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For general potentials we prove that every canonical Gibbs measure on configurations over a manifold X is
quasi-invariant w.r.t. the group of diffeomorphisms on X. We show that this quasi-invariance property also
characterizes the class of canonical Gibbs measures. From this we conclude that the extremal canonical Gibbs
measures are just the ergodic ones w.r.t. the diffeomorphism group. Thus we provide a whole class of different
irreducible representations.
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1 Introduction

The group Diff0(X) of diffeomorphisms with compact support over a manifold X has been frequently studied
as an example of an infinite dimensional group, see e.g. [18], [24] and references therein. In addition, its study
is motivated by problems of mathematical physics, see e.g. [7], [12], [14], and for an overview [4]. Namely, the
unitary representations of this group can be considered as models of non-relativistic quantum field theory. Since
there is little hope to describe all unitary and irreducible representations of the diffeomorphism groups, usually
one confines oneself to regular representations in the sense of Mackey originating from a quasi-invariant measure
µ. Unfortunately, examples of this kind of measures are rare, see e.g. [18].

Starting from the works of [16], [20], [12], and [9], configuration spaces are considered as underlying measur-
able spaces. On X the quasi-invariant measures are just the volume forms

(
e.g. Riemannian volume or Lebesgue

measure on Rd
)
. Let σ be such a volume form. The space of n-point configurations Γ(n)

X := {η ⊂ X | |η| = n}
is a kind of homogeneous space of Diff0(X) for the action φ(η) := {φ(x) | x ∈ η}. Also in this case the volume
forms are the quasi-invariant measures. All of them are equivalent to each other and in particular equivalent
to the symmetrization of σ⊗n. In applications to physics the points of a set η are sometimes interpreted as the
positions of n indistinguishable particles. Strictly speaking, we work with the so-called simple configurations,
i.e. we assume that two particles cannot have the same position. For our purpose this is reasonable, because a
Diff0(X)-ergodic measure µ on the space of configurations with coinciding points has either µ(ΓX) = 1 or 0.

For the space of infinite configurations

ΓX := {γ ⊂ X | |γ ∩ K| < ∞ for any compact K ⊂ X}

the situation is richer. Under the natural action φ(γ) := {φ(x) | x ∈ γ} of Diff0(X) on ΓX the subspaces of
n-point configurations are orbits of the group, which can be treated separately. Thus we focus on measures
concentrated on infinite configurations. Well studied is the case of Poisson measures πzσ , see [9], [17], and [30].
Note that these measures are ergodic although they are not supported by a single orbit of the diffeomorphism
group. For different z > 0 the representations corresponding to πzσ are inequivalent.
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Already in [9] it was noted that Gibbs measures form a much wider class of examples and (under an abstract
condition on the regularity of the underlying specification) quasi-invariance was proven. In [31] the case of
finite range potentials was handled. Technical difficulties arise only if one drops this restriction. Therefore, in
Subsection 3.3 we prove quasi-invariance for concrete conditions on the potential and the class of admissible
Gibbs measures.

In [9] and [18] the authors showed that a regular representation of Diff0(X) is irreducible iff the corresponding
measure is ergodic. In Theorem 4.3 we proof that the extremal elements of the convex set of Gibbs measures
are just the Diff0(X)-ergodic ones. The proof is essentially based on the characterization of Gibbs measures by
their Radon-Nikodym derivatives, cf. Theorem 3.10. The ergodic decomposition of Gibbs measures discussed
in [31] (cf. the second definition of ergodicity on the bottom of page 623) is actually the decomposition of
Gibbs measures into extremal ones in the sense of Dynkin-Föllmer-Martin boundary, see e.g. [26]. For the group
of translations on a Hilbert space similar results holds for Gibbs measures for lattice systems, for a detailed
consideration and references see e.g. [1].

Although one cannot expect neither that the quasi-invariant measures have full support on a single orbit, nor
uniqueness (w.r.t. equivalence of measures) and one is lacking information about the finite dimensional distribu-
tions or characteristics of the measure; nevertheless the proofs of this paper are rather short and simple due to
the applied techniques. Besides the conceptional background of configuration space analysis, the following two
techniques seem to play an important role.

First, the idea to derive ergodicity of extremal Gibbs measures using their characterization by Radon-Nikodym
derivatives seems to be new. The difficult direction is to show that extreme Gibbs measures are ergodic. Typically,
one tries to prove that every a.s. invariant function is a.s. equal to a tail-field measurable function. This point is not
considered in [31]. We cannot generalize this approach to invariant measures. The technique of Lemma 2.7 in [1]
seems to be based on the linear structure of the group. To prove this lemma the characterization of Gibbs measures
is not used, whereas we show that ergodicity is a direct consequence of this characterization. Notwithstanding
several considerations from the study of invariant measures can be preserved, cf. Section 4.

Secondly, the concept of specification, i.e. characterization by conditional expectations, appears to be suit-
able. Be aware that typically neither the conditional expectations nor the “characterization” by Radon-Nikodym
derivatives determine the measure uniquely. Specifications are constructed from potentials V :

⊔
n∈N Γ(n)

X → R.
For simplicity, we consider in the main body of the paper only pair potentials and the generalization to general po-
tentials is postponed to Section 5. The quasi-invariance of a measure µ on ΓX with admissible Radon-Nikodym
derivatives is equivalent to the quasi-invariance of its conditional probabilities. For technical reasons this holds
only for a countable subgroup. Nevertheless, one can construct a subgroup which is large enough to still char-
acterize the conditional probabilities, as measures on Γ(n)

X , by their Radon-Nikodym derivatives, cf. Section 3.
As Gibbs measures are defined via their conditional probabilities this yields the characterization. Usually, one
works in mathematical statistical mechanics with the set of grand canonical Gibbs measures Ggc(z, V ) for an
activity z > 0. It turns out to be useful to work with a filtration of σ-algebras leading to canonical Gibbs mea-
sures Gc(V ), cf. Subsection 2.2. In this case the conditional probabilities are supported on Γ(n)

X , whereas for the
grand canonical ensemble they are supported on

⊔
n∈N0

Γ(n)
X which is not a single orbit of Diff0(X). Hence the

conditional probability measures are not determined uniquely up to equivalence by their Radon-Nikodym deriva-
tives. Both concepts were already used in the context of characterization of Gibbs measures by an integration
by parts formula, cf. [3]. This is the infinitesimal version of the characterization by Radon-Nikodym derivatives,
however it is not equivalent even for quite natural differentiable potentials, cf. for a discussion of this fact in the
one dimensional case Remark 3.6 (ii) in [1]. These concepts seem to be new in the area of infinite dimensional
group theory. One should expect that in general extremal canonical Gibbs measures are extremal grand canonical
Gibbs measures:

ext(Gc(V )) = {δ∅} ∪
⋃

z>0

ext(Ggc(z, V )) .

