
One View of Evolutionary Computation

and Open Questions

A Research Note

Robert E. Smith
Intelligent Computer Systems Centre

University of The West of England
Computing, Engineering and Mathematical Sciences Faculty

Bristol, United Kingdom
Email: robert.smith@uwe.ac.uk

Introduction

In the following, I will attempt to characterize evolutionary computation [8][10], as a

means of stimulating discussion at Math Encounters “Complex Systems in

Computation” session (July, 2002). Most descriptions of EC would maintain an

algorithmic focus; with a central algorithm manipulating data structures (see Figure

1).

Figure 1: A typical, centralized view of EC.

This will be a somewhat non-standard characterization, in that I will focus on the

interactions of individuals with one another (an “agent” perspective) [17] (see Figure

2).

Figure 2: An agent-based perspective on EC.

The motivation for the different perspective offered here is generality. By adding a

central, controlling agent, one can convert to the typical, algorithmic perspective,

while the reverse is not always possible. Moreover, I hope this perspective no

interacting agents will have a “physical” appeal.

Basic Assumptions

Assume that there exists of set of agents, and an environment.

An agent i is characterized by a genotype

, and a phenotype

. The

distinction between these items is that the former is not generally alterable in the

agent’s “lifetime”, while the later can change as a part of a developmental process.

The phenotype is, in general, a function of , and the interactions between agent

i, other agents, and the environment.

At any given time t an agent i can send a packet of information to another

agent. Some such packets can directly indicate the sending agent’s genotype and

phenotype.

At any given time t, an agent can generate another agent, in accordance with a set of

global rules constraining this process, and a set of rules within the agent itself (which

are, in general, influenced by and). We assume that the agent has reproduction

function R.

At any given time, an agent can “die”.

Agents receive information packets from the environment.

Agents can send information packets to the environment.

We can assume that there are neighbourhood structures over .

Simple Optimization

Assume that for each agent, there is a component of the agent’s phenotype , which

is a scalar, independent of time, and which we will call its fitness. To obtain this

scalar phenotype value, each agent sends an action message to the environment. The

environment returns a state message that is the value of (see Figure 3)

Figure 3: An EC agent in a simple, optimization context.

After an agent has determined its fitness in this fashion, it begins an exchange of

information with other agents. Information packets exchanged between agents simply

contain the sending agent’s genotype , its fitness value f, and perhaps other

information about its phenotype.

Agents store these packets as they receive them (technically as a part of their

phenotype).

Every agent has the same reproduction function R. This function consists of

1. an operator that selects an information packet from the agent’s store (biased on

fitness)

2. an operator that combines the genotype of the selected mate with the genotype

of the agent itself

3. an operator that randomly alters (mutates) the resulting genotype

Once this new genotype is constructed, the agent can produce another agent with this

new genotype.

Note that the goal of the EC systems described in this simple optimization example is

to construct agents that have high fitness, which is reflected in the fitness bias of the

selection operator.

Traditional GA Theory

This section will try to concisely restate some of the basic theories of EC, using an

agent perspective, to indicate a direction along which EC theories can have

implications for general agents. Many of the developments follow those in [8].

Although these theories have been much debated in the EC literature [11], I believe

their conceptual conclusions provide a valuable perspective on self-organizing

evolvable systems of general agents.

Given this outline of an agent's localized perspective, let us consider the resulting

global effects. Using notation similar to that in [8], let the expected proportion of

existing agents containing some subset of features H of its genotype at some time t

be . The expected number at time t+1 is given by:

where RH is the probability of any individual agent selecting feature H (as a part of the

selection operator in its reproduction function R), and DH is the probability of feature

being disrupted by other aspects of R (i.e., recombination and mutation). Note that

each of these probabilities may be a function of the proportions of agents with the

given feature H, and other features in the neighbourhood of H.

