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The Min Bisection Problem

Min Bisection

Given: A graph G = (V ,E ) with n vertices (n even).

Goal: Partition V into two sets V1,V2 of equal size so as to
minimize e(V1,V2).

V1

V2e(V1,V2)
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Given: A graph G = (V ,E ) with n vertices (n even).

Goal: Partition V into two sets V1,V2 of equal size so as to
minimize e(V1,V2).

V1

V2e(V1,V2)

Of course. . .

. . . the Min Bisection problem is NP-hard.
Naive algorithm: try all partitions; running time (about) 2n.
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The Min Bisection Problem

Min Bisection

Given: A graph G = (V ,E ) with n vertices (n even).

Goal: Partition V into two sets V1,V2 of equal size so as to
minimize e(V1,V2).

V1

V2e(V1,V2)

Applications

Parallel computing, VLSI, simulations. . .
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A Simple Random Graph Model

The random graph Gn(p, p′)

1 Split the vertex set V = {1, . . . , n} randomly into two sets V1,V2 of
size n/2.

2 Connect any two vertices inside Vi with probability p′ (i = 1, 2).

3 Insert each V1–V2-edge with probability p.

V1 V2

p′p′

p

Let d = n
2 (p + p′) = expected degree.
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A Simple Random Graph Model (ctd)

The random graph Gn(p, p′)

1 Split the vertex set V = {1, . . . , n} randomly into two sets V1,V2 of
size n/2.

2 Connect any two vertices inside Vi with probability p′ (i = 1, 2).

3 Insert each V1–V2-edge with probability p.

V1 V2

v
e(v ,V1) e(v ,V2)

E(e(v ,V1) − e(v ,V2)) =
n

2
(p′ − p).

σ(e(v ,V1) − e(v ,V2)) ≈
√

d =
√

n(p + p′)/2.
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A Simple Random Graph Model (ctd)

The random graph Gn(p, p′)

1 Split the vertex set V = {1, . . . , n} randomly into two sets V1,V2 of
size n/2.

2 Connect any two vertices inside Vi with probability p′ (i = 1, 2).

3 Insert each V1–V2-edge with probability p.

Random partition vs. “planted” bisection

# crossing edges in a random solution: 1
4nd = n2

8 (p + p′).

# crossing edges in the planted solution : n2

4 p.

Amin Coja-Oghlan (Edinburgh) Graph Partitioning Algorithms 7 / 21



A phase transition

How many optimal solutions are there?

Fix p so that np = 100, say.
Increasing p′, we go through the. . .
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A phase transition

How many optimal solutions are there?

Fix p so that np = 100, say.
Increasing p′, we go through the. . .

. . . subcritical phase:
√

d log(d) ≤ n(p′ − p) ≪
√

d log n.

exp(n1−o(1)) optimal solutions(“◦”).
planted bisection is not optimal (

”
⋆“).
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A phase transition

How many optimal solutions are there?

Fix p so that np = 100, say.
Increasing p′, we go through the. . .

. . . critical phase: n(p′ − p) =
√

d · γ log n.

exp(n1−γ) optimal solutions (“◦”).
planted bisection is not optimal (

”
⋆“).

⋆
◦◦ ◦

◦◦
◦

◦◦◦◦
◦
◦◦ ◦◦◦

◦ ◦◦◦
◦◦◦◦◦
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A phase transition

How many optimal solutions are there?

Fix p so that np = 100, say.
Increasing p′, we go through the. . .

. . . supercritical phase: n(p′ − p) ≫ √
d log n.

Exactly one optimal solution,

namely the planted one (“⋆”).

⋆
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Graph bisection algorithms: overview

Author Method n(p′ − p) ≥ · · ·

ACO 2005 spectral
√

d log d
Boppana 1987 SDP

√
d log n

McSherry 2001 spectral
√

d log n
Bollobás, Scott 2004 randomized

√
d log n

Condon, Karp 2001 combinatorial
√

n
Kučera 1995 greedy

√
n log n

Carson, Impagliazzo 2001 hill-climbing
√

n log3 n

Dimitriou, Impagliazzo 1998 simulated annealing
√

dn/ log n

Jerrum, Sorkin 1998 metropolis n5/6

Dyer, Frieze 1989 greedy Ω(n)
Leighton et al. 1987 flows Ω(d)
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A Greedy Algorithm

Algorithm Greedy

1 Pick an arbitrary vertex v .

2 Compute for each vertex w the number of common neighbors of v
and w .

3 Let V1 = the n/2 vertices w sharing the most neighbors with v , and
V2 = V \ V1.
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A Greedy Algorithm

Algorithm Greedy

1 Pick an arbitrary vertex v .

2 Compute for each vertex w the number of common neighbors of v
and w .

3 Let V1 = the n/2 vertices w sharing the most neighbors with v , and
V2 = V \ V1.

Theorem (Dyer, Frieze 1989)

If n(p′ − p) ≥ δn for an arbitrarily small but fixed δ > 0, then

lim
n→∞

P(Greedy finds an optimal solution) = 1.