This is the so-called equivalence of ensembles, see [10] for the case X = Rd and [27] for an abstract consid-
eration. Note that Ggc(z, 0) = {πzσ}. In general ext(Ggc(z, V )) can have more than one element; in statistical
mechanics this effect is called phase transition. Existence of Gibbs measures are well studied, see for example
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[29] for pair potentials and X = Rd; see also e.g. [22] for partial results for general spaces X . The representations
corresponding to measures from ext(Gc(V )) are mutually inequivalent.

Clearly, conditions on the class of potentials under consideration are necessary. First of all the potentials should
have no hard core, as otherwise the Gibbs measures are not even quasi-invariant. For finite range potentials, the
Radon-Nikodym derivatives and the densities of the conditional probabilities are obviously well defined . An a
priori information about the measure is needed to handle also non finite range potentials; for example a support
property or a bound for the first correlation function. The potential should be lower and upper regular. These
technical details are collected in Subsection 3.2. The concepts of harmonic analysis on configuration spaces,
namely the K-transform of A. Lenard, essentially simplify these considerations. The concrete assumptions on
the potential are weaker than what is usually assumed. Standard techniques of statistical mechanics, see e.g.
[29], would work as well, however in the case of general potentials they would be rather intricate and for marked
systems too restrictive if applied naively. Using the proposed technique these generalizations are direct. This is
pointed out in Section 5.

2 Preliminaries

2.1 Configuration spaces

Let X be a connected, oriented Riemannian l-dimensional C∞-manifold with a volume element m and metric
d. For simplicity, we consider X to be a geodesically complete and non-compact space. We denote by O(X)
the family of all open subsets of X , and by B(X) the corresponding σ-algebra on X . Oc(X),

(
respectively

Bc(X)
)

denotes the system of all sets in O(X) (respectively B(X)) which are bounded (and hence have compact

closure). Define the space Γ(n)
Y of n-point configurations in Y ∈ B(X), n ∈ N0 := N ∪ {0} by

Γ(n)
Y := {η ⊂ Y | |η| = n} , Γ(0)

Y := {∅} , (2.1)

where |η| denotes the cardinality of the set η. For each Λ ∈ Bc(X) define the mapping NΛ by NΛ : Γ(n)
X →N0,

η (→ |η∩Λ|. For short we denote by ηΛ := η∩Λ. The space of all n-point configurations Γ(n)
X is an n ·dim(X)-

dimensional C∞-manifold, because it is equal to X̃n/Sn. Here X̃n := {(x1, . . . , xn) ∈ Xn | xi )= xj if i )= j}
and Sn is the symmetric group over {1, . . . , n}. A basis of the topology on Γ(n)

X is given by sets of the form

U1×̂ . . . ×̂Un :=
{
η ∈ Γ(n)

X

∣∣ NU1(η) = 1, . . . , NUn(η) = 1
}

,

where Ui ∈ Oc(X), Ui ∩ Uj = ∅. As for each {x1, . . . , xn} ∈ U1×̂ . . . ×̂Un there exists a unique ik with
xik ∈ Uk one can construct a chart of Γ(n)

X using n-charts (Ui, hi) of X by

h1×̂ · · · ×̂hn ({x1, . . . , xn}) :=
(
h1

(
xi1

)
, . . . , hn

(
xin

))
. (2.2)

The family of all open sets on Γ(n)
X we denote by O

(
Γ(n)

X

)
. The corresponding Borel σ-algebra B

(
Γ(n)

X

)
is also

equal to σ(NΛ | Λ ∈ Bc(X)). The space of finite configurations is Γ0 := Γ0,X and Γ0,X :=
⊔

n∈N0
Γ(n)

X

equipped with the topology O(Γ0,Y ) of disjoint union.
The configuration space Γ := ΓX over X is defined as the set of all locally finite subsets (configurations)

in X :

Γ := {γ ⊂ X | |γ ∩ K| < ∞ for any compact K ⊂ X} . (2.3)

The space Γ equipped with the vague topology O(Γ) is Polish, see e.g. [19]. The corresponding Borel σ-algebra
is B(Γ) = σ(NΛ | Λ ∈ Oc(X)). The configuration space Γ is the projective limit of the spaces ΓΛ :=
{γ ∈ Γ | γΛc = ∅}, Λc = X\Λ Λ ∈ Oc(X) and projections pΛ : Γ → ΓΛ, γ (→ γΛ. Notice that as
measurable spaces ΓΛ = Γ0,Λ :=

⊔
n∈N0

Γ(n)
Λ . Furthermore, for any Λ ∈ Oc(X) we define the following

filtration of σ-algebras on Γ

BΛ(Γ) := σ
({

NΛ′ | Λ′ ∈ Bc(X) with Λ′ ⊂ Λ
})

. (2.4)
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The σ-algebras BΛ(Γ) and B(ΓΛ) are σ-isomorphic. Denote by L0(Γ,BΛ(Γ)) the set of all BΛ(Γ)-measurable
functions on Γ and by L0(ΓΛ,B(ΓΛ)) the space of B(ΓΛ)-measurable functions on ΓΛ. Recall that F : Γ (→ R
is BΛ(Γ)-measurable iff F!ΓΛ∈ L0(ΓΛ,B(ΓΛ)) and we have the following connection F (γ) = F!ΓΛ(γΛ). For
more details concerning configuration space analysis and its applications see e.g. [2], [3] and [22] or [21] and
references therein.