This simple expression makes no assumptions that can be said to be "genetic." Our

first assumption that vaguely relates to biological analogy is to cast the formula above

in terms of a reproductive plan [9]. That is, we will assume that the probability of

selecting a feature is proportional (or just directly related) to the proportion of agents

that contain that feature. In other words, the more agents that persist in having a

feature, the greater the likelihood that agents will adopt or retain that feature. This is

clearly the case in most imaginable variations of the simple optimization example

offered above, in that any give agent is more likely to receive a message containing

any given feature H if that feature is more present in the population. In its simplest

(proportional) form, this gives:

where SH is a reproductive rate related to the feature's perceived utility (average

fitness) across the population of agents. One common form for SH is

where fH is the average fitness of agents whose genotype contains feather H, and

is the average fitness of all agents in the population at time t. If we say that is the

proportion of genotype i at time t:

and

Note that this simple "proportional selection" form is often used in EC, but any

increasing function of proportion would yield conceptual conclusions similar to those

presented here.

Substituting yields:

which is a proportional form of Holland's schema theorem [9]. This formula does not

depend explicitly on the form of most of the internal workings of the agents (i.e., the

method of encoding features, or the operators within the agents). It only depends on

the assumption of a reproductive plan.

Why a reproductive plan? This "bandwagoning" onto apparently useful features in

other agents is certainly not the only rational approach from an agent perspective.

Agents may find it useful to run counter to what other agents do. However, a

reproductive plan is certainly one reasonable strategy, and worthy of examination.

Moreover, other plans that are not explicitly reproductive in character, but which use

perceived utility of features in other agents to bias feature selection, may yield similar

mathematical forms.

Let's assume that the agent's reasoning about desirable features is generally correct for

some desirable feature H, and that SH[1-DH] remains greater than one for that feature.

Ignoring constraints on proportions, this dictates an exponential increase in the

with respect to t. Is this form of increase desirable?

Holland’s k-armed bandit argument [9] shows that, regardless of the distributions of

utilities of H and competing (mutually exclusive) features, a near-optimal rate of

increase should be of exponential form with respect to time. A reproductive plan, like

that stated above, yields this exponential form for certain features. This is an emergent

effect at the system level, which only involves interactions at the agent level. The

features that show this near-optimal, exponential effect are those with low rates of

disruption, DH, relative to the magnitude of SH. In EC, such features are often referred

to as building blocks.

At this point, note that the previous discussion is not inherently genetic, and could as

easily apply to memes as genes [3][4]. Memes are replicators and are defined as units

of “cultural” information, such as cultural practices or ideas, which are transmitted via

communication and imitation between one entity and another. Clearly, memes are

subjected to a reproductive plan, in the sense of [9]. In the abstraction offered here,

memes are aspects of F. The primary difference between genes and memes is that we

have an understanding of the underlying encoding of genes (in !), which do not

change during an agent’s lifetime, but we have no such understanding (in general) of

memes (which are aspects of "). Otherwise, the two entities behave in a conceptually

identical fashion, that is, selfishly trying to maximise their reproductive success.

The remaining technical discussion in this section concentrates on the assumption of

some atomic encoding unit of an agent’s features in !. Although we may not

understand what this unit is for agent memes, much of the reasoning will still

ultimately hold. Moreover, the EC offshoot field of memetic algorithms [12] can

provide some insight in light of the perspective presented here. Since all interactions

between agents could be categorized as potential transmissions of genes or memes,

we believe that the EC-based perspective here can provide insight into general

interactions between agents that may not be specifically genetic in character.

All building blocks are treated in the emergent, yet near-optimal fashion indicated

above, under a reproductive plan. Therefore, we should consider how many of these

building blocks exist in a population of individuals. However, to maintain a general

agent focus, we will do this without specific reference to EC details (e.g., genetic

encoding). We only assume that there is a set of (discrete) atomic features, from

which all other features are constructed. These atomic features are (roughly)

analogous to genes in biological systems, but we are not assuming any particular,

underlying encoding.