That is, Greedy finds an optimal solution almost surely.
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A Greedy Algorithm

Algorithm Greedy

1 Pick an arbitrary vertex v .

2 Compute for each vertex w the number of common neighbors of v
and w .

3 Let V1 = the n/2 vertices w sharing the most neighbors with v , and
V2 = V \ V1.

Proof.

If v ,w ∈ V1, then E (#common neighbors) = n
2 (p′2 + p2).

If v ∈ V1, w ∈ V2, then

E (#common neighbors) = npp′ <
n

2
(p′2 + p2) − δ2

2
n.
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A Greedy Algorithm

Algorithm Greedy

1 Pick an arbitrary vertex v .

2 Compute for each vertex w the number of common neighbors of v
and w .

3 Let V1 = the n/2 vertices w sharing the most neighbors with v , and
V2 = V \ V1.

Generalization (Blum, Spencer 1995)

Count vertices at a given distance k from v ,w .
 works if n(p′ − p) ≥

√
np′ · nε.
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Condon–Karp 2001

Algorithm Condon-Karp

1 Construct a partition L1,R1 of n1−ε/2 vertices greedily.

2 Use L1,R1 as a scale to construct a partition L2,R2 of n/2 further
vertices greedily.

3 Use L2,R2 as a scale to partition all remaining vertices greedily. Let
L3,R3 be the resulting sets.

4 Use L3,R3 as a scale to partition all vertices greedily.
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1 Construct a partition L1,R1 of n1−ε/2 vertices greedily.

2 Use L1,R1 as a scale to construct a partition L2,R2 of n/2 further
vertices greedily.

3 Use L2,R2 as a scale to partition all remaining vertices greedily. Let
L3,R3 be the resulting sets.

4 Use L3,R3 as a scale to partition all vertices greedily.

Theorem (Condon, Karp 2001)

If n(p′ − p) ≥ n
1
2
+ε for an arbitrarily small but fixed ε > 0, then

Condon-Karp finds an optimal solution almost surely.
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Condon–Karp 2001

Algorithm Condon-Karp

1 Construct a partition L1,R1 of n1−ε/2 vertices greedily.

2 Use L1,R1 as a scale to construct a partition L2,R2 of n/2 further
vertices greedily.

3 Use L2,R2 as a scale to partition all remaining vertices greedily. Let
L3,R3 be the resulting sets.

4 Use L3,R3 as a scale to partition all vertices greedily.

Proof.

L1, R1 has an imbalance of n1−ε.

L2, R2 has an imbalance of Ω(n).

L3, R3 coincides with the planted partition on L3 ∪ R3.

Therefore, the final partition is correct.
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Boppana 1987/Goemans–Williamson 1995

Min Bisection as an Integer Program

Given: a graph G = (V ,E ) with n vertices.

min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ {−1, 1} for all u ∈ V .
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Boppana 1987/Goemans–Williamson 1995

Min Bisection as an Integer Program

Given: a graph G = (V ,E ) with n vertices.

min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ {−1, 1} for all u ∈ V .

But. . .

. . . computing an optimal solution to this is just as hard as computing an
optimal bisection.
Idea: relax the integrality condition.
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Boppana 1987/Goemans–Williamson 1995

Min Bisection as an Integer Program

Given: a graph G = (V ,E ) with n vertices.

min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ {−1, 1} for all u ∈ V .

Min Bisection as a Semidefinite Program

SDP = min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ R
n, ‖xu‖ = 1 for all u ∈ V .
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Boppana 1987/Goemans–Williamson 1995

Min Bisection as an Integer Program

Given: a graph G = (V ,E ) with n vertices.

min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ {−1, 1} for all u ∈ V .

Good news

The Semidefinite Program can be solved efficiently (well, . . . ).
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Boppana 1987/Goemans–Williamson 1995 (ctd.)

Algorithm Boppana

1 Compute an optimal (vector) solution to

SDP = min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ R
n, ‖xu‖ = 1 for all u ∈ V .

2 Sample a random unit vector z ∈ R
n.

3 Let V1 = {v : xv · z < 0}, V2 = {v : xv · z ≥ 0}.
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Boppana 1987/Goemans–Williamson 1995 (ctd.)

Algorithm Boppana

1 Compute an optimal (vector) solution to

SDP = min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ R
n, ‖xu‖ = 1 for all u ∈ V .

2 Sample a random unit vector z ∈ R
n.

3 Let V1 = {v : xv · z < 0}, V2 = {v : xv · z ≥ 0}.

Theorem (Boppana 1987)

If n(p′ − p) ≥ √
d log n, then Boppana finds an optimal solution almost

surely.
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Boppana 1987/Goemans–Williamson 1995 (ctd.)

Algorithm Boppana

1 Compute an optimal (vector) solution to

SDP = min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ R
n, ‖xu‖ = 1 for all u ∈ V .