2.2 Canonical Gibbs measures

Let ρ ∈ L1
loc(X, m) be a m-a.s. strictly positive (in general non-integrable) function and define σ := ρm.

Interesting in this context is the case σ(X) = ∞. For any n ∈ N the product measure σ⊗n has full measure on
X̃nand its symmetrization σn is a measure on Γ(n)

0 . The Lebesgue-Poisson measure on Γ0 is λzσ :=
∑∞

n=0
zn

n! σn.
The Poisson measure πzσ is defined as the projective limit of the probability measures πΛ

zσ := e−zσ(Λ)λzσ on ΓΛ,
Λ ∈ Oc(X). We now describe a bigger class of probability measures on the configuration space, the so-called
canonical Gibbs measures, cf. [11] and [27]. A measurable symmetric function V : X̃2 → R is called a pair
potential. The energy functional E : Γ0 → R is defined by E(η) :=

∑
{x,y}⊂η V (x, y), with E(η) := 0 for

|η| ≤ 1. Let η ∈ Γ0 and γ ∈ Γ be given, then the interaction energy between η and γ is defined as

W (η, γ) :=






∑

x∈η, y∈γ

V (x, y), if
∑

x∈η, y∈γ

|V (x, y)| < ∞ ,

+∞ , otherwise .

(2.5)

For any Λ ∈ Bc(X) the conditional energy EΛ : Γ → R ∪ {+∞} is given by EΛ(γ) := E(γΛ) + W (γΛ, γΛc).
Definition 2.1 The canonical specification Πc

Λ, Λ ∈ Bc(X) is defined for any γ ∈ Γ and F ∈ B(Γ) by
(cf. [27])

Πc
Λ(F, γ) :=

1{0<ZΛ<∞}(γ)
ZΛ(γ)

∫

Γ
(|γΛ|)
Λ

1F (η ∪ γΛc)e−E(η)−W (η,γΛc ) σ|γΛ|(dη) (2.6)

and ZΛ(γ) :=
∫
Γ

(|γΛ|)
Λ

e−E(η)−W (η,γΛc ) σ|γΛ|(dη). A probability measure µ on (Γ,B(Γ)) is called a canonical

Gibbs measure iff µΠc
Λ = µ, for all Λ ∈ Bc(X) (the analogue of the (DLR)-equations for canonical Gibbs

measures). We denote by Gc(V ) the set of all such probability measures µ.
It has been shown in [27] that, in fact,

(
Πc

Λ

)
Λ∈Bc(X)

is a (FΛc)Λ∈Bc(X)-specification in the sense of [8], where

FΛc := FΛc(Γ) := BX\Λ(Γ) ∨ σ
(
N−1

Λ ({n}) | n ∈ N0

)
, (2.7)

where NΛ is considered as a function on Γ. (Our definition differs slightly from [27], but for stable potentials
fulfilling the conditions introduced in Subsection 3.2 they coincide). For all z > 0 the Poisson measure πzσ is
the unique element in Ggc(z, 0) and it is also in Gc(0)

(
for σ(X) < ∞ furthermore 1

Γ(n)
X
σ(n) ∈ Gc(0)

)
. The

grand canonical Gibbs measures Ggc(z, V ) are given by the (BΛ(Γ))Λ∈Bc(X)-specification

Πgc
Λ (F, γ) :=

1{Ξz
Λ<∞}(γ)
Ξz

Λ(γ)

∫

ΓΛ

1F (γX\Λ ∪ η)e−EΛ(γX\Λ∪η) πΛ
zσ(dη) . (2.8)

Often one cannot work with the class of all Gibbs measures, but one has to restrict oneself to a subclass, for
example the subclass defined by Assumption 3.6 below. Frequently, one assumes an a priori information about
the support. Measures with this property we will call tempered in the following. In general one expects that the
extremal canonical Gibbs measures are just extremal grand canonical Gibbs measure for a suitable value of z,
under an abstract condition this was proven in [27]. This fact is called the equivalence of canonical and grand
canonical ensemble. For the case X = Rd, σ = m, and a continuous, finite range potential V , such that there
exists a decreasing function ψ : R+ → R+

0 with V (x, y) ≥ ψ(|x − y|) and limr→0 ψ(r)rd = ∞ H.-O. Georgii
showed in [10] the equivalence of ensembles for Gibbs measures tempered in the following sense:

µ

({
γ ∈ Γ

∣∣∣∣ lim sup
k→∞

N∆k(γ)
σ(∆k)

< ∞
})

= 1 ,
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where ∆k are the cubes centered at 0 of side length 2k, k ∈ N. The Gibbs measures tempered in this sense
are a face of the class of all Gibbs measures. Note that in the case σ(X) < ∞, V = 0 the equivalence of
ensembles does not hold as the extremal canonical Gibbs measures 1

Γ(n)
X
σ(n) )∈ Ggc(z, 0). For more details see

e.g. Section 4.1 in [11].
Let µ be a probability measure on the Polish space (Γ,B(Γ)). Using [25, Theorem V. 8.1] there exists for any

Λ ∈ Bc(X) a probability kernel µΛ : B(ΓΛ) × Γ → R+ such that for any F ∈ L0(Γ,B(Γ)) which is either
positive or integrable

Eµ(F |Fc
Λ)(γ) =

∫

Γ
(|γΛ|)
Λ

F (η ∪ γX\Λ)µΛ(dη, γ) , µ-a.s. (2.9)

and µΛ({η ∈ ΓΛ | NΛ(η) = NΛ(γ)}, γ) = 1 µ-a.s. Moreover, for all F ∈ B(Γ) the function µΛ(F, ·) is
FΛc -measurable.

Corollary 2.2 Let µ be a probability measure on (Γ,B(Γ)). Then for any Λ ∈ Bc(X) and any positive
F ∈ L0(Γ,B(Γ))

∫

Γ
(|γΛ|)
Λ

F (η ∪ γΛc)µΛ(dη, γ) =
∫

Γ
F (η)Πc

Λ(dη, γ) , µ-a.s.

iff µ ∈ Gc(σ, V ).

