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Introduction 

In the following, I will attempt to characterize evolutionary computation [8][10], as a 

means of stimulating discussion at Math Encounters “Complex Systems in 

Computation” session (July, 2002). Most descriptions of EC would maintain an 

algorithmic focus; with a central algorithm manipulating data structures (see Figure 

1). 

 

Figure 1: A typical, centralized view of EC. 

This will be a somewhat non-standard characterization, in that I will focus on the 

interactions of individuals with one another (an “agent” perspective) [17] (see Figure 

2). 



 

Figure 2: An agent-based perspective on EC. 

The motivation for the different perspective offered here is generality. By adding a 

central, controlling agent, one can convert to the typical, algorithmic perspective, 

while the reverse is not always possible. Moreover, I hope this perspective no 

interacting agents will have a “physical” appeal. 

Basic Assumptions 

Assume that there exists of set of agents, and an environment. 

An agent i is characterized by a genotype
 

, and a phenotype
 

. The 

distinction between these items is that the former is not generally alterable in the 

agent’s “lifetime”, while the later can change as a part of a developmental process. 

The phenotype  is, in general, a function of , and the interactions between agent 

i, other agents, and the environment. 

At any given time t an agent i can send a packet of information  to another 

agent. Some such packets can directly indicate the sending agent’s genotype and 

phenotype.  

At any given time t, an agent can generate another agent, in accordance with a set of 

global rules constraining this process, and a set of rules within the agent itself (which 

are, in general, influenced by  and ). We assume that the agent has reproduction 

function R. 

 

At any given time, an agent can “die”. 



Agents receive information packets  from the environment.  

Agents can send information packets  to the environment. 

We can assume that there are neighbourhood structures over . 

Simple Optimization 

Assume that for each agent, there is a component of the agent’s phenotype , which 

is a scalar, independent of time, and which we will call its fitness. To obtain this 

scalar phenotype value, each agent sends an action message to the environment. The 

environment returns a state message that is the value of  (see Figure 3) 

 

Figure 3: An EC agent in a simple, optimization context. 

After an agent has determined its fitness in this fashion, it begins an exchange of 

information with other agents. Information packets exchanged between agents simply 

contain the sending agent’s genotype , its fitness value f, and perhaps other 

information about its phenotype. 

Agents store these packets as they receive them (technically as a part of their 

phenotype). 

Every agent has the same reproduction function R. This function consists of 

1. an operator that selects an information packet from the agent’s store (biased on 

fitness)  

2. an operator that combines the genotype of the selected mate with the genotype 

of the agent itself 

3. an operator that randomly alters (mutates) the resulting genotype 

Once this new genotype is constructed, the agent can produce another agent with this 

new genotype. 



Note that the goal of the EC systems described in this simple optimization example is 

to construct agents that have high fitness, which is reflected in the fitness bias of the 

selection operator. 

Traditional GA Theory 

This section will try to concisely restate some of the basic theories of EC, using an 

agent perspective, to indicate a direction along which EC theories can have 

implications for general agents. Many of the developments follow those in [8]. 

Although these theories have been much debated in the EC literature [11], I believe 

their conceptual conclusions provide a valuable perspective on self-organizing 

evolvable systems of general agents. 

Given this outline of an agent's localized perspective, let us consider the resulting 

global effects. Using notation similar to that in [8], let the expected proportion of 

existing agents containing some subset of features H of its genotype at some time t 

be . The expected number at time t+1 is given by: 

 

where RH is the probability of any individual agent selecting feature H (as a part of the 

selection operator in its reproduction function R), and DH is the probability of feature 

being disrupted by other aspects of R (i.e., recombination and mutation). Note that 

each of these probabilities may be a function of the proportions of agents with the 

given feature H, and other features in the neighbourhood of H. 