2 Sample a random unit vector z ∈ R
n.

3 Let V1 = {v : xv · z < 0}, V2 = {v : xv · z ≥ 0}.

Proof (main idea).

Show that any optimal solution to SDP is integral (details are long &
difficult)!
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Boppana 1987/Goemans–Williamson 1995 (ctd.)

Algorithm Boppana

1 Compute an optimal (vector) solution to

SDP = min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ R
n, ‖xu‖ = 1 for all u ∈ V .

2 Sample a random unit vector z ∈ R
n.

3 Let V1 = {v : xv · z < 0}, V2 = {v : xv · z ≥ 0}.

Practical issue

Solving the SDP is a highly non-trivial numerical problem.
Feasible up to n = 1000 or so.
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Boppana 1987/Goemans–Williamson 1995 (ctd.)

Algorithm Boppana

1 Compute an optimal (vector) solution to

SDP = min
∑

v−w∈E

1 − xv · xw

2

s.t.
∑

v ,w∈V

xv · xw = 0, xu ∈ R
n, ‖xu‖ = 1 for all u ∈ V .

2 Sample a random unit vector z ∈ R
n.

3 Let V1 = {v : xv · z < 0}, V2 = {v : xv · z ≥ 0}.

Generalization

Worst-case approximation algorithm for Max Cut/Max Bisection
(Goemans, Williamson 1995); inspired a bulk of further work.
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A spectral approach

Basic idea

Consider G = Gn(p, p′) and let A =adjacency matrix.
Each vertex v ∈ Vi expects

down =
n

2
p′ neighbors in its own class,

dother =
n

2
p neighbors in the opposite class.
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Consider G = Gn(p, p′) and let A =adjacency matrix.
Each vertex v ∈ Vi expects

down =
n

2
p′ neighbors in its own class,

dother =
n

2
p neighbors in the opposite class.

Therefore, letting ξ = 1V1
− 1V2

, we expect

Aξ ≈ (down − dother)ξ =
n

2
(p′ − p)ξ.
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A spectral approach

Basic idea

Consider G = Gn(p, p′) and let A =adjacency matrix.
Each vertex v ∈ Vi expects

down =
n

2
p′ neighbors in its own class,

dother =
n

2
p neighbors in the opposite class.

Therefore, letting ξ = 1V1
− 1V2

, we expect

Aξ ≈ (down − dother)ξ =
n

2
(p′ − p)ξ.

Technical problem: tail of the degree distribution.
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A spectral approach (ctd)

Algorithm Spectral

1 Obtain G ′ from G by removing all vertices of degree > 10d .
Compute the 2nd eigenvector ξ of A(G ′).
Let S1 = {vertices with positive entries} and S2 = V \ S1.
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2 Apply a local improvement heuristic to S1,S2 to obtain a partition
T1,T2 of a huge subgraph H of G .
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Let S1 = {vertices with positive entries} and S2 = V \ S1.

2 Apply a local improvement heuristic to S1,S2 to obtain a partition
T1,T2 of a huge subgraph H of G .

3 Extend T1,T2 to a bisection of the entire graph by dynamic
programming.
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A spectral approach (ctd)

Algorithm Spectral

1 Obtain G ′ from G by removing all vertices of degree > 10d .
Compute the 2nd eigenvector ξ of A(G ′).
Let S1 = {vertices with positive entries} and S2 = V \ S1.

2 Apply a local improvement heuristic to S1,S2 to obtain a partition
T1,T2 of a huge subgraph H of G .

3 Extend T1,T2 to a bisection of the entire graph by dynamic
programming.

Local improvment heuristic

1 Initially, let T1 = S1, T2 = S2.

2 While there is v ∈ Ti with more neighbors in the opposite class, move
v to that class.

3 Let H =all vertices for which the difference is > 10
√

d .
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A spectral approach (ctd)

Algorithm Spectral

1 Obtain G ′ from G by removing all vertices of degree > 10d .
Compute the 2nd eigenvector ξ of A(G ′).
Let S1 = {vertices with positive entries} and S2 = V \ S1.

2 Apply a local improvement heuristic to S1,S2 to obtain a partition
T1,T2 of a huge subgraph H of G .

3 Extend T1,T2 to a bisection of the entire graph by dynamic
programming.

Theorem (ACO 2005)

If n(p′ − p) >
√

d log d , then Spectral finds the optimum almost surely.
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A spectral approach (ctd)

Algorithm Spectral

1 Obtain G ′ from G by removing all vertices of degree > 10d .
Compute the 2nd eigenvector ξ of A(G ′).
Let S1 = {vertices with positive entries} and S2 = V \ S1.

2 Apply a local improvement heuristic to S1,S2 to obtain a partition
T1,T2 of a huge subgraph H of G .

3 Extend T1,T2 to a bisection of the entire graph by dynamic
programming.

Theorem (ACO 2005)

If n(p′ − p) >
√

d log d , then Spectral finds the optimum almost surely.