2.3 K-transform

Let G : Γ0 → R be a function such that supp(G) ⊂
⊔N

n=0 Γ(n)
Λ for some Λ ∈ Oc(X), N ∈ N. Then we define

KG : Γ → R by (KG)(γ) :=
∑

ξ!γ G(ξ), where the sum is extended over all finite subconfigurations ξ from
γ, in symbols ξ " γ. The K-transform appears from different points of view in statistical mechanics and also
probability theory, see e.g. [5], [23], [6] and [21] for details. A probability measure µ on (Γ,B(Γ)) has finite
local moments, in symbols µ ∈ M1

fm(Γ), iff for all Λ ∈ Oc(X), n ∈ N0 we have
∫
Γ |γΛ|n µ(dγ) < ∞. For

µ ∈ M1
fm(Γ) the correlation measure ρµ corresponding to µ is uniquely defined by

∫

Γ0

G(η) ρµ(η) =
∫

Γ
(KG)(γ)µ(γ) , (2.10)

G : Γ0 → R+
0 . Since Γ0 is the disjoint union of the family of measurable spaces

(
Γ(n)

0,X

)
n∈N0

, ρµ can be expressed

through its components ρ(n)
µ , n ∈ N0. For a canonical (grand canonical) Gibbs measure the σ-finite measures

ρ(n)
µ are absolutely continuous w.r.t. σn and their Radon-Nikodym derivatives are the well-known correlation

functions, cf. e.g. [28].

3 Characterization by Radon-Nikodym derivatives

3.1 Diffeomorphism group and characterization on finite configuration spaces

Let us denote the group of all diffeomorphisms φ : X → X which are equal to identity outside of a compact set
by Diff0(X). The corresponding Lie algebra is Vect0(X), the set of all vector fields v : X → TX with compact
support. For technical reasons, cf. the proof of Theorem 3.10, we have to work with a countable subgroup
Diffsmall(X), which still locally characterizes measures by their quasi-invariance. More precisely, for any open
connected set O ∈ Oc(X) and any measure σ̃ on O which is quasi-invariant for all φ ∈ Diffsmall(O) with the
same Radon-Nikodym derivatives as σ, there exists k > 0 such that σ̃ = kσ. Here we denote by Diffsmall(O)
the subgroup of all φ ∈ Diffsmall(X) with support in O. Such a subgroup may be constructed in the following
way, see e.g. [31] and [9]:

As the topology of the manifold X has a countable basis we may reduce ourselves w.l.o.g. to B1 :={x ∈ X |
|x| < 1}. For every n ∈ N consider χn ∈ C∞(

Rl
)

such that χn!B1− 1
n

= 1 and χn!Bc
1 = 0. Then for every

unit vector ei ∈ Rl, i = 1, . . . , l we can construct the vector field

vi,n(x) := χn(x)ei .
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For each of the aforementioned vi,n consider the corresponding flow φvi,n

t , t ∈ R. As elements of Diffsmall(X)
we consider all finite combinations of the flows φvi,n

t for n ∈ N, i = 1, . . . , l and t ∈ Q. If σ̃ is Diffsmall(X)
quasi-invariant, then σ̃ is quasi-invariant under translation given by tei, t ∈ Q, i = 1, . . . , l and 1

ρ σ̃ is even
invariant. Adjusting the classical proof for the characterization of Lebesgue measure by translation invariance we
see that there exists a constant k ≥ 0 s.t. σ̃(dx) = kρ(x)m(dx).

Following the same line of arguments we see the following: let Oj ∈ Oc(X) be connected, j = 1, . . . , n, µ a
measure on ×n

j=1Oj and r : ×n
j=1Oj → R+

0 a µ-a.s. strictly positive function. If µ is ×n
j=1Diffsmall(Oj)-quasi-

invariant with Radon-Nikodym derivative

d(φ∗µ)
dµ

(x) =
r(φ−1(x))

r(x)
Jφ−1(x) ,

then µ has the form µ(dx) = kr(x)m⊗n(dx), where k is a positive constant and Jφ is the Jacobian determinant
w.r.t. m.

The next lemma is not a trivial corollary of the previous results. We consider an embedding of Diff(Λ) into
Diff0

(
Γ(n)

Λ

)
in the following way

{x1, . . . , xn} (−→ {φ(x1), . . . ,φ(xn)} ,

instead of the full group Diff0

(
Γ(n)

Λ

)
, which has elements of the following form

{x1, . . . , xn} (−→ {φ1(x1, . . . , xn), . . . ,φn(x1, . . . , xn)}

or ×n
i=1Diffsmall(Λ), which has elements of the form

{x1, . . . , xn} (−→ {φ1(x1), . . . ,φn(xn)} .

In order to prove that this smaller group already characterizes quasi-invariant measures, we essentially use the
fact that configurations cannot contain particles with the same position, see e.g. [9].

Lemma 3.1 Let µ be a probability measure on
(
Γ(n)

Λ ,B
(
Γ(n)

Λ

))
, Λ ∈ Oc(X) connected, n ∈ N. Let r :

Γ(n)
Λ → R+ be a measurable mapping which is µ-a.s. strictly positive. If µ is quasi-invariant w.r.t. Diffsmall(X)

with Radon-Nikodym derivatives given by

d(φ∗µ)
dµ

(η) =
r(φ−1(η))

r(η)

∏

x∈η

Jφ−1(x) , for all η ∈ Γ(n)
Λ , (3.1)

then µ(dη) = kr(η)λm|
Γ

(n)
Λ

(dη), for some constant k > 0.

P r o o f. Using charts of the manifold Γ(n)
Λ (cf. Subsection 2.1) of the form (U1×̂ . . . ×̂Un, h1×̂ . . . ×̂hn)

where (Ui, hi)n
i=1 are charts of X , we may reduce our considerations to open sets O := O1×. . .×On ⊂ Rnl with

Oi ∩ Oj = ∅, i )= j. We keep the same notation for the objects transported from Γ(n)
Λ to O. For any measurable

positive function F on O and for all diffeomorphisms φi ∈ Diffsmall(Oi) we define φ := φ1 ◦ . . . ◦ φn ∈
Diffsmall(O). As the Oi, i = 1, . . . , n are mutually disjoint, for (x1, . . . , xn) ∈ O1 × . . . × On we have

(φ(x1), . . . ,φ(xn)) = (φ1(x1), . . . ,φn(xn)) .