An agent that contains M atomic features contains 2
M

 features, since all possible

subsets of these M features can be considered to be features themselves. Whether a

feature can be said to have low-disruption is a function of the internal operation of the

agents themselves, and the resulting disruption rates. However, let us assume that we

can consider (without loss of generality) some subset (or subsets) of features of size

cM (0 < c < 1) or less to be building blocks. The number of building blocks

containing only m atomic features in any such subset varies as follows:

This distribution is symmetrical about the most numerous size of building blocks,

m=cM/2. Let us assume all possible atomic features occur in agents equiprobably,

with probability p. The probability of a building block with any given set of cM/2

atomic features occurring in a given agent is p
cM/2

. In a population of size N, the

expected number of copies of a building block of this (most numerous) size is Np
cM/2

.

We can insure that the expected number of copies of building blocks of this size has a

value of 1, by selecting a population size as follows:

Given this simplifying, population-sizing assumption, all building blocks with cM/2

or more features have an expected number of copies that is 1 or less. There are 2
cM-1

such building blocks in any of the subsets we are considering, in an individual agent.

Therefore, we can say that the number of building blocks (Nbb) in the population has

the following lower bound:

Rearranging yields:

or

Rearranging, and recalling that population size is (1/p)
cM/2

, yields a lower bound on

the number of building blocks, in terms of population size N:

For binary atomic features, this gives a form of the N
3
 lower bound often associated

with genetic algorithms [8][9]. However, regardless of the assumed form of atomic

features, the general estimate shows that (under certain restrictive assumptions) a

large number of building blocks are implicitly treated in the near optimal fashion

indicated by the k-armed bandit argument, as an emergent phenomenon of

reproductive plans. This key emergent effect of reproductive plans is referred to in EC

as implicit parallelism.

Genetic Drift

Consider the case where all (possible) agent genotypes result in the same fitness.

In such a case (assuming an absence of disruption), one would imagine that any

proportions of agent genotypes would be a steady state for the population.

However, due largely to finite-population sizes and random effects in the reproduction

process, this is not the case. Inevitably, one agent will gain a proportional advantage

in the population. Once this occurs, the population will show genetic drift towards a

population that is comprised of agents with the same genotype, through an

accumulation of such random effects. In practice, the only steady state is that of a

population dominated by a single genotype (modulo mutations).

Population Diversity (Species and Niching)

Let’s assume that agents not only use fitness f message from the environment as a

means to bias there selection of mates, but that they also consider the distribution of

potential mates (relative to each other, and to the given, selecting agent itself) in the

genotypic or phenotypic space (under the given neighbourhood structures of those

spaces) (see Figure 4).

Figure 4: Niching is induced when genotypic (or phenotypic) neighbourhood plays a role in mate

selection.

Let’s consider a neighbourhood structure over genotypes, defined by a distance

metric , which is the distance between genotype i and genotype j. Note that we

could just as well employ a distance metric over a neighbourhood structure in

phenotype space.

Assume that this bias can be expressed as the creation of an effective fitness from the

raw fitness that is given by the environment. One such form of bias would be:

where is the raw fitness, is a decreasing function of , and is

effective fitness that is used to bias selection. Typically , and for

all x greater than some value . This value is called the niche size. Experience shows

that the form of is less important than the value of .

Consider the effects on in the drift case outlined above:

where

That is, if the fitness values of all agents are equal, selection acts using this the inverse

of the sharing function sum in the role of fitness for each individual. At steady state,

for all i, which implies for all i and j. Given the interdependences of

values, and the fact that increases with the proportion of individuals in any

one niche, this effect tends to distribute the population on isolated peaks, that remain

stable, thus overcoming drift.

The fitness sharing scheme discussed above is a centralized calculation, performed to

induce stable (drift resistant) diversity in clusters around fitness peaks in genetic

algorithms [4]. Although fitness sharing is centralized, similar effects (implicit fitness

sharing) on can be the result of interactions between agents, and between agents

and the environment, given that (in general, outside of the simple optimization case

above) is a function of these interactions, via the agent’s phenotype. A more agent-

based perspective is discussed later in this document.

