of Young functions (θ1, θ2). Namely,

(5) lim
t→∞

θi(t)
t2

< ∞, i = 1, 2.

This is enough to obtain the following Gelfand triple

(6) F ′θ(N ′) ⊃ L2(M′, γ) ⊃ Fθ(N ′),

where F ′θ(N ′) is the topological dual of Fθ(N ′) with respect to L2(M′, γ) endowed with
the inductive limit topology.

In applications it is very important to have the characterization of generalized func-
tions from F ′θ(N ′). First we define the Laplace transform of an element in F ′θ(N ′). For
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every fixed element (ξ, p) ∈ N the exponential function exp((ξ, p)) is a well defined ele-
ment in Fθ(N ′), see [5]. The Laplace transform L of a generalized function Φ ∈ F ′θ(N ′)
is defined by

(7) Φ̂(ξ, p) := (LΦ)(ξ, p) := 〈〈Φ, exp((ξ, p))〉〉.
We are ready to state to characterization theorem, see e.g., [5] and [12].

THEOREM 2.1. The Laplace transform is a topological isomorphism betweenF ′θ(N ′)
and the space Gθ∗(N ), where Gθ∗(N ) is defined by

Gθ∗(N ) =
⋃

m∈(R∗+)2,n∈N0

Gθ∗,m(Nn),

and Gθ∗,m(Nn) is the space of entire functions on Nn with the following θ-exponential
growth condition

Gθ∗,m(Nn) . g, |g(ξ, p)| ≤ k exp(θ∗1(m1|ξ|n) + θ∗2(m2|p|)), (ξ, p) ∈ Nn.

2.2. The Convolution Product ∗ . It is well known that in infinite dimensional com-
plex analysis the convolution operator on a general function space F is defined as a contin-
uous operator which commutes with the translation operator. Let us define the convolution
between a generalized and a test function. Let Φ ∈ F ′θ(N ′) and ϕ ∈ Fθ(N ′) be given,
then the convolution Φ ∗ ϕ is defined by

(Φ ∗ ϕ)(ω, x) := 〈〈Φ, τ−(ω,x)ϕ〉〉,
where τ−(ω,x) is the translation operator, i.e.,

(τ−(ω,x)ϕ)(η, y) := ϕ(ω + η, x + y).

It is not hard the see that Φ ∗ ϕ ∈ Fθ(N ′). The convolution product is given in terms of
the dual pairing as (Φ ∗ ϕ)(0, 0) = 〈〈Φ,ϕ〉〉 for any Φ ∈ F ′θ(N ′) and ϕ ∈ Fθ(N ′).

We can generalize the above convolution product for generalized functions as follows.
Let Φ,Ψ ∈ F ′θ(N ′) be given. Then Φ ∗Ψ is defined as

(8) 〈〈Φ ∗Ψ,ϕ〉〉 := 〈〈Φ,Ψ ∗ ϕ〉〉, ∀ϕ ∈ Fθ(N ′).

This definition of convolution product for generalized functions will be used on Section 3
in order to write the solution of the stochastic heat equation given in (1). We have the
following equality, see [12], Proposition 3.3:

Φ ∗ exp((ξ, p)) = (LΦ)(ξ, p) exp((ξ, p)), (ξ, p) ∈ N .

As a consequence of the above equality and the definition (8) we obtain that

(9) L(Φ ∗Ψ) = LΦLΨ, Φ,Ψ ∈ F ′θ(N ′)

which says that the Laplace transform maps the convolution product in F ′θ(N ′) into the
usual pointwise product in the algebra of functions Gθ∗(N ). Therefore we may use Theo-
rem 2.1 to define convolution product between two generalized functions as

Φ ∗Ψ = L−1(LΦLΨ).

Relation (9) allows us to define the convolution exponential of a generalized function.
In fact, for every Φ ∈ F ′θ(N ′) we may easily check that exp(LΦ) ∈ Geθ∗ (N ). Using
the inverse Laplace transform and the fact that any Young function θ verify the property
(θ∗)∗ = θ we obtain that L−1(Geθ∗ (N )) = F ′

(eθ∗ )∗
(N ′). Now we give the definition of

the convolution exponential of Φ ∈ F ′θ(N ′), denoted by exp∗ Φ

(10) exp∗ Φ := L−1(exp(LΦ)).
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Notice that exp∗ Φ is well defined element in F ′
(eθ∗ )∗

(N ′) and therefore the distribu-
tion exp∗ Φ is given in terms of a convergent series

(11) exp∗ Φ = δ0 +
∞∑

n=1

1
n!

Φ∗n,

where Φ∗n is the convolution of Φ with itself n times, Φ∗0 := δ0 by convention with δ0

denoting the Dirac distribution at 0. The following property follows easily from (10) and
(9): if Φ,Ψ ∈ F ′θ(N ′) then

(12) exp∗ Φ ∗ exp∗Ψ = exp∗(Φ ∗Ψ).