This simple expression makes no assumptions that can be said to be "genetic." Our 

first assumption that vaguely relates to biological analogy is to cast the formula above 

in terms of a reproductive plan [9]. That is, we will assume that the probability of 

selecting a feature is proportional (or just directly related) to the proportion of agents 

that contain that feature. In other words, the more agents that persist in having a 

feature, the greater the likelihood that agents will adopt or retain that feature. This is 

clearly the case in most imaginable variations of the simple optimization example 

offered above, in that any give agent is more likely to receive a message containing 

any given feature H if that feature is more present in the population. In its simplest 

(proportional) form, this gives: 

 

where SH is a reproductive rate related to the feature's perceived utility (average 

fitness) across the population of agents. One common form for SH is  

 

where fH is the average fitness of agents whose genotype contains feather H, and  

is the average fitness of all agents in the population at time t. If we say that  is the 

proportion of genotype i at time t: 

 

and 



 

Note that this simple "proportional selection" form is often used in EC, but any 

increasing function of proportion would yield conceptual conclusions similar to those 

presented here.  

Substituting yields: 

 

which is a proportional form of Holland's schema theorem [9]. This formula does not 

depend explicitly on the form of most of the internal workings of the agents (i.e., the 

method of encoding features, or the operators within the agents). It only depends on 

the assumption of a reproductive plan. 

Why a reproductive plan? This "bandwagoning" onto apparently useful features in 

other agents is certainly not the only rational approach from an agent perspective. 

Agents may find it useful to run counter to what other agents do. However, a 

reproductive plan is certainly one reasonable strategy, and worthy of examination. 

Moreover, other plans that are not explicitly reproductive in character, but which use 

perceived utility of features in other agents to bias feature selection, may yield similar 

mathematical forms. 

Let's assume that the agent's reasoning about desirable features is generally correct for 

some desirable feature H, and that SH[1-DH] remains greater than one for that feature. 

Ignoring constraints on proportions, this dictates an exponential increase in the  

with respect to t. Is this form of increase desirable?   

Holland’s k-armed bandit argument [9] shows that, regardless of the distributions of 

utilities of H and competing (mutually exclusive) features, a near-optimal rate of 

increase should be of exponential form with respect to time. A reproductive plan, like 

that stated above, yields this exponential form for certain features. This is an emergent 

effect at the system level, which only involves interactions at the agent level. The 

features that show this near-optimal, exponential effect are those with low rates of 

disruption, DH, relative to the magnitude of SH. In EC, such features are often referred 

to as building blocks. 

At this point, note that the previous discussion is not inherently genetic, and could as 

easily apply to memes as genes [3][4]. Memes are replicators and are defined as units 

of “cultural” information, such as cultural practices or ideas, which are transmitted via 

communication and imitation between one entity and another. Clearly, memes are 

subjected to a reproductive plan, in the sense of [9]. In the abstraction offered here, 

memes are aspects of F. The primary difference between genes and memes is that we 

have an understanding of the underlying encoding of genes (in !), which do not 

change during an agent’s lifetime, but we have no such understanding (in general) of 

memes (which are aspects of "). Otherwise, the two entities behave in a conceptually 

identical fashion, that is, selfishly trying to maximise their reproductive success.  

The remaining technical discussion in this section concentrates on the assumption of 

some atomic encoding unit of an agent’s features in !. Although we may not 

understand what this unit is for agent memes, much of the reasoning will still 

ultimately hold. Moreover, the EC offshoot field of memetic algorithms [12] can 

provide some insight in light of the perspective presented here. Since all interactions 



between agents could be categorized as potential transmissions of genes or memes, 

we believe that the EC-based perspective here can provide insight into general 

interactions between agents that may not be specifically genetic in character. 

All building blocks are treated in the emergent, yet near-optimal fashion indicated 

above, under a reproductive plan. Therefore, we should consider how many of these 

building blocks exist in a population of individuals. However, to maintain a general 

agent focus, we will do this without specific reference to EC details (e.g., genetic 

encoding). We only assume that there is a set of (discrete) atomic features, from 

which all other features are constructed. These atomic features are (roughly) 

analogous to genes in biological systems, but we are not assuming any particular, 

underlying encoding. 

An agent that contains M atomic features contains 2
M

 features, since all possible 

subsets of these M features can be considered to be features themselves. Whether a 

feature can be said to have low-disruption is a function of the internal operation of the 

agents themselves, and the resulting disruption rates. However, let us assume that we 

can consider (without loss of generality) some subset (or subsets) of features of size 

cM (0 < c < 1) or less to be building blocks. The number of building blocks 

containing only m atomic features in any such subset varies as follows: 

 

This distribution is symmetrical about the most numerous size of building blocks, 

m=cM/2. Let us assume all possible atomic features occur in agents equiprobably, 

with probability p. The probability of a building block with any given set of cM/2 

atomic features occurring in a given agent is p
cM/2

. In a population of size N, the 

expected number of copies of a building block of this (most numerous) size is Np
cM/2

. 