Therefore, using (3.1) we obtain quasi-invariance of µ on O w.r.t. ×n
i=1Diffsmall(Oi). Thus, according to the

results discussed before, there exists a constant k such that µ = kr m on O. As Γ(n)
Λ is connected we obtain the

claimed result.
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3.2 Conditions on the interactions

All assumptions concerning the potential V are collected in this subsection. They enter in the rest of the work
only via Corollary 3.8.

Proposition 3.2 Let µ ∈ M1
fm(Γ) and G : X → R+ ∪ {∞} be a B(X) -measurable function. If

∫

X
(G(x) ∧ 1) ρ(1)µ (dx) < ∞ (3.2)

and

ρ(1)µ ({x ∈ X | G(x) = ∞}) = 0 ,

then the series
∑

x∈γ G(x) is µ-a.s. convergent.

P r o o f. Denote by A the following subset of X

A := {x ∈ X | G(x) ≤ 1} .

Taking into account that (K1AG)(γ) =
∑

x∈γA
G(x), we obtain that

Eµ

(
∑

x∈γA

G(x)

)
=

∫

A
G(x) ρ(1)µ (dx) < ∞ .

This implies that
∑

x∈γA
G(x) is µ-a.s. convergent. On the other hand, the sum

∑
x∈γAc

G(x) contains only
finite many summands, because

Eµ(NAc) =
∫

Ac

ρ(1)µ (dx) ≤
∫

X
(G(x) ∧ 1) ρ(1)µ (dx) < ∞ .

Furthermore, µ-a.s. all these summands are finite

µ ({γ ∈ Γ | exists x ∈ γ s.t. G(x) = ∞}) ≤
∫

Γ

∑

x∈γ

1G−1({∞})(x)µ(dγ)

= ρ(1)µ ({x ∈ X |G(x) = ∞}) = 0 .

Assumption 3.3 Bounded below: There exists a B ≥ 0 such that V (x, y) > −2B for all x, y ∈ X .

Assumption 3.4 No hard core: For each δ > 0 we have

sup
x,y∈X

d(x,y)>δ

V (x, y) < ∞ .

Assumption 3.5 Regularity: For all Λ ∈ Oc(X) we have

∫

X

(
sup
x∈Λ

|V (x, y)| ∧ 1
)
σ(dy) < ∞ .

Assumption 3.6 µ ∈ M1
fm(Γ) and the first correlation measure ρ(1)µ corresponding to µ is absolutely contin-

uous w.r.t. σ and we have

dρ(1)µ

dσ
(x) ≤ C1 for some C1 > 0 .
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Remark 3.7 If µ is a measure on ΓRd then all assumptions are fulfilled if the conditions of [29] and Assump-
tion 3.4 holds, i.e. µ is tempered in the sense of D. Ruelle and there exist R > 0, and positive bounded decreasing
functions ψ1 : (0, R] → R, ψ2 : [R,∞) → R with

∫ R
0 ψ1(r)rd−1 dr = ∞ and

∫∞
R ψ2(r)rd−1 dr < ∞ such

that V (x, y) ≥ ψ1(|x − y|) for |x − y| ≤ R and |V (x, y)| ≤ ψ2(|x − y|) for |x − y| ≥ R. In particular, V
is then superstable, lower and upper regular. For finite range potentials Assumption 3.5 is trivially fulfilled and
Assumption 3.6 is not anymore necessary to obtain Corollary 3.8. Assumption 3.6 might be replaced by a sup-
port condition for µ. For hard core potentials the Gibbs measure is not even quasi-invariant w.r.t. Diffsmall(X).
Essential supremum w.r.t. σ2 would be sufficient in Assumption 3.4. V , however, is typically continuous for
x )= y.

Corollary 3.8 Let µ ∈ M1
fm(Γ) be a measure fulfilling Assumption 3.6, and V a potential satisfying Assump-

tions 3.3–3.5. Let Λ ∈ Oc(X) with σ(∂Λ) = 0. Then for µ-a.a. γ ∈ Γ
∑

x∈γΛc

sup
y∈Λ

|V (x, y)| < ∞ ,

and 0 < ZΛ(γ) < ∞. Moreover, for all x ∈ Λ the sum

W ({x}, γΛc) =
∑

y∈γΛc

V (x, y)

is absolutely convergent.

P r o o f. Apply Proposition 3.2 for G(y) := 1Λc(y) supx∈Λ |V (x, y)|. Note that
∫

X
(G(y) ∧ 1) ρ(1)µ (dy) ≤ C1

∫

X

(
sup
x∈Λ

|V (x, y)| ∧ 1
)
σ(dy)

and G(y) < ∞ if y /∈ ∂Λ. Hence, for µ-a.a. γ there exists a constant CΛ(γ) such that
∑

x∈γΛc

sup
y∈Λ

|V (x, y)| ≤ CΛ(γ) .

Let η ∈ ΓΛ be given, then we have W (η, γΛc) ≤ CΛ(γ) |η| and therefore

ZΛ(γ) =
∫

Γ
(|γΛ|)
Λ

e−E(η)−W (η,γΛc ) πΛ
σ (dη) ≥

∫

Γ
(|γΛ|)
Λ

e−E(η)−CΛ(γ)|η| πΛ
σ (dη) > 0 .

Analogously, we see that ZΛ(γ) < ∞ µ-a.s.