Mating restrictions are another means by which “species” and “niching” are induced

or maintained in EC algorithms. A mating restriction simply eliminates some potential

mates from an agent’s consideration, based on examination of phenotype or genotype

(typically for similarity to the agent doing the selection). Usually mating restrictions

do not allow agents that are less similar than some threshold to mate (i.e., i and j

cannot mate if dij.>).

Multiple Objectives

In the simple optimization example above, it was assumed that there is a literal scalar

“fitness” upon which selective decisions are based. In a slightly more general case,

one can imagine a vector of objective function measures (implicit or explicit) upon

which selective decisions can be based. In some EC algorithms this approach, coupled

with speciation and niching, is used to spread solutions on the Pareto optimal front in

the (vector) objective function space [5].

Agent Perspective Proportion Equations

Implicitly, the proportion equations discussed in previous sections are constructed

from a centralized perspective. Note that this assumes a global perspective on fitness,

selection, and other operators.

To consider systems where each individual in the population makes its own selective

decisions, one has to modify the proportion equations. First, one must consider that

the fitness of each schema may differ, depending on the perspective of the individual.

Let us define as the (average) fitness of schema from the perspective of an

individual containing schema . Note that if all agents had the same perspective as a

centralized EA, the matrix of perceived fitness values would be a matrix with

identical elements (the effectively centralized view of fitness values) in each column

(that is for all j and k).

We will similarly define:

where is the average fitness of the population from the perspective of individual :

In a system where agents perform selection of mates with whom they reproduce

children agents, one cannot in general assume that the population size will remain

constant. This complicates (but does not preclude) the construction of proportion

equations. For the purposes of this note, let us assume the “child replaces mother”

model used in [17]. In this model, all agents can act as both fathers and mothers.

Agents acting in a mother role select amongst possible agents acting in a father role,

and mate with them. Any agent can act many times in the father role, but once a child

is produced in the mother role, the mother “dies”, and is replaced by the child.

In this case, let’s draw the proportion equations, considering selection to occur in the

mother role:

where is the proportion of individuals that act in the mother role at any given

time , and is the probability of creating and individual that possesses schema

from a mating when an individual that has schema mothers a child with an

individual that has schema .

To consider a selection-only model, let us assume that a mother individual selects a

mate (based on perceived fitness), then replaces itself with a child that is identical to

itself with probability , or with a child that is identical to the selected father

with probability .

In this case, the only non-zero terms in the previous equations are those where

either , or where . This gives:

Or:

Clearly, a steady state for individual is reached whenever:

for all i. Thus:

Or:

for all i where .

There are a number of possible conditions where this equation may hold true. Two

straightforward conditions present themselves. To examine these, let’s consider only

the “effective”

matrix, where rows and columns associated with individuals who

have zero proportions have been eliminated.

In the first steady-state condition, if the effective

is diagonal (for all

), a steady-state clearly exists. In the second, if is a matrix of identical

columns (for all i and k):

As an additional observation, note that in the case of a centralized EC algorithm

(where every agent has the same perspective on fitness values)

is a matrix of

identical rows. Thus:

Or:

for all i where . This is clearly only the case if all individuals with non-zero

proportions have the same fitness, as in the drift case.

Agent-Based Fitness Sharing

Let’s assume that fitness sharing operates in the manner described earlier For the

moment, let’s assume each individual evaluates identical shared fitness values (as in

the centralized scheme). Let’s further assume that convergence has occurred, such

that there is only one type of individual with non-zero proportions in each niche

(individuals outside the niche are further than away from one another). Thus, the

sharing function that evaluates effective fitness gives:

where the * designates the raw fitness value. Given that this is effectively a

centralized algorithm, the effective matrix must reach a state where all

individuals with non-zero proportions to have the same fitness, as in the drift case.

Therefore, for a steady state:

for all i and j with non-zero proportions, and is a value that can be easily

calculated. Summing the proportions:

Therefore:

and:

This is the drift-resistant proportion vector one would expect for fitness sharing in the

centralized EA with one individual in each niche.