We can insure that the expected number of copies of building blocks of this size has a 

value of 1, by selecting a population size as follows: 

 

Given this simplifying, population-sizing assumption, all building blocks with cM/2 

or more features have an expected number of copies that is 1 or less. There are 2
cM-1

 

such building blocks in any of the subsets we are considering, in an individual agent. 

Therefore, we can say that the number of building blocks (Nbb) in the population has 

the following lower bound: 

 

Rearranging yields: 

 

or 



 

Rearranging, and recalling that population size is (1/p)
cM/2

, yields a lower bound on 

the number of building blocks, in terms of population size N: 

 

For binary atomic features, this gives a form of the N 
3
 lower bound often associated 

with genetic algorithms [8][9]. However, regardless of the assumed form of atomic 

features, the general estimate shows that (under certain restrictive assumptions) a 

large number of building blocks are implicitly treated in the near optimal fashion 

indicated by the k-armed bandit argument, as an emergent phenomenon of 

reproductive plans. This key emergent effect of reproductive plans is referred to in EC 

as implicit parallelism.  

Genetic Drift 

Consider the case where all (possible) agent genotypes result in the same fitness. 

In such a case (assuming an absence of disruption), one would imagine that any 

proportions of agent genotypes would be a steady state for the population. 

 

However, due largely to finite-population sizes and random effects in the reproduction 

process, this is not the case. Inevitably, one agent will gain a proportional advantage 

in the population. Once this occurs, the population will show genetic drift towards a 

population that is comprised of agents with the same genotype, through an 

accumulation of such random effects. In practice, the only steady state is that of a 

population dominated by a single genotype (modulo mutations). 

Population Diversity (Species and Niching) 

Let’s assume that agents not only use fitness f message from the environment as a 

means to bias there selection of mates, but that they also consider the distribution of 

potential mates (relative to each other, and to the given, selecting agent itself) in the 

genotypic or phenotypic space (under the given neighbourhood structures of those 

spaces) (see Figure 4). 



 

Figure 4: Niching is induced when genotypic (or phenotypic) neighbourhood plays a role in mate 

selection. 

Let’s consider a neighbourhood structure over genotypes, defined by a distance 

metric , which is the distance between genotype i and genotype j. Note that we 

could just as well employ a distance metric over a neighbourhood structure in 

phenotype space.  

Assume that this bias can be expressed as the creation of an effective fitness from the 

raw fitness that is given by the environment. One such form of bias would be: 

 

where  is the raw fitness,  is a decreasing function of , and  is 

effective fitness that is used to bias selection. Typically , and  for 

all x greater than some value . This value is called the niche size. Experience shows 

that the form of is less important than the value of .  

Consider the effects on  in the drift case outlined above: 

 

 

where  



 

That is, if the fitness values of all agents are equal, selection acts using this the inverse 

of the sharing function sum in the role of fitness for each individual. At steady state,  

 

for all i, which implies  for all i and j. Given the interdependences of  

values, and the fact that  increases with the proportion of individuals in any 

one niche, this effect tends to distribute the population on isolated peaks, that remain 

stable, thus overcoming drift. 

The fitness sharing scheme discussed above is a centralized calculation, performed to 

induce stable (drift resistant) diversity in clusters around fitness peaks in genetic 

algorithms [4]. Although fitness sharing is centralized, similar effects (implicit fitness 

sharing) on  can be the result of interactions between agents, and between agents 

and the environment, given that (in general, outside of the simple optimization case 

above)  is a function of these interactions, via the agent’s phenotype. A more agent-

based perspective is discussed later in this document. 

Mating restrictions are another means by which “species” and “niching” are induced 

or maintained in EC algorithms. A mating restriction simply eliminates some potential 

mates from an agent’s consideration, based on examination of phenotype or genotype 

(typically for similarity to the agent doing the selection). Usually mating restrictions 

do not allow agents that are less similar than some threshold  to mate (i.e., i and j 

cannot mate if dij.> ). 