3. Applications to the stochastic transport equation

A one parameter generalized stochastic process with values in F ′θ(N ′) is a family of
distributions {Φ(t), t ≥ 0} ⊂ F ′θ(N ′). The process Φ(t) is said to be continuous if the
map t ,→ Φ(t) is continuous. In order to introduce generalized stochastic integrals, we use
the characterization theorem for sequences of generalized functions, see [10], Theorem 3.
For a given continuous generalized stochastic process (X(t))t≥0 we define the stochastic
generalized process

Y (t, x,ω) =
∫ t

0
X(s, x,ω)ds ∈ F ′θ(N ′)

by

(13) L
(∫ t

0
X(s, x,ω)ds

)
(ξ, p) :=

∫ t

0
LX(s, p, ξ)ds.

The process Y (t, x,ω) is differentiable and we have ∂
∂tY (t, x,ω) = X(t, x,ω). The

details of the proof can be seen in [12], Proposition 4.11.
The results established up to now may be applied to a wide class of SPDE’s of convo-

lution type. The general procedure is the following:
Step 1: Assume that the functions involved in the SPDE can be modelled as some convo-
lution functional and all products involved are interpreted as convolutions products.
Step 2: Apply the Laplace transform L to the SPDE. This produce a deterministic dif-
ferential equation (with usual products) with the unknown t ,→ X̂(t, p, ξ) function where
(p, ξ) ∈ N .
Step 3: Solve this deterministic differential equation and then by the characterization The-
orem 2.1 X̂(p, ξ) is indeed the Laplace transform of an element X(·, ·) ∈ F ′β(N ′) for a
suitable choice of β which then solves the original equation.

Let us apply this scheme to solve the Cauchy problem in (1). We recall again this
problem for the reader convenience. Let f be a given generalized function in F ′θ(N ′)
and V,K and g F ′θ(N ′)-valued continuous generalized stochastic process. Consider the
following stochastic differential equation with initial condition f

(14)






∂
∂tX(t, x, ω) = 1

2σ2∆X(t, x, ω) +∇X(t, x,ω) ∗ V (t, x,ω)

+K(t, x,ω) ∗X(t, x,ω) + g(t, x,ω)

X(0, x,ω) = f(x, ω),
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To solve this SPDE we apply the Laplace transform to (14) and obtain
(15)





∂
∂tX̂(t, p, ξ) = [ 12σ2p2 +

∑r
i=1 piV̂i(t, p, ξ) + K̂(t, p, ξ)]X̂(t, p, ξ) + ĝ(t, p, ξ)

X̂(0, p, ξ) = f̂(p, ξ),

The solution of (15) is given as (using the method of variations of constants)

X̂t(ξ, p) = f̂(p, ξ) exp

(
1
2
σ2p2t +

r∑

i=1

pi

∫ t

0
V̂i(s, p, ξ)ds +

∫ t

0
K̂(s, p, ξ)ds

)(16)

+
∫ t

0
ĝ(s, p, ξ) exp

(
1
2
σ2p2(t− s) +

r∑

i=1

pi

∫ t

s
V̂i(u, p, ξ)du +

∫ t

s
K̂(u, p, ξ)du

)
ds.

Now the solution of the system (14) is given using (13), (12) and (10) and the characteri-
zation theorem, Theorem 2.1. We give it on the next proposition.

THEOREM 3.1. (1) The Cauchy problem (1) has an unique solution X(t) which
is a generalized F ′β(N ′)-valued stochastic process, where the Young function β

is given by β = (eθ∗)∗. Moreover, the solution X(t) is given explicitly by

X(t, ω, x) = f(x,ω) ∗ γσ2t ∗ exp∗
(∫ t

0
[divV (s, x,ω) + K(s, x,ω)]ds

)(17)

+
∫ t

0

[
g(s, x,ω) ∗ γσ2(t−s) ∗ exp∗

(∫ t

s
[divV (u, x, ω) + K(u, x, ω)]du

)]
ds,

where γσ2t is Gaussian measure on Rr with variance σ2t and divV =
∑r

i=1
∂V
∂xi

.

4. The solution of the transport equation as limit of integrals

In this section we will write the solution of the Cauchy problem (1) as a limit of
convergent series of integrals. In general, if we suppose that W = (W (t))t≥0 is a positive
generalized stochastic process (i.e., ∀t ≥ 0 〈〈W (t),ϕ〉〉 ≥ 0 for any ϕ ∈ Fθ(N ′) with
ϕ(x + i0) ≥ 0 ∀x ∈M) represented by the family of Radon measures (µt)t≥0, then for
any t ≥ 0

〈〈W (t),ϕ〉〉 =
∫

M′
ϕ(y)dµt(y), ϕ ∈ Fθ(N ′).

Moreover the measure µt verify the following integrability condition: for any t ≥ 0 there
exists n ∈ N and m > 0 with µt(M−n) = 1 such that

(18)
∫

M−n

exp(θ(m|y|−n))dµt(y) < ∞.