3.3 Characterization results

First, the Radon-Nikodym derivatives for a canonical Gibbs measure w.r.t. the diffeomorphism group are derived.
Theorem 3.9 Let µ ∈ Gc(V ) ∩ M1

fm(Γ) fulfilling Assumption 3.6 for a potential V fulfilling the Assump-
tions 3.3–3.5. Then µ is Diff0(X)-quasi-invariant and

d(φ∗µ)
dµ

(γ) = exp
(
− Erel

(
φ−1(γ), γ

)) d(φ∗πσ)
dπσ

(γ) , (3.3)

where φ ∈ Diff0(X) and

Erel(φ−1(γ), γ) :=
∑

{x,y}∈γ

(
V
(
φ−1(x),φ−1(y)

)
− V (x, y)

)
,

i.e. Erel is the relative energy (in analogy to the lattice case, see e.g. [15]), and where

d(φ∗πσ)
dπσ

(γ) :=
∏

x∈γ

ρ(φ−1(x))
ρ(x)

Jφ−1(x) .
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P r o o f. Let φ ∈ Diff0(X) be given and F : Γ → R+
0 a BΛ(Γ)-measurable function for a Λ ∈ Oc(X) with

σ(∂Λ) = 0 and w.l.o.g. suppφ ⊂ Λ. Then by Definition 2.1 we have

∫

Γ
F (φ(γ))µ(dγ) =

∫

Γ

1{0<ZΛ<∞}(γ)
ZΛ(γ)

∫

Γ
(|γΛ|)
Λ

F (φ(η))e−E(η)−W (η,γΛc ) σ|γΛ|(dη)µ(γ) . (3.4)

We note that

d(φ∗σ|γΛ|)
dσ|γΛ|

(η) =
d(φ∗πσ)

dπσ
(η)

and

Erel

(
φ−1(η ∪ γΛc), η ∪ γΛc

)
= E

(
φ−1(η)

)
+ W

(
φ−1(η), γΛc

)
− E(η) − W (η, γΛc)

= EΛ(φ−1(γ)) − EΛ(γ) ,

since all sums are absolutely convergent according to Corollary 3.8 for µ-a.a. γ ∈ Γ. Therefore, applying the
usual Radon-Nikodym theorem to the manifold Γ(|γΛ|)

Λ on the right-hand side of (3.4)

∫

Γ

∫

Γ
(|γΛ|)
Λ

F (η)e−Erel(φ
−1(η∪γΛc ),η∪γΛc ) d(φ∗πσ)

dπσ
(η)Πc

Λ(dη, γ)µ(dγ) .

The result now follows by Definition 2.1.

We proceed to show that (3.3) already characterizes canonical Gibbs measures.

Theorem 3.10 Let be given a measure µ ∈ M1
fm(Γ) fulfilling Assumption 3.6 and a potential V fulfilling

Assumptions 3.3–3.5. If for all φ ∈ Diffsmall(X) we have

d(φ∗µ)
dµ

(γ) = exp
(
− Erel

(
φ−1(γ), γ

)) d(φ∗πσ)
dπσ

(γ) , (3.5)

then µ is a canonical Gibbs measure, i.e., µ ∈ Gc(V ).

P r o o f. Erel

(
φ−1(γ), γ

)
=
∑

{x,y}∈γ V
(
φ−1(x),φ−1(y)

)
−V (x, y) is well defined and the series is µ-a.s. ab-

solutely convergent according to Corollary 3.8. Let φ be a diffeomorphism from Diffsmall(X) and choose
Λ ∈ Oc(X) connected with σ(∂Λ) = 0 such that suppφ ⊂ Λ. Take a F = F1 · F2 where F1 ∈ L0(Γ,BΛ(Γ))
and F2 ∈ L0(Γ,BΛc(Γ)). If we denote by µΛ the conditional probability measure of µ w.r.t. FΛc , we then have
to show that µΛ is equal to (2.6) µ-a.s. Hence, using the definition of conditional probability we can write

∫

Γ
F (φ(γ))µ(dγ) =

∫

Γ

∫

Γ
(|γΛ|)
Λ

F2(γ)F1(φ(η))µΛ(dη, γ)µ(dγ) .

On the other hand we have
∫

Γ
F (φ(γ))µ(dγ) =

∫

Γ
F2(γ)

∫

Γ
(|γΛ|)
Λ

F1(η)e−Erel(φ
−1(η)∪γΛc ,η∪γΛc )

·d(φ∗πσ)
dπσ

(η)µΛ(dη, γ)µ(dγ) .

Because of the countability of Diffsmall(X) for µ-a.a. γ the following holds for all F3 ∈ L0(Γ,B(ΓΛ))
∫

Γ
(|γΛ|)
Λ

F3(φ(η))µΛ(dη, γ) =
∫

Γ
(|γΛ|)
Λ

F3(η)e−Erel(φ
−1(η)∪γΛc ,η∪γΛc)

·d(φ∗πσ)
dπσ

(η)µΛ(dη, γ) .
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Now we apply Lemma 3.1 for rγ(η) := e−EΛ(η∪γΛc )
∏

x∈η ρ(x). According to Corollary 3.8 for µ-a.a. γ we
have rγ > 0 and

rγ

(
φ−1(η)

)

rγ(η)

∏

x∈η

Jφ−1(x) = e−Erel(φ
−1(η)∪γΛc ,η∪γΛc) d(φ∗πσ)

dπσ
(η) .

Thus, the measure µΛ is of the form

µΛ(dη, γ) = k1{NΛ=NΛ(γ)}(η) e−EΛ(η∪γΛc ) σ|γΛ|(dη) .

Since µΛ is a probability measure on ΓΛ we have k = (ZΛ(γ))−1 and 0 < ZΛ(γ) < ∞ (cf. Corollary 3.8). Thus
µ ∈ Gc(V ) by Definition 2.1.

4 Ergodicity

A measure µ on Γ is called Diff0(X)-ergodic if the µ-a.s. constant functions are the only bounded measurable
functions F : Γ → R+ which have the property F ◦ φ = F µ-a.s. for all φ ∈ Diff0(X). A measure µ from
the convex set Gc(V ) is called extreme if for all µ1, µ2 ∈ Gc(V ) and 0 ≤ α ≤ 1 with µ = αµ1 + (1 − α)µ2, it
follows that µ = µ1 = µ2. The tail field σ-algebra F∞(Γ) is defined by

F∞(Γ) :=
⋂

Λ∈Bc(X)

FΛc(Γ) .

The following results from [26, Th. 2.1, Lemma 2.4] are used in this section.

Lemma 4.1 Let µ, µ′ ∈ Gc(V ), and let F ∈ L0(Γ,B(Γ)) such that F is positive and
∫
Γ F (γ)µ(dγ) = 1.