Multiple Objectives 

In the simple optimization example above, it was assumed that there is a literal scalar 

“fitness” upon which selective decisions are based. In a slightly more general case, 

one can imagine a vector of objective function measures (implicit or explicit) upon 

which selective decisions can be based. In some EC algorithms this approach, coupled 

with speciation and niching, is used to spread solutions on the Pareto optimal front in 

the (vector) objective function space [5]. 

Agent Perspective Proportion Equations 

Implicitly, the proportion equations discussed in previous sections are constructed 

from a centralized perspective. Note that this assumes a global perspective on fitness, 

selection, and other operators. 

To consider systems where each individual in the population makes its own selective 

decisions, one has to modify the proportion equations. First, one must consider that 

the fitness of each schema may differ, depending on the perspective of the individual. 

Let us define  as the (average) fitness of schema  from the perspective of an 

individual containing schema . Note that if all agents had the same perspective as a 

centralized EA, the matrix of perceived fitness values  would be a matrix with 



identical elements (the effectively centralized view of fitness values) in each column 

(that is  for all j and k).  

We will similarly define: 

 

where  is the average fitness of the population from the perspective of individual : 

 

In a system where agents perform selection of mates with whom they reproduce 

children agents, one cannot in general assume that the population size will remain 

constant. This complicates (but does not preclude) the construction of proportion 

equations. For the purposes of this note, let us assume the “child replaces mother” 

model used in [17]. In this model, all agents can act as both fathers and mothers. 

Agents acting in a mother role select amongst possible agents acting in a father role, 

and mate with them. Any agent can act many times in the father role, but once a child 

is produced in the mother role, the mother “dies”, and is replaced by the child. 

In this case, let’s draw the proportion equations, considering selection to occur in the 

mother role: 

 

where  is the proportion of individuals that act in the mother role at any given 

time , and  is the probability of creating and individual that possesses schema  

from a mating when an individual that has schema  mothers a child with an 

individual that has schema .  

To consider a selection-only model, let us assume that a mother individual selects a 

mate (based on perceived fitness), then replaces itself with a child that is identical to 

itself with probability , or with a child that is identical to the selected father 

with probability .  

In this case, the only non-zero terms in the previous equations are those where 

either , or where . This gives: 

 

Or: 

 

Clearly, a steady state for individual  is reached whenever: 

 

for all i. Thus: 



 

Or: 

 

 

for all i where . 

There are a number of possible conditions where this equation may hold true. Two 

straightforward conditions present themselves. To examine these, let’s consider only 

the “effective” 
 
matrix, where rows and columns associated with individuals who 

have zero proportions have been eliminated.  

In the first steady-state condition, if the effective
 
is diagonal (  for all 

), a steady-state clearly exists. In the second, if  is a matrix of identical 

columns (  for all i and k): 

 

As an additional observation, note that in the case of a centralized EC algorithm 

(where every agent has the same perspective on fitness values) 
 
is a matrix of 

identical rows. Thus: 

 

 

Or: 

 

for all i where . This is clearly only the case if all individuals with non-zero 

proportions have the same fitness, as in the drift case. 

Agent-Based Fitness Sharing 

Let’s assume that fitness sharing operates in the manner described earlier For the 

moment, let’s assume each individual evaluates identical shared fitness values (as in 

the centralized scheme). Let’s further assume that convergence has occurred, such 

that there is only one type of individual with non-zero proportions in each niche 

(individuals outside the niche are further than away from one another). Thus, the 

sharing function that evaluates effective fitness gives: 



 

where the * designates the raw fitness value. Given that this is effectively a 

centralized algorithm, the effective matrix must reach a state where all 

individuals with non-zero proportions to have the same fitness, as in the drift case. 

Therefore, for a steady state: 

 

for all i and j with non-zero proportions, and  is a value that can be easily 

calculated. Summing the proportions: 

 

Therefore: 

 

and: 

 

This is the drift-resistant proportion vector one would expect for fitness sharing in the 

centralized EA with one individual in each niche. 