If we consider the case where each agent potentially evaluates shared fitness values

differently. If we assume that a steady state exists where every individual with non-

zero proportions perceives only one individual in each niche:

The most obvious steady state will be when the effective is a matrix of identical

columns (where each individual sees its sharing function as having stabilized to a

single effective fitness for each individual). Thus:

Summing proportions:

Therefore:

and:

If a condition exists where there is only one individual in each niches, and the

equation above yields the same values for all i and j with non-zero proportions, then

agents with separate, different sharing functions can reach a common set of steady-

state proportions. This is a sufficient condition for such a steady state, but it is not

implied that it is necessary. Other steady states may exist.

As a final note, consider the case where every agent has the same view of the raw,

pre-sharing (*) fitness of every agent, but different sharing functions. Clearly, in this

case previous arguments hold, and;

which is the same steady state as in centralized fitness sharing. This indicates that

agents that perceive the same non-shared fitness can use different sharing functions,

and if a condition exists where all agents perceive only one individual in each niche,

this condition is a steady state. Once again, this is a sufficient, but not necessary,

condition.

Agent-based Mating Restriction

Consider the case of agent-based mating restriction, where an agent rejects any mates

that are over some distance away. Effectively, in this case:

where is a distance metric between and in genotypic or phenotypic space.

Note that this implies certain definite steady states of the mating restriction scheme

(those where there is a single individual in each niches, and, therefore, individuals are

too far from one another to perceive them as fit), as well as certain aspects of the

dynamics of selection only in the scheme, via the previous proportion equation. In this

case, the effective matrix is diagonal, which yields an obvious steady state.

Learning Classifier (like) Systems

Moving beyond the simple optimization example above, let’s assume more general

interactions between agents and the environment. In particular, let’s assume the

environment sends agents a message indicating some aspect of the environment’s

state. Let’s assume that an agent compares this message to some aspect of its

phenotype. If certain conditions are met (i.e., the agent is “matched” to the

environment state), the agent posts a message to the environment (based, of course, on

certain aspects of its phenotype) (see Figure 5).

Figure 5: A context with more general agent-environment interactions, reminiscent of learning

classifier systems, or immune system models.

Let’s further assume that each agent can receive (via another message or as a part of

the state message) something that it can interpret as punishment, reward, or cost. Let’s

assume that this is a scalar, with negative values representing punishments (or costs),

and positive values rewards.

If we view the environment as a reinforcement learning problem [18] (see Figure 6),

the system of agents can be seen as a reinforcement learning controller. However, one

must assume that there is some conflict resolution in the environment to interpret

agent’s “action” messages, and disambiguate any of these messages that indicate

conflicting actions in the environment. Note that such disambiguation can be based on

one or more aspects of the agents’ phenotypes.

Figure 6: Environment viewed as a reinforcement learning control problem.

To aid in assigning rewards to agents, we can also assume from credit assignment

mechanism in the environment.

Clearly, the system outlined is similar to both immune system models [7][15], and to

Holland’s learning classifier system. In Holland’s original version of the LCS, a

scalar fitness for each agent was used for the EC process of creating new agents, in a

way similar to the simple optimization example outlined above. However, this fitness

was not (in general) simply assigned by the environment. Instead, the agent

implemented an exponentially smoothed online average of rewards, the result of

which was used for fitness. This value (called strength) was also used as a basis for

conflict resolution. The calculation of this fitness value is discussed further in a later

section.

By adding additional reinforcement to the agent acting in the past time steps that

reflects the agents that act in the current time step, this scheme can be seen as similar

to any given temporal reinforcement learning scheme (e.g., Q-learning).

In a more recent (very successful, and very popular) form of LCS called XCS, an

estimate of the variance of reward (rather than its average) is used to compute an

accuracy (which has an inverse relationship to variance), which is in turn used as

fitness. In XCS an estimator of average reward is still employed for conflict resolution

[15].