Hence, Spectral works in the critical and the subcritical phase.

Amin Coja-Oghlan (Edinburgh) Graph Partitioning Algorithms 15 / 21
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The cut norm

Goal

Approximate a given 0/1 matrix A by a low-rank matrix combinatorially!
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The cut norm

Goal

Approximate a given 0/1 matrix A by a low-rank matrix combinatorially!

The cut norm of a m × n matrix M is

‖M‖� = max
R⊂[m],C⊂[n]

∣

∣

∣

∣

∣

∣

∑

(i ,j)∈R×C

Mij

∣

∣

∣

∣

∣

∣

.
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The cut norm

Goal

Approximate a given 0/1 matrix A by a low-rank matrix combinatorially!

The cut norm of a m × n matrix M is

‖M‖� = max
R⊂[m],C⊂[n]

∣

∣

∣

∣

∣

∣

∑

(i ,j)∈R×C

Mij

∣

∣

∣

∣

∣

∣

.

Can we find a low rank matrix D such that ‖A − D‖� < ε‖A‖�?

Amin Coja-Oghlan (Edinburgh) Graph Partitioning Algorithms 17 / 21



The cut norm (ctd)

The cut norm of a m × n matrix M is

‖M‖� = max
R⊂[m],C⊂[n]

∣
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∣

∣

∣

∣
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The cut norm (ctd)

The cut norm of a m × n matrix M is

‖M‖� = max
R⊂[m],C⊂[n]

∣

∣

∣

∣

∣

∣

∑

(i ,j)∈R×C

Mij

∣

∣

∣

∣

∣

∣

.

Theorem (Grothendieck 1953; Alon, Naor 2004)

We can compute sets S ,T such that

|M(S ,T )| =

∣

∣

∣

∣

∣

∣

∑

(i ,j)∈S×T

Mij

∣

∣

∣

∣

∣

∣

≥ 0.56 · ‖M‖�

via Semidefinite Programming.
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Approximation by cut matrices

Algorithm FriezeKannan

1 Set A0 = A.

2 For j = 0, 1, 2, . . . do

3 Compute Sj+1, Tj+1 s.t. |Aj(Sj+1,Tj+1)| ≥ 0.56‖Aj‖�.
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Approximation by cut matrices

Algorithm FriezeKannan

1 Set A0 = A.

2 For j = 0, 1, 2, . . . do

3 Compute Sj+1, Tj+1 s.t. |Aj(Sj+1,Tj+1)| ≥ 0.56‖Aj‖�.

4 Let dj+1 =
Aj (Sj+1,Tj+1)
|Sj+1|·|Tj+1|

and set

Dj+1 = dj+1 · 1Sj+1×Tj+1
, Aj+1 = Aj − Dj+1.
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Approximation by cut matrices

Algorithm FriezeKannan

1 Set A0 = A.

2 For j = 0, 1, 2, . . . do

3 Compute Sj+1, Tj+1 s.t. |Aj(Sj+1,Tj+1)| ≥ 0.56‖Aj‖�.

4 Let dj+1 =
Aj (Sj+1,Tj+1)
|Sj+1|·|Tj+1|

and set

Dj+1 = dj+1 · 1Sj+1×Tj+1
, Aj+1 = Aj − Dj+1.

5 If ‖Aj+1‖� < ε‖A‖�, output D1 + · · · + Dj+1 and halt.
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Approximation by cut matrices

Algorithm FriezeKannan

1 Set A0 = A.

2 For j = 0, 1, 2, . . . do

3 Compute Sj+1, Tj+1 s.t. |Aj(Sj+1,Tj+1)| ≥ 0.56‖Aj‖�.

4 Let dj+1 =
Aj (Sj+1,Tj+1)
|Sj+1|·|Tj+1|

and set

Dj+1 = dj+1 · 1Sj+1×Tj+1
, Aj+1 = Aj − Dj+1.

5 If ‖Aj+1‖� < ε‖A‖�, output D1 + · · · + Dj+1 and halt.

Theorem (Frieze, Kannan 1995)

If FriezeKannan halts, then the matrix D = D1 + · · · + Dj satisfies
‖A − D‖� < 2ε‖A‖�.
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The boundedness condition

Question

For which inputs does FriezeKannan halt, and after how many iterations?
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The boundedness condition

Question

For which inputs does FriezeKannan halt, and after how many iterations?

Boundedness condition

Call a graph G = (V ,E ) (C , γ)-bounded if

e(S) ≤ C · |S |
2

|V |2 · |E | for all S ⊂ V , |S | ≥ γ|V |.
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The boundedness condition

Question

For which inputs does FriezeKannan halt, and after how many iterations?

Boundedness condition

Call a graph G = (V ,E ) (C , γ)-bounded if

e(S) ≤ C · |S |
2

|V |2 · |E | for all S ⊂ V , |S | ≥ γ|V |.