If we consider the case where each agent potentially evaluates shared fitness values 

differently. If we assume that a steady state exists where every individual with non-

zero proportions perceives only one individual in each niche: 

 

The most obvious steady state will be when the effective  is a matrix of identical 

columns (where each individual sees its sharing function as having stabilized to a 

single effective fitness for each individual). Thus: 

 

Summing proportions: 

 

Therefore: 

 

and: 



 

If a condition exists where there is only one individual in each niches, and the 

equation above yields the same values for all i and  j with non-zero proportions, then 

agents with separate, different sharing functions can reach a common set of steady-

state proportions. This is a sufficient condition for such a steady state, but it is not 

implied that it is necessary. Other steady states may exist. 

As a final note, consider the case where every agent has the same view of the raw, 

pre-sharing (*) fitness of every agent, but different sharing functions. Clearly, in this 

case previous arguments hold, and; 

 

which is the same steady state as in centralized fitness sharing. This indicates that 

agents that perceive the same non-shared fitness can use different sharing functions, 

and if a condition exists where all agents perceive only one individual in each niche, 

this condition is a steady state. Once again, this is a sufficient, but not necessary, 

condition. 

Agent-based Mating Restriction 

Consider the case of agent-based mating restriction, where an agent rejects any mates 

that are over some distance  away. Effectively, in this case: 

 

where  is a distance metric between  and  in genotypic or phenotypic space. 

Note that this implies certain definite steady states of the mating restriction scheme 

(those where there is a single individual in each niches, and, therefore, individuals are 

too far from one another to perceive them as fit), as well as certain aspects of the 

dynamics of selection only in the scheme, via the previous proportion equation. In this 

case, the effective  matrix is diagonal, which yields an obvious steady state. 

Learning Classifier (like) Systems 

Moving beyond the simple optimization example above, let’s assume more general 

interactions between agents and the environment. In particular, let’s assume the 

environment sends agents a message indicating some aspect of the environment’s 

state. Let’s assume that an agent compares this message to some aspect of its 

phenotype. If certain conditions are met (i.e., the agent is “matched” to the 

environment state), the agent posts a message to the environment (based, of course, on 

certain aspects of its phenotype) (see Figure 5).  



 

Figure 5: A context with more general agent-environment interactions, reminiscent of learning 

classifier systems, or immune system models. 

Let’s further assume that each agent can receive (via another message or as a part of 

the state message) something that it can interpret as punishment, reward, or cost. Let’s 

assume that this is a scalar, with negative values representing punishments (or costs), 

and positive values rewards. 

If we view the environment as a reinforcement learning problem [18] (see Figure 6), 

the system of agents can be seen as a reinforcement learning controller. However, one 

must assume that there is some conflict resolution in the environment to interpret 

agent’s “action” messages, and disambiguate any of these messages that indicate 

conflicting actions in the environment. Note that such disambiguation can be based on 

one or more aspects of the agents’ phenotypes. 



 

Figure 6: Environment viewed as a reinforcement learning control problem. 

To aid in assigning rewards to agents, we can also assume from credit assignment 

mechanism in the environment. 

Clearly, the system outlined is similar to both immune system models [7][15], and to 

Holland’s learning classifier system. In Holland’s original version of the LCS, a 

scalar fitness for each agent was used for the EC process of creating new agents, in a 

way similar to the simple optimization example outlined above. However, this fitness 

was not (in general) simply assigned by the environment. Instead, the agent 

implemented an exponentially smoothed online average of rewards, the result of 

which was used for fitness. This value (called strength) was also used as a basis for 

conflict resolution. The calculation of this fitness value is discussed further in a later 

section. 

By adding additional reinforcement to the agent acting in the past time steps that 

reflects the agents that act in the current time step, this scheme can be seen as similar 

to any given temporal reinforcement learning scheme (e.g., Q-learning). 

In a more recent (very successful, and very popular) form of LCS called XCS, an 

estimate of the variance of reward (rather than its average) is used to compute an 

accuracy (which has an inverse relationship to variance), which is in turn used as 

fitness. In XCS an estimator of average reward is still employed for conflict resolution 

[15]. 

Hierarchical Neighbourhood Structure 

Like the simple optimization example, speciation and niching can be employed in 

LCSs. In fact, since the “solution” to a problem (an effective controller formed by a 

group of agents) is likely to require a diverse set of agents, such effects are usually 

essential. 