(i) µ is extreme iff µ is trivial on F∞(Γ), i.e., µ(B) is either 0 or 1 for each B ∈ F∞(Γ).
(ii) Fµ ∈ Gc(V ) iff Eµ[F |F∞(Γ)] = F µ-a.s.

(iii) If µ )= µ′ then µ ⊥ µ′, i.e. there exists a B ∈ F∞(Γ) with µ(B) = 1 and µ′(B) = 0.

We call a measure µ ∈ M1
fm(Γ) admissible if µ fulfills the Assumption 3.6. The set of all admissible measures

is convex and the set of all admissible canonical Gibbs measures Gc,a(V ) is a face of Gc(V ), in symbols

ext (Gc,a(V )) = ext (Gc(V )) ∩ Gc,a(V ) .

The following lemma contains the part of the proof specific for the relation between Gibbs measures and the
diffeomorphism group which is based on the characterization theorem via Radon-Nikodym derivatives. The main
result follows then by general considerations for Gibbs measures, cf. e.g. [26].

Lemma 4.2 Let µ ∈ M1
fm(Γ)∩ Gc(V ) fulfilling Assumption 3.6 for a potential V fulfilling Assumptions 3.3–

3.5. Let F : Γ → R+ be a measurable bounded function with
∫
Γ F (γ)µ(dγ) = 1 such that F ◦ φ = F µ-a.s. for

all φ ∈ Diffsmall(X). Then ν := Fµ is also a canonical Gibbs measure.

P r o o f. Let G : Γ → R+ be another measurable bounded function, then it follows that
∫

Γ
G(φ(γ)) ν(dγ) =

∫

Γ
G(γ)F (φ−1(γ)) d(φ∗µ)(γ) =

∫

Γ
G(γ)

d(φ∗µ)
dµ

(γ) ν(dγ) .

Therefore ν-a.s. we have d(φ∗µ)
dµ (γ) = d(φ∗ν)

dν (γ). Furthermore, for any measurable H : Γ0 → R+ and for
C := supγ∈Γ |F (γ)| we have

∫

Γ0

H(η) ρν(dη) =
∫

Γ
(KH)(γ)F (γ)µ(dγ) ≤ C

∫

Γ
(KH)(γ)µ(dγ)

which implies that ρν(dη) ≤ C ρµ(dη). Hence with µ also ν fulfills the assumptions of Theorem 3.10 (charac-
terization theorem via Radon-Nikodym derivatives) and we deduce that ν is a canonical Gibbs measure.
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We are now prepared to prove the main result of this section.

Theorem 4.3 Let µ ∈ M1
fm(Γ)∩Gc(V ) fulfilling Assumptions 3.6 for a potential V fulfilling Assumptions 3.3–

3.5. µ is extreme iff it is Diffsmall(X)-ergodic.

P r o o f. Assume that µ is an extreme measure. Let F : Γ → R+ be a measurable bounded function such that
F ◦ φ = F µ-a.s. for all φ ∈ Diffsmall(X). W.l.o.g. we may assume that

∫
Γ F (γ)µ(dγ) = 1. According to

Lemma 4.2 we have Fµ ∈ Gc(V ) and applying Lemma 4.1 (ii) we obtain

Eµ(F |F∞(Γ)) = F , µ-a.s. .

According to Lemma 4.1 (i) the measure µ is trivial on F∞(Γ), this implies that F is constant µ-a.s. Hence µ is
Diffsmall(X)-ergodic.

Conversely, assume that µ is Diffsmall(X) -ergodic and there exist µ1, µ2 ∈ Gc(V ) such that µ = 1
2 (µ1 +µ2).

Thus µ1 2 µ and there exists a measurable function F : Γ → R+ with
∫
Γ F (γ)µ(dγ) = 1 such that µ1 = Fµ.

It follows from Lemma 4.1 (ii) that Eµ(F |F∞(Γ)) = F µ -a.s. and, hence for any φ ∈ Diffsmall(X) we obtain

F ◦ φ = Eµ(F |F∞(Γ)) ◦ φ = Eµ(F |F∞(Γ)) = F .

In the second equality we use the fact that Eµ(F |F∞(Γ)) is FΛc(Γ)-measurable for a certain Λ ∈ Bc(X) such
that suppφ ⊂ Λ. Since µ is Diffsmall(X)-ergodic it implies that F is constant µ-a.s. Therefore µ1 = µ2 = µ
and this proves that µ is extreme.

As a direct consequence of the previous theorem and the general Proposition 2.4 in [26] one obtains the
following result. This result completes the considerations in [31] as the identification of the decomposition in
extremal Gibbs measures and Diff0(X)-ergodic measures is shown.

Corollary 4.4 Let V be a potential fulfilling Assumptions 3.3–3.5. Then there exists a measurable structure on
ext(Gc,a(V )) such that µ ∈ Gc,a(V ) if and only if there exists a unique probability measure P on ext(Gc,a(V ))
s.t. for all bounded measurable functions F on Γ

∫

Γ
F (γ)µ(dγ) =

∫

ext(Gc,a(V ))

∫

Γ
F (γ)µex(dγ)P (dµex) .

Each µex ∈ ext(Gc,a(V )) is Diff0(X)-ergodic.
Furthermore, for each µex ∈ ext (Gc,a(V )) exist a boundary condition γ ∈ Γ and a sequence of volumes

(Λn)n∈N in Bc(X) with Λn ↑ X such that for all Λ ∈ Bc(X) and all B ∈ BΛ(Γ)

lim
n→∞

Πc
Λn

(B, γ) = µex(B) .

We are now ready to state the result concerning the irreducibility of the unitary representation Vµ of the group
Diff0(X) associated with µ ∈ Gc(V ). The proof is a consequence of the results in this section and Theorem 1,
§3 in [9] or Corollary 28.1 in Chapter 5 of [18].