Examples

The graph Gn(p, p′).

More generally, subgraphs of random graphs.

Expander graphs.

. . .
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The boundedness condition

Question

For which inputs does FriezeKannan halt, and after how many iterations?

Boundedness condition

Call a graph G = (V ,E ) (C , γ)-bounded if

e(S) ≤ C · |S |
2

|V |2 · |E | for all S ⊂ V , |S | ≥ γ|V |.

Theorem (ACO, Cooper, Frieze 2008)

For any ε > 0 there is γ > 0 such that FriezeKannan halts after (C/ε)2

rounds on (C , γ)-bounded graphs.

Comprises best prior results on Gn(p, p′).
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Conclusion

Planted bisection model as a benchmark for graph partitioning.

Various techniques for graph partitioning: greedy, combinatorial,
SDP, spectral.

Local methods like greedy in contrast to global methods like SDP,
spectral.

Local methods are more efficient, but need more “evidence”.

Global methods are restricted to graphs with a simple “solution
space”.

Cut norm approximations generalize various graph partitioning
problems.
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Abstract

I present some general ideas on the fractional Dirac equation and its

properties, specifically, what is related to conservation laws. I start with an

introduction to the original Dirac equation.
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1 Introduction

1.1 The original Dirac equation

The Dirac equation is a relativistic covariant version of the Schrödinger
equation of motion for a particle [1]. In natural units, the equation for a
particle with mass m moving freely in one spatial dimension is given by

iγ0∂tψ + iγ1∂xψ −mψ = 0 , (1)

where i is the imaginary unit,

ψ(t, x) =
(
ψ1(t, x)
ψ2(t, x)

)

is a complex 2-dimensional vector, called “spinor”, t is the time, x is the space,
and the γ’s are 2× 2 real matrices that satisfy the Pauli’s algebra:

γ0γ0 = I , γ0γ1 + γ1γ0 = O , γ1γ1 = −I . (2)

XXXIV Madeira Math Encounters Funchal, March 6th to 11th 2008
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There are two independent possible choices for the γ’s, each one leading to a
somewhat different formulation, but for the massless case a linear (complex)
transformation passes from one to the other. One of the possibilities is called
the Dirac base :

γ0 =
(

1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
, (3)

the other is the chiral base :

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 1
−1 0

)
. (4)

Note that γ1 is the same in both cases. The simpler case of a masslessa particle
corresponds to

γ0∂tψ + γ1∂xψ = 0 , (5)

We will suppose that the equation is well posed and that a solution exists for all
times. The spatial region is, x ∈ Ω = (−∞,+∞), but we may also consider a
finite or a semi-finite interval.

aMassless fermions are widely considered. See, for instance, [2, 3].
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S. Jiménez – Some ideas on the fractional Dirac Equation 5/20'

&

$

%

The Dirac equation, with a mass term, has been considered as a “square root”
of the Klein-Gordon equation. In this case, we can see that the solutions of the
massless Dirac equation (5) are also solutions of the Wave equation (that is, the
massless Klein-Gordon equation). We apply ∂t to (5) and manipulate formally:

γ0ψt + γ1ψx = 0 =⇒ ∂t(γ0ψt + γ1ψx) = 0

⇐⇒ γ0ψtt + γ1ψxt = 0

⇐⇒ ψtt + γ0γ1∂x(ψt) = 0

⇐⇒ ψtt + γ0γ1∂x(−γ0γ1ψx) = 0 ⇐⇒ ψtt = ψxx . (6)
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1.2 Conservation laws

Equation (5) has several conserved quantities.

A conservation law is obtained whenever we have a “conserved current”, that is,
an equation of the form:

∂t(A) = ∂x(B) , (7)

since integration in x over Ω provides

∂t

∫

Ω

Adx = [B]∂Ω , (8)

if B is zero on ∂Ω, or if we have periodic boundary conditions there.

In fact, (5) is already a conservent current:

γ0∂tψ + γ1∂xψ = 0 ⇐⇒ ∂tψ = −γ0γ1∂xψ

=⇒ ∂t

∫

Ω

ψ dx = −γ0γ1
[
ψ

]
∂Ω
. (9)
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We have the following conservation laws (all but the first one are scalars):

Ψ ≡
∫

Ω

ψ dx ∂tΨ = −γ0γ1
[
ψ

]
∂Ω

Q ≡
∫

Ω

ψ+ψ dx ∂tQ = − [
ψ+γ0γ1ψ

]
∂Ω

C ≡
∫

Ω

ψ+γ0γ1ψ dx ∂tC = − [
ψ+ψ

]
∂Ω

E ≡
∫

Ω

(
ψ+γ0γ1ψx − ψ+

x γ
0γ1ψ

)
dx ∂tE =

[
ψ+γ0γ1ψt − ψ+

t γ
0γ1ψ

]
∂Ω

P ≡
∫

Ω

(
ψ+ψx − ψ+

x ψ
)
dx ∂tP =

[
ψ+ψt − ψ+

t ψ
]
∂Ω

ψ+ is the hermitian conjugate of ψ (the transposed, complex-conjugate of ψ).
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2 The fractional Dirac equation

I will consider the case where the fractional derivative is only in the time
variable. The equation is now

γ0∂α
t ψ + γ1∂xψ = 0 , α ∈ (0, 1] , (10)

where ∂α
t is a fractional derivative of order α, either the Riemann-Liouville one

or Caputo’s.