For each Radon measure µ on M′ verifying (18) and all ϕ ∈ Fθ(N ′) and u =
(x, ω) ∈ N ′ = M′ + iM′ we have the following equality, see [13] Lemma 3.2

(19) ((exp∗ µ)∗ϕ)(u) = ϕ(u)+
∞∑

n=1

1
n!

∫

(M′)n

ϕ(u+y1 + . . .+yn)dµ(y1) . . . dµ(yn).
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This equality may be generalized when ϕ is replaced by a generalized function Φ ∈
F ′θ(N ′). In fact, we have

(20) (exp∗ µ) ∗ Φ = Φ +
∞∑

n=1

1
n!

∫

(M′)n

τ∗−y1−...−yn
Φdµ(y1) . . . dµ(yn),

where for every n = 1, 2, . . . the distribution
∫
(M′)n τ∗−y1−...−yn

Φdµ(y1) . . . dµ(yn) is
defined for any ϕ ∈ Fθ(N ′) as

〈〈∫

(M′)n

τ∗−y1−...−yn
Φdµ(y1) . . . dµ(yn),ϕ

〉〉

=
∫

(M′)n

〈〈τ∗−y1−...−yn
Φ,ϕ〉〉dµ(y1) . . . dµ(yn)

=
∫

(M′)n

〈〈Φ, τ−y1−...−ynϕ〉〉dµ(y1) . . . dµ(yn)

=
∫

(M′)n

(Φ ∗ ϕ)(y1 + . . . + yn)dµ(y1) . . . dµ(yn).

For the details of the proof see [13] Lemma 3.6.
Moreover if (W (s))s≥0 ⊂ F ′θ(N ′) be a positive generalized stochastic process repre-

sented by the family of measures (µs)s≥0, then for any ϕ ∈ Fθ(N ′) we have

(21)
〈〈∫ t

0
W (s)ds, ϕ

〉〉
=

∫ t

0

(∫

M′
ϕ(y)dµs(y)

)
ds,

and consequently

(22)
〈〈

exp∗
(∫ t

0
W (s)ds

)
,ϕ

〉〉
=

〈〈
exp∗

(∫ t

0
µsds

)
,ϕ

〉〉
.

In fact equality (21) is nothing but the definition (13) with ϕ = exp((ξ, p)). Therefore
by a limit procedure we get the required result (21) for general test function ϕ ∈ Fθ(N ′).
To prove equality (22) we proceed in two steps: first we notice that for every s ≥ 0
W (s) ∗W (s) is represented by µs ∗ µs. Then iterating this process we obtain

(23) 〈〈exp∗W (s),ϕ〉〉 = 〈〈exp∗ µs,ϕ〉〉 .

Then equality (22) is a consequence of (21) and (23).
Combining (22) and (19) with (W (s))s≥0 ⊂ F ′θ(N ′) a positive generalized stochastic

process represented by the family of measures (µs)s≥0 and any test function ϕ ∈ Fθ(N ′),
u ∈ N ′ we have

(
exp∗

(∫ t

0
W (s)ds

)
∗ ϕ

)
(u)

(24)

= ϕ(u) +
∞∑

n=1

1
n!

∫

[0,t]n

∫

(M′)n

ϕ(u + y1 + . . . + yn)dµs1(y1) . . . dµsn(yn)ds1 . . . dsn.

If instead of (19) we use (20) then the equality (24) reads as
(25)

exp∗
((∫ t

0
W (s)ds

)
∗Ψ

)
= Ψ+

∞∑

n=1

1
n!

∫

[0,t]n

∫

(M′)n

τ∗−y1−...−yn
Ψdµs1(y1) . . . dµsn(yn)ds1 · · · dsn,
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for every generalized function Ψ ∈ F ′θ(N ′).
We are now ready to write the solution (17) of the Cauchy problem (1) as a convergent

series of integrals. We will apply (25) for a suitable choice of (W (s))s≥0 and Ψ.

THEOREM 4.1. Let V,K be such that (divV (s) + K(s))s≥0 is a positive generalized
stochastic process represented by the family of Radon measures (µs)<≥0 on M′ which
verify the integrability condition (18). If the initial condition f and the source rate of the
substance g are generalized functions in F ′θ(N ′), then the solution of the Cauchy problem
(1) is given by

X(t, x) = Ψ(t) +
∞∑

n=1

1
n!

∫

[0,t]n

∫

(M′)n

τ∗−y1−...−yn
Ψ(t)dµs1(y1) . . . dµsn(yn)ds1 . . . dsn

+
∫ t

0

(
Φs(t) +

∞∑

n=1

1
n!

∫

[s,t]n

∫

(M′)n

τ∗−y1−...−yn
Φs(t)dµu1(y1) . . . dµun(yn)du1 . . . dun

)
ds,

where Ψ(t) = f ∗ γσ2t⊗ δ0 and Φs(t) = g(t) ∗ γσ2(t−s)⊗ δ0 and δ0 is the Dirac measure
on S′d.
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