Under certain reward strategies (particularly those who divide rewards between agents 

that match the same environmental message and produce the same actions) it has been 

shown that implicit fitness sharing occurs as an emergent effect [11]. 



In XCS, a different strategy is used. In this system, only agents that match the same 

environmental message are allowed to participate in an EC mating process together. 

In some XCSs, this restriction is further narrowed to only include matching agents 

that also suggest the same action [21]. Clearly, in either case, this is a form of mating 

restriction. 

However, in both cases, one must consider the neighbourhood structure over which 

sharing or mating restriction (implicitly) act. This is a structure induced by the nature 

of matching and acting in the environment (along with the distribution of state 

messages from the environment). Moreover, it is a structure that implicitly involves 

generalization. 

Under such an induced structure, an agent i can be said to a generalization of another 

agent j if it matches all the messages that j matches, and some additional messages 

that are not matched by j. Under these conditions, j is also said to be a specialization 

of i. Depending on the associated LCS operations, one might have to add the 

additional restriction that i and j have the same action. 

Note that i may also be a generalization of another agent k. In turn, k may or may not 

be a generalization of j (and vice versa).  

Relationship to RL 

It is useful to briefly consider the relationship of LCS generalization to reinforcement 

learning. Most reinforcement learning schemes are based on a table of values upon 

which action decisions are based. For instance, Q-learning [18] keeps a table of Q 

values, one for each possible state/action pair in the environment, and whenever a 

state presents itself, the action with the highest Q value is preferred. Q values are 

updated by the following equation: 

 

where  and  are parameters, and  is the cost of taking action a at time t in 

state s. There are a number of other such tabular reinforcement learning schemes, with 

various types and proofs of convergence. 

However, one clearly cannot scale these approaches for large numbers of states and 

actions. In such cases, it is necessary to generalize over the space of states (and 

possibly the space of actions). One can imagine an agent handling (matching) a 

particular subset of states, and associating with those states one or more actions, 

through associated, aggregate “Q” values. Since such generalization is imperative to 

RL scale up, and since RL problems are ubiquitous, the motivations for the discussion 

included here are clear. 

Note that in the typical, Holland LCS scheme, the strength value is calculated in a 

fashion similar to the Q-value. In other systems, the values inversely related to 

estimates of variance of Q are employed. In each case, there is a relationship between 

RL and the effective values of the raw fitness . This suggests there may be ways of 

analyzing LCS-like systems using the fitness matrix ( ) concept introduced above.  



Generalization and Neighbourhood Structure 

The neighbourhood structure induced by generalization/specialization relationships is 

critical to both the implicit fitness sharing in Holland’s original LCS (and related, 

simpler schemes like ZCS [20]), and the mating restriction in XCS. However, in XCS, 

there is another significant effect. An agent is allowed to generate new agents (that is, 

participate in the EC process) only after a certain number of matches. Therefore, more 

“general” agents have more chances to produce “child” agents. This acts as a 

balancing effect against the accuracy-based fitness measure, which favours more 

specific agents. In general, this “triggering” of EC interactions is another important 

effect. Of course, this can be considered to be an aspect of the selection scheme for 

agents, as well. 

The neighbourhood structure also allows for the potential formation of default 

hierarchies where specialists correct potential errors of generalists, thus forming a 

symbiotic relationship with desirable system level outcomes. 

Finally, note that the overall goal of LCS-like systems is to maximize some overall 

performance measure (e.g., the mean reward delivered by the environment). However, 

it is often the case that one wishes this to be accomplished with a set of agents that are 

as general as is possible. Note that this is a structural goal that is not generally 

reinforced by the environment directly. Also note that this structural goal is not too 

distant from the general goal of forming a compressed, robust characterization of a 

control strategy, without embedded overfitting or underfitting (as in neural networks 

and inductive learning schemes). 

Chains of Action and Other RL Effects 

As was noted above, one can include reinforcement for agents for good “sequences” 

of actions, in a manner that is like general reinforcement learning schemes. Of course, 

this induces yet another form of neighbourhood structure: that of agents that act in 

sequence (chains). Such implicit action chain can be made explicit if one includes a 

means of agents communicating with one another in sequence (via direct 

communication, or a “bulletin board” in the environment) (see Figure 7).  