If we try to reproduce the conservation laws, we find problems since we no
longer have the Leibniz rule for the derivative of a product in the fractional
calculus.

We may try to reproduce what we had for the Dirac equation.
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We end with the following integral relations, for the equivalents of Ψ, Q and C:

∂α
t

∫

Ω

ψ dx = −γ0γ1
[
ψ

]
∂Ω

∫

Ω

(
ψ+∂α

t ψ + ∂α
t ψ

+ψ
)
dx = − [

ψ+γ0γ1ψ
]
∂Ω

∫

Ω

(
ψ+γ0γ1∂α

t ψ + ∂α
t ψ

+γ0γ1ψ
)
dx = − [

ψ+ψ
]
∂Ω

while for the equivalents of E and P we get the following “differential” relations:

∂α
t ψ

+γ0γ1ψx − ψ+
x γ

0γ1∂α
t ψ = 0

∂α
t ψ

+ψx − ψ+
x ∂

α
t ψ = 0

Again, the first relation is spinorial, while the others are scalar.
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If we consider Caputo’s fractional derivative we have ∂α
t Ψ = 0 ⇒ Ψ constant,

but not for Riemann-Liouville.

For Riemann-Liouville a different approach can be used in the case where α is a
rational number. Let us suppose that

α =
m

n
, m, n ∈ N , (11)

and let us apply n times the operator ∂α
t to (10). For the Riemann-Liouville

derivative we have that
n times︷ ︸︸ ︷

∂
m/n
t ◦ · · · ◦ ∂m/n

t = ∂m
t ,

(12)

but this is not true for Caputo’s. On the other hand we have from (10)

p times
︷ ︸︸ ︷(
∂

m/n
t ◦ · · · ◦ ∂m/n

t

)
ψ =

(−γ0γ1
)p
∂p

xψ .
(13)
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Combining this with (12), we obtain the conserved current:

∂t

(
∂m−1

t ψ
)

= ∂x

[ (−γ0γ1
)n
∂n−1

x ψ

]
, (14)

with the corresponding integral conservation law

∂t

∫

Ω

(
∂m−1

t ψ
)
dx =

(−γ0γ1
)n [

∂n−1
x ψ

]
∂Ω

. (15)

This conservation law does not grant that the solution is not going to zero
pointwise, as we see in the following example:
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Case α = 1/2

For instance, α = 1/2 gives the diffusion equation for ψ:

ψt = ψxx , (16)

which is a conserved current, with the conservation law for ψ

∂t

∫

Ω

ψ dx =
[
ψx

]
∂Ω
. (17)

In this case, working with (16), we get the relation for the L2 norm:

∂t

∫

Ω

ψ+ψ dx =
[
ψ+ψx + ψ+

x ψ
]
∂Ω
− 2

∫

Ω

ψ+
x ψx dx . (18)

This corresponds to a decay, for instance, if ψ is zero on ∂Ω, since the integral
is positive. This is not suprising, because this case corresponds to a diffusion
equation and the solution decays to zero, or get “thermalized”, pointwise.
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Reversible case α = 1/3

Since we are looking for conservation laws, that is, time-preserved expressions,
it seems reasonable to look for them in the time-reversible cases. According to
Pierantozzi and Vázquez [4], one of the time-reversible cases corresponds to
α = 1/3. Here m = 1, n = 3 and we get the equation:

ψt = −γ0γ1ψxxx , (19)

and the conservation law for the L2 norm:

∂t

∫

Ω

ψ+ψ dx = −
[
ψ+γ0γ1ψxx + ψ+

xxγ
0γ1ψ − ψ+

x γ
0γ1ψx

]
∂Ω
.

The simplest way to ensure the conservation law is to ask for periodic boundary
conditions, especially if Ω is a bounded interval. Besides that, (15) gives

∂t

∫

Ω

ψ dx =
(−γ0γ1

)
[ψxx]∂Ω , (20)

but if the L2 norm is preserved, the solution cannot tend to zero, pointwise.
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S. Jiménez – Some ideas on the fractional Dirac Equation 14/20'

&

$

%

L2 norm: let us consider m = 1 and n arbitrary. We have

∂t

∫

Ω

ψ+ψ dx =





[R]∂Ω , if n odd,

[R]∂Ω + 2(−1)n/2

∫

Ω

(
∂n/2

x ψ+ ∂n/2
x ψ

)
dx, if n even,

(21)

where

R = (−1)(n+1)/2∂(n−1)/2
x ψ+γ0γ1∂(n−1)/2

x ψ

+
n−1∑

k=(n+1)/2

(−1)k+1(∂n−1−k
x ψ+γ0γ1∂k

xψ + ∂k
xψ

+γ0γ1∂n−1−k
x ψ), if n odd,

R =
n−1∑

k=(n/2)−1

(−1)k+1(∂n−1−k
x ψ+∂k

xψ + ∂k
xψ

+∂n−1−k
x ψ), if n even.