Hierarchical Neighbourhood Structure

Like the simple optimization example, speciation and niching can be employed in

LCSs. In fact, since the “solution” to a problem (an effective controller formed by a

group of agents) is likely to require a diverse set of agents, such effects are usually

essential.

Under certain reward strategies (particularly those who divide rewards between agents

that match the same environmental message and produce the same actions) it has been

shown that implicit fitness sharing occurs as an emergent effect [11].

In XCS, a different strategy is used. In this system, only agents that match the same

environmental message are allowed to participate in an EC mating process together.

In some XCSs, this restriction is further narrowed to only include matching agents

that also suggest the same action [21]. Clearly, in either case, this is a form of mating

restriction.

However, in both cases, one must consider the neighbourhood structure over which

sharing or mating restriction (implicitly) act. This is a structure induced by the nature

of matching and acting in the environment (along with the distribution of state

messages from the environment). Moreover, it is a structure that implicitly involves

generalization.

Under such an induced structure, an agent i can be said to a generalization of another

agent j if it matches all the messages that j matches, and some additional messages

that are not matched by j. Under these conditions, j is also said to be a specialization

of i. Depending on the associated LCS operations, one might have to add the

additional restriction that i and j have the same action.

Note that i may also be a generalization of another agent k. In turn, k may or may not

be a generalization of j (and vice versa).

Relationship to RL

It is useful to briefly consider the relationship of LCS generalization to reinforcement

learning. Most reinforcement learning schemes are based on a table of values upon

which action decisions are based. For instance, Q-learning [18] keeps a table of Q

values, one for each possible state/action pair in the environment, and whenever a

state presents itself, the action with the highest Q value is preferred. Q values are

updated by the following equation:

where and are parameters, and is the cost of taking action a at time t in

state s. There are a number of other such tabular reinforcement learning schemes, with

various types and proofs of convergence.

However, one clearly cannot scale these approaches for large numbers of states and

actions. In such cases, it is necessary to generalize over the space of states (and

possibly the space of actions). One can imagine an agent handling (matching) a

particular subset of states, and associating with those states one or more actions,

through associated, aggregate “Q” values. Since such generalization is imperative to

RL scale up, and since RL problems are ubiquitous, the motivations for the discussion

included here are clear.

Note that in the typical, Holland LCS scheme, the strength value is calculated in a

fashion similar to the Q-value. In other systems, the values inversely related to

estimates of variance of Q are employed. In each case, there is a relationship between

RL and the effective values of the raw fitness . This suggests there may be ways of

analyzing LCS-like systems using the fitness matrix () concept introduced above.

Generalization and Neighbourhood Structure

The neighbourhood structure induced by generalization/specialization relationships is

critical to both the implicit fitness sharing in Holland’s original LCS (and related,

simpler schemes like ZCS [20]), and the mating restriction in XCS. However, in XCS,

there is another significant effect. An agent is allowed to generate new agents (that is,

participate in the EC process) only after a certain number of matches. Therefore, more

“general” agents have more chances to produce “child” agents. This acts as a

balancing effect against the accuracy-based fitness measure, which favours more

specific agents. In general, this “triggering” of EC interactions is another important

effect. Of course, this can be considered to be an aspect of the selection scheme for

agents, as well.

The neighbourhood structure also allows for the potential formation of default

hierarchies where specialists correct potential errors of generalists, thus forming a

symbiotic relationship with desirable system level outcomes.

Finally, note that the overall goal of LCS-like systems is to maximize some overall

performance measure (e.g., the mean reward delivered by the environment). However,

it is often the case that one wishes this to be accomplished with a set of agents that are

as general as is possible. Note that this is a structural goal that is not generally

reinforced by the environment directly. Also note that this structural goal is not too

distant from the general goal of forming a compressed, robust characterization of a

control strategy, without embedded overfitting or underfitting (as in neural networks

and inductive learning schemes).