 

Figure 7: A more complex, LCS or immune system like context, which includes more general 

messages between agents, and the prospect for explicit action chains. 

Once one allows for this effect, one can have internal state in the agent-based 

controller as well. This can allow for internal representation of environments that are 

non-Markovian. 

Open Questions 

To examine open questions in EC, it is useful to first narrow one’s concern to the 

simple optimization example. 

In this case, one must ask under what conditions the EC algorithm can be found 

effective in terms of developing high (possibly optimal) fitness agents, when faced 

with general and specific environments. This can involve deep consideration of the 

structures of genotypes and phenotypes in relationship to reproduction functions and 

the fitness feedback provided by the environment (e.g., so-called epistasis and 

deception in genetic algorithms). Closely related to this is the consideration of the 

interplay of features within the so-called “fitness landscape.” Traditional EC thinking 

suggests that building blocks (features with consistently high fitness) are juxtaposed 

via recombination to form better solutions. This becomes problematic when many 

building blocks influence one another’s fitness when combined. Thus, there is a large 

body of EC theory that considers this interplay, particularly via the Walsh Transform 

over the functions that map features (e.g., genotypes) to fitness [16]. Such analysis is 

vital in understanding what sorts of problems and encodings could prove difficult for 

various types of EC. 

Without digressing into the particulars of problem and encoding spaces, we can 

generally observe that, in general, an EC algorithm requires a subtle balance of 

effects: 

• Sampling – the size of the population of agents 

• Selective pressure – the manner in which agent biases its selection of mates 

based on fitness 



• Diversity – largely as induced by mutation 

• Mixing – largely as induced by recombination 

The investigation of the appropriate balance is (in my opinion) the central concern of 

EC theory. 

The “traditional” EC theory outlined above comprises one (quite primitive, but often 

useful) type of approach to these questions. In this approach, one considers the 

expected proportion of certain features (or individuals) in a population (often assumed 

to be of infinite size). In a number of studies, the expected trajectory for the 

population proportions is analytically evaluated. Although this approach provides 

only rough guidelines with regard to actual EC algorithm performance, it has often 

yielded useful observations (notably the theory behind fitness sharing). 

This approach can be extended to consider not only the expected value trajectories, 

but other statistics of the evolving population [13]. 

Another type of approach is Markov Chain Analysis of EC. In such approaches, the 

state of the entire EC population is mapped onto a state in a Markov Chain, and state 

transition probabilities are formulated relative to the genetic operators over the 

population. Once this is done, the full spectrum techniques for analyzing the trajectory 

of Markov Chains and other mathematical techniques can be brought to bear [19]. 

When one begins to more deeply consider speciation and niching (via fitness sharing, 

mating restriction, or other operators), one becomes concerned with the additional 

goal of spreading the population of agents across peaks in the space. Of immediate 

concern are the  

• The neighbourhood structure - over which sharing or mating restrictions are 

based. Of course, this has a particular interplay with the previously mentioned 

effects in the simple optimization example. 

• Sharing and mating restriction functions – over this neighbourhood 

structure. 

When one moves to more complex interactions between the agents and the 

environment, two additional effects emerge: 

• Conflict resolution and reward dynamics, - specifically, which actions are 

allowed to occur in the environment, and how they are rewarded 

• Fitness calculation dynamics– since a fitness is not assigned directly, and 

variety of fitness measures can be derived from reward. Note that these 

measures can be distinct from those used in conflict resolution. 

The final, and possibly most important, feature of such systems is the co-evolution of 

individuals that have desirable relationships to the environment. In the abstraction 

offered here, this is directly related to the hierarchical generalization/specialization 

neighbourhood structure. I sincerely believe that deeper investigation of these co-

evolutionary aspects of EC systems is the most needed aspect of EC theory. 

Final Comments 

As a direction for further research, I suggest that in agent-based EC systems. and in 

some systems that could be characterized in this fashion (possibly XCS), it may be 

possible to characterize the matrix  in relationship to the hierarchical nature of 



individuals, and the statistics upon which the centralized view of fitness is based. 

With such a characterization, it may be possible to make statements of the nature and 

stability of steady states in such systems. 
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