We have thus conservation of the L2 norm if n is odd, decay if n/2 is odd and
growth if n/2 is even. This agrees with the fact that if m = 1, only the values of
n odd correspond to time-reversible cases.
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If, in the general case, we consider m ≥ 2, it is not clear how to get a
conservation/variation law for the L2 norm, although the cases might be
time-reversible (for instance α = 2/3, or α = 3/5).
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3 Some numerical simulations

3.1 Caputo derivative

I have considered the Caputo fractional derivative and the implicit numerical
scheme given by [5]:

ψn
l = ψ0

l −
∆tγ0γ1

2Γ(α+ 1)

n−1∑

k=0

(
ψk+1

l+1 − ψk+1
l−1

2∆x
+
ψk

l+1 − ψk
l−1

2∆x

)
tαn−k−1 − tαn−k

∆t
, (22)

with the usual notation in discrete variables: ψn
l = ψ(n∆t, l∆x).

The numerical results show that, as expected, Ψ is preserved in all cases
considered, the L2 norm is not preserved and the solution spreads out.

There is not a significant difference of behaviour between the α = 1/2 and the
α = 1/3 cases, or even with the more general case α = (

√
5− 1)/2. In fact it

would seem that there is always some decay, the more important as α is smaller.
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3.2 Riemann-Liouville derivative

We have combined Diethelm’s method [6] for the fractional derivative with a
centered finite difference for the spatial derivative to get the implicit numerical
scheme:

ψn
l =

−1
ωnn


∆tα

∆x
γ0γ1ψ

n
l+1 − ψn

l−1

2
+

n−1∑

j=0

ωnjψ
j
l


 , (23)

where ωnj are the weights of Diethelm’s method:

ωnj =
1

Γ(2− α)
×





1 if j = n,

(n−1−j)1−α − 2(n−j)1−α + (n+1−j)1−α if 1 ≤ j ≤ n− 1,

(n− 1)1−α + (1− α)n−α − n1−α if j = 0.

The study is not finished, but preliminary results show the predicted behaviour
of the L2 Norm.
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Conclusions

We have build conservation/variation laws for the fractional Dirac equation,
either with Riemann-Liouville or Caputo fractional derivative and tested them
numerically.
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S. Jiménez – Some ideas on the fractional Dirac Equation 20/20'

&

$

%

OBRIGADO!

XXXIV Madeira Math Encounters Funchal, March 6th to 11th 2008



Nemo  

Overview of the Model 

by Ramon Scholz and Andreas Pyka 

Madeira, March 7th – 8th 2008 



Structure of the Presentation 

I.  Kenes  

II.  Distances 

III.  Modification of knowledge 

IV.  Proposals 

V.  Projects 

VI.  Networks 

VII. Graphical User Interface 

VIII. Collected Data 

IX.  Possible Extensions 



I Kenes -  New element name 

 Renewed Structure 

  KO – Knowledge Orientation 

  C - Capabilities 

  A - Abilities 

  E - Expertise 

  To avoid confusion we renamed the 
“old” RD (Research Direction) 



I Kenes – New internal structure 

  We changed the internal structure 
of the Kenes to be more consistent 
with the other WP’s 

 New Ranges: 

 KO: integer from 0 to 9  

 C: integer from 1 to 900 

 A: float from 1 to 10 

 E: integer from 0 to 40 



II Distances - Calculation 

  To calculate distances between two 
Kene-elements we use the following 
algorithm: 

 Where              are used to 
weight the single distances in 
the components of the Kene-
elements 

    



II Distances – Overview  

  “Shortest” – Distance: 

  Shortest distance of two Kene 
elements in the Kenes of two agents 

 measures the relatedness of the 
knowledge of agents 

 measures the absorptive capacities of 
two agents 

  “Longest” – Distance: 

  Longest distance of two Kene 
elements in the Kenes of two agents 

 Measures the unrelatedness of the 
knowledge of agents 



III Modification of knowledge – Possibilities  

  Agents can modify their knowledge 
through: 

  Cooperation in projects (learning from 
partners) 

  “Normal” research – deepening of 
knowledge (increasing the expertise) 

  “Radical” research – creation of new 
knowledge (variation of the KO,C or A 
of a Kene – item) 



III Modification of knowledge – Types of “radical” research 

  Changing the Knowledge 
Orientation 

  Agents try to orientate towards a 
stronger applied or a stronger basic 
research orientation 