Theorem 4.5 Let µ ∈ Gc(V )∩M1
fm(Γ) be an admissible canonical Gibbs measure fulfilling Assumption 3.6

for a potential V fulfilling Assumptions 3.3–3.5. Then the unitary representation

(Vµ(φ)F )(γ) :=

√
dφ∗µ

dµ
(γ)F

(
φ−1(γ)

)
, F ∈ L2(Γ, µ) , φ ∈ Diff0(X) (4.1)

is irreducible iff µ is extreme.
If µ1, µ2 ∈ ext (Gc(V )) ∩M1

fm(Γ) with µ1 )= µ2 then Vµ1 is inequivalent to Vµ2 .

Remark 4.6 Let V1, V2 be two different potentials fulfilling Assumptions 3.3–3.5. For µi ∈ ext(Gc(Vi)) ∩
M1

fm(Γ) it does not hold in general that µ1⊥µ2. The difference of the potentials must be “singular” enough, for
example translation invariance may be assumed. In general this is a non trivial question.
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5 Conclusions and generalizations

Under weak assumptions on the potential we have proved that the canonical Gibbs measures are characterized
by their Radon-Nikodym derivatives. To do this we used conditional expectations to reduce ourselves to finite
configurations. The absence of coinciding points allowed us to reduce further to quasi-invariant measures on open
subsets of Rl. Surely, this result holds not only for the whole group Diff0(X), but also for reasonable subgroups.
A related topic are the marked systems: in addition to the manifold structure, the one particle space has the
structure of a fiber bundle, for simplicity take another manifold S and consider X×S as the one particle space. X
here still describes the positions of the particles and S an internal degree of freedom like momentum, spin, charge,
dipole-moment, type of particle, quantumness, etc. Typically in applications the intensity measure on S is finite
and hence the thermodynamical limit is trivial in the direction of S. The difficulty is to get sufficient conditions on
the interaction general enough for applications; uniform bounds for the influence of the marks are too restrictive.
The ideas of Subsection 3.2 may be generalized to this case. Gibbs measures in the marked situation have full
measure on a subspace of ΓX×S , the marked configuration space, i.e. the space of all configuration γ̂ ∈ ΓX×S

such that for all (x, s), (y, t) ∈ γ̂ with (x, s) )= (y, t) it holds x )= y. This formalizes the aforementioned
interpretation of S as an internal degree of freedom. It is natural to consider a subgroup of diffeomorphism
which respect the marked structure, these are all diffeomorphisms φ̂ ∈ Diff0(X × S) of the form φ̂(x, s) :=
(φ(x),ψ(x, s)). Furthermore, we may assume that ψ(x, ·) is from the structure group of our bundle. More
concretely, assume for example that S is a Lie group and ψ(x, s) = ψ̃(x) · s, ψ̃ : X → S. This is not only
of general mathematical interest, but also motivated from the view point of applications for example in quantum
field theory. In [13] we show, following the same line of proof as in this paper, that it is essential to have the
characterization by Radon-Nikodym derivatives for measures on the one particle space X × S to derive the
characterization result for canonical Gibbs measures. A direct generalization of Theorem 4.3 implies that also in
this case the extremal canonical Gibbs measures are ergodic w.r.t. the considered subgroup of diffeomorphisms.
However, in general the corresponding representations on the corresponding L2-spaces will be not any longer
irreducible. The analysis of this situation will be part of future investigations.

Another line of generalization is to consider more general interactions than pair potentials, more explicitly
consider functions V : Γ0 → R and define the corresponding conditional energy for η ∈ ΓΛ, γ ∈ Γ by

EΛ

(
η ∪ γΛc

)
:=

∑

η′⊂η
η′ ,=∅

∑

ξ!γΛc

V
(
η′ ∪ ξ

)
, (5.1)

if the series is absolutely convergent and by +∞ otherwise. As in the case of pair potentials the main technical
difficulty is to give concrete conditions on the measure and potential such that uniformly the convergence of the
series (5.1) may be controlled.

Assumption 5.1 Let µ ∈ M1
fm(Γ) be given and ρµ the corresponding correlation measure. Assume that ρµ

is absolutely continuous w.r.t. λσ . Let V : Γ0 → R be a continuous function. Assume that for all Λ ∈ Oc(X)
with σ(∂Λ) = 0 and all n ∈ N, δ = 1/m, m ∈ N

∫

ΓΛc



 sup
η∈Γ(n)

δ,Λ

∣∣V
(
η ∪ ξ

)∣∣ ∧ 1



ρµ(dξ) < ∞ , (5.2)

where

Γ(n)
δ,Λ :=

{
η ∈ Γ(n)

Λ

∣∣∣ d(x, y) > δ for all {x, y} ⊂ η
}

.

Under this assumption the techniques of Subsection 3.2 show that for each Λ as in the conditions of that
assumption (n ∈ N, δ) and for µ-a.a. γ ∈ Γ the series in (5.1) is uniformly convergent for all η ∈ Γ(n)

Λ .

Theorem 5.2 Let µ ∈ M1
fm(Γ) and V : Γ0 → R be given which fulfills Assumption 5.1. Then µ ∈ Gc(V ) iff

µ is quasi-invariant w.r.t. Diff0(X) with Radon-Nikodym derivatives (3.3), where in this case the relative energy
Erel(φ(γ), γ) := EΛ(φ(γ)) − EΛ(γ) for a Λ ∈ Oc(X) with σ(∂Λ) = 0 and suppφ ⊂ Λ. The measure µ is
ergodic w.r.t. Diff0(X) iff it is an extreme element of M1

fm(Γ)∩Gc(V ) and then the corresponding representation
Vµ is irreducible.
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A sufficient condition for (5.2) is for example the following:
(
we consider for simplicity X = Rd, σ = m

)

Let ψ : R+ → [0, 1] be a decreasing function with
∫∞
0 ψ(r)rd−1 dr < ∞. Assume that

|V (η)| ∧ 1 ≤ ψ

(
max

{x,y}⊂η
|x − y|

)|η|
.

and ρµ fulfills the Ruelle bound.
A natural question is if there exist quasi-invariant measures on Γ which are not Gibbs measures in the above

general sense. Their conditional probability measures are absolutely continuous anyhow; the difficulty is to show
regularity for the corresponding densities under weak assumptions on the Radon-Nikodym derivatives. This will
be the subject for a forthcoming paper.
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