Chains of Action and Other RL Effects

As was noted above, one can include reinforcement for agents for good “sequences”

of actions, in a manner that is like general reinforcement learning schemes. Of course,

this induces yet another form of neighbourhood structure: that of agents that act in

sequence (chains). Such implicit action chain can be made explicit if one includes a

means of agents communicating with one another in sequence (via direct

communication, or a “bulletin board” in the environment) (see Figure 7).

Figure 7: A more complex, LCS or immune system like context, which includes more general

messages between agents, and the prospect for explicit action chains.

Once one allows for this effect, one can have internal state in the agent-based

controller as well. This can allow for internal representation of environments that are

non-Markovian.

Open Questions

To examine open questions in EC, it is useful to first narrow one’s concern to the

simple optimization example.

In this case, one must ask under what conditions the EC algorithm can be found

effective in terms of developing high (possibly optimal) fitness agents, when faced

with general and specific environments. This can involve deep consideration of the

structures of genotypes and phenotypes in relationship to reproduction functions and

the fitness feedback provided by the environment (e.g., so-called epistasis and

deception in genetic algorithms). Closely related to this is the consideration of the

interplay of features within the so-called “fitness landscape.” Traditional EC thinking

suggests that building blocks (features with consistently high fitness) are juxtaposed

via recombination to form better solutions. This becomes problematic when many

building blocks influence one another’s fitness when combined. Thus, there is a large

body of EC theory that considers this interplay, particularly via the Walsh Transform

over the functions that map features (e.g., genotypes) to fitness [16]. Such analysis is

vital in understanding what sorts of problems and encodings could prove difficult for

various types of EC.

Without digressing into the particulars of problem and encoding spaces, we can

generally observe that, in general, an EC algorithm requires a subtle balance of

effects:

• Sampling – the size of the population of agents

• Selective pressure – the manner in which agent biases its selection of mates

based on fitness

• Diversity – largely as induced by mutation

• Mixing – largely as induced by recombination

The investigation of the appropriate balance is (in my opinion) the central concern of

EC theory.

The “traditional” EC theory outlined above comprises one (quite primitive, but often

useful) type of approach to these questions. In this approach, one considers the

expected proportion of certain features (or individuals) in a population (often assumed

to be of infinite size). In a number of studies, the expected trajectory for the

population proportions is analytically evaluated. Although this approach provides

only rough guidelines with regard to actual EC algorithm performance, it has often

yielded useful observations (notably the theory behind fitness sharing).

This approach can be extended to consider not only the expected value trajectories,

but other statistics of the evolving population [13].

Another type of approach is Markov Chain Analysis of EC. In such approaches, the

state of the entire EC population is mapped onto a state in a Markov Chain, and state

transition probabilities are formulated relative to the genetic operators over the

population. Once this is done, the full spectrum techniques for analyzing the trajectory

of Markov Chains and other mathematical techniques can be brought to bear [19].

When one begins to more deeply consider speciation and niching (via fitness sharing,

mating restriction, or other operators), one becomes concerned with the additional

goal of spreading the population of agents across peaks in the space. Of immediate

concern are the

• The neighbourhood structure - over which sharing or mating restrictions are

based. Of course, this has a particular interplay with the previously mentioned

effects in the simple optimization example.

• Sharing and mating restriction functions – over this neighbourhood

structure.

When one moves to more complex interactions between the agents and the

environment, two additional effects emerge:

• Conflict resolution and reward dynamics, - specifically, which actions are

allowed to occur in the environment, and how they are rewarded

• Fitness calculation dynamics– since a fitness is not assigned directly, and

variety of fitness measures can be derived from reward. Note that these

measures can be distinct from those used in conflict resolution.

The final, and possibly most important, feature of such systems is the co-evolution of

individuals that have desirable relationships to the environment. In the abstraction

offered here, this is directly related to the hierarchical generalization/specialization

neighbourhood structure. I sincerely believe that deeper investigation of these co-

evolutionary aspects of EC systems is the most needed aspect of EC theory.

Final Comments

As a direction for further research, I suggest that in agent-based EC systems. and in

some systems that could be characterized in this fashion (possibly XCS), it may be

possible to characterize the matrix in relationship to the hierarchical nature of

individuals, and the statistics upon which the centralized view of fitness is based.

With such a characterization, it may be possible to make statements of the nature and

stability of steady states in such systems.

Acknowledgements

The author would like to thank Ludwig Streit for inviting me to Math Encounters at

The University of Madeira, where I had the opportunity to refine these ideas, and

discover many new avenues for future research. In light of this, I would like to

formally acknowledge the support provided by FCT, Portugal.

References

[1] Back, T., Fogel, D. B., and Michalewicz, Z. (1997). The Handbook of

Evolutionary Computation. Oxford University Press.

[2] Barto, A. G., Sutton, R. S. (1998). Reinforcement learning. MIT Press.

[3] Blackmore, S. J. and Dawkins, R. (1999). The Meme Machine. Oxford University

Press.

[4] Dawkins, R. (1990). The Selfish Gene. Oxford University Press.

[5] Deb, K. (2000). Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley.

[6] Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species

formation in genetic function optimization. Proceedings of the Third International

Conference on Genetic Algorithms. p. 42--50.

[7] Forrest, S., Javornik, B., Smith, R. E. and Perelson, A. (1993). Using Genetic

Algorithms to Explore Pattern Recognition in the Immune System. Evolutionary

Computation 1(3). pp. 191-212

[8] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley. Reading, MA

[9] Holland, J. H. (1975). Adaptation in natural and artificial systems. The University

of Michigan Press. Ann Arbor, MI.

[10] Holland, J. H. (1992). Adaptation in natural and artificial systems (second

edition). MIT Press.

[11] Horn, J. and Goldberg, D. E. and Deb, K. (1994). Implicit niching in a

learning classifier system: Nature's way. Evolutionary Computation, 2(1). p. 37-66.

[12] Krasnogor, N. and Smith, J. (2000) MAFRA: A Java Memetic Algorithms

Framework, Workshop on Memetic Algorithms, GECCO 2000.

[13] Prügel-Bennett. A. and Rogers, A. (2000). Modelling GA Dynamics.

Theoretical Aspects of Evolutionary Computing, Natural Computing. Springer-Verlag.

[14] Radcliffe, N. J. (1997). Schema Processing. In [1], pp. B2.5:1-10.

[15] Smith, R. E. and Forrest, S. and Perelson, A. S. (1993). Searching for Diverse,

Cooperative Populations with Genetic Algorithms. Evolutionary Computation 1(2).

pp. 127-149

[16] Smith, R. E. and Smith, J. (2001). New Methods for Tunable, Random

Landscapes. In Martin, W. N. and Spears, W. M., Foundations of Genetic Algorithms

6. pp. 47-68. Morgan Kaufmann.

[17] Smith, R. E., Bonacina, C., Kearney, P., and Merlat, W. (2001). Embodiment

of Evolutionary Computation in General Agents. Evolutionary Computation 4(8). Pp

475-493. MIT Press.

[18] Sutton, R. S. and Barto, A. G. (1998) Reinforcement Learning: An

Introduction. MIT Press.

[19] Vose, M. (1999). The Simple Genetic Algorithm: foundations and theory. MIT

Press (1999).

[20] Wilson, S. W. (1994) ZCS: A zeroth-level classifier system, Evolutionary

Computation 2(1). pp. 1-18.

[21] Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary

Computation. 3(2).

[22] Wilson, S. W. (1996). Explore/exploit strategies in autonomy. In P. Maes, M.

Mataric, J. Pollack, J.-A. Meyer and S. W. Wilson (eds.), From Animals to Animats

4: Proceedings of the Fourth international Conference on Simulation of Adaptive

Behaviour. MIT Press.

[23] Wilson, S.W. (1987). Hierarchical Credit Allocation in a Classifier System. In

Davis, L. (ed.) Genetic Algorithms and Simulated Annealing. pp. 104-115. Pitman.