  Changing the Ability 

  Agents try to use existing knowledge 
in a new way 

  Changing the Capability 

  The most radical form of research: the 
agent tries to explore new frontiers 



IV Proposals - General 

 Every actor can initialize every 
period one proposal only  

 All actors have the opportunity to 
join proposals which were set up by 
other actors 

 Calls for proposals and evaluations 
take place every period (4 periods 
equals a year) 



IV Proposals – Setup I 

  To initialize a proposal, actors 
search for possible partners; the 
research projects of partners have 
to fit the strategy of the initiator 

 Two possible strategies: 

  Conservative 

  Progressive 



IV Proposal – Setup II 

  The search routine of actors 

  In a first step, actors search in their 
“network” for partners with a 
“positive history” (maximum 80% of 
proposal-partners). 

  Then proposal partners are asked for 
additional members which might join 
the consortium. 

  Finally, random actors are asked to 
join the proposal. 



IV Proposal – Evaluation  

  From all proposals sent to the 
European Commission only a limited 
number is positively evaluated. 

  The selection process: 



IV Proposal – Impact of the proposal evaluation on the network 

  If a proposal is rejected, the 
attractiveness-values of the 
contributing partners decrease. 

  If a proposal is successful, the 
attractiveness-values increase and 
the consortium begins with the 
project. 



V Projects - General 

  Every project has a time horizon 
between 12 and 16 periods. The 
consortium dissolves at the end. 

  The Project-Kene contains the 
knowledge the actors are 
contributing. 

 Every period the consortium 
presents its work to the European-
Commission in the form of a new 
project hypothesis (e.g. milestones, 
deliverables etc.). 



V Projects – Potential quality of the project hypothesis 

  The project hypothesis is a written 
idea (e.g. working papers, journal 
articles or patents) 

  The quality is measured depending on 
the strategy: 

 conservative 
  

 progressive 

with  d as the distance in the knowledge-space 
between the Kene elements in the project 
hypothesis,         to standardize 
the output and           are random variables. 



V Projects – Failure or success of the project hypothesis 

  The success of a project hypothesis 
depends on: 

  the type of research 

  the experience of actors concerning 
the used knowledge 

  the cooperation history of the actors 

  the absorptive capacities of the 
participating actors 

  the past experience with the project 
hypothesis 



V Projects – Former project hypothesis 

  Projects continue the work and 
keep their “old” project hypothesis: 

  It is possible to modify an “old” 
project hypothesis with successfully 
acquired new knowledge, 

  or to increase the value of an already 
successful “old” project hypothesis. 



V Projects – Impact of the project evaluation on the network 

  If a project or project hypothesis 
fails, the attractiveness-value of the 
contributing partners decreases. 

  If a project or project hypothesis is 
successful, the attractiveness-value 
increases and the partners are more 
likely to cooperate as well as have 
better chances to cooperate 
successfully in the future. 



VI Network – Structure of the Network 

  bilateral network linkages, 

  weighted edges, 

 neutral value of unity, 

 possibility of a positive history 
between two nodes (value > 1), 

 or possibility of negative history 
between two nodes (value < 1). 



VI Network – Path dependence of the Network 

  The strength of the edges depends on 

  the success of the active cooperation, 
and 

  the time two agents do not cooperate. 

  Positive network connections lower 
over time 

  Over time negative network 
connections return to unity. 



VI Network – Example of the Structure I 



VI Network – Example of the Structure II 



VII Graphical User Interface - Example  



VII Graphical User Interface – possibilities to influence and experiment 

  Users can vary some policy rules by 
setting new values with the sliders 
or enable them through switches. 

  Data can be exported. 



VII Graphical User Interface – Monitors and plots 

  The influence of changes by users 
on the most important variables can 
directly be observed in the 
monitors. 

  The plots show time series of 
important variables and the degree 
distribution of agents. 



VIII Collected Data – Adjacency matrix  

  Export of Pajec-conform adjacency 
matrices  

  Single file format to visualize the 
network structure by one click 

  Export of Ucinet-conform 
adjacency matrices  

  CVS – Sheets to import and analyze 
the matrix with Ucinet 



VIII Collected Data – Data Export Possibilities 

  Possibility to export all values 
chronological for 

 a single agent, 

 the mean values of the agents, 

 a project and 

 global variables. 



IX Possible Extensions – Overview I 

  Expansion of the proposal building 
rules 

  Expansion of the rules for the 
proposal evaluation 

  Expansion of the rules for the 
project and project hypothesis 
evaluation 

  Expansion of the model structure 



IX Possible Extensions – Overview II 

   Modification of the Graphical User 
Interface 

  possibilities to influence the behavior 
of the model 

  possibilities to include new plots for 
the observation of real time results 

  Modification of the agent set 

  E.g. introduction of new agent types 
with new responsibilities. 



Thank you for your 
attention 
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Introduction

Task: Given a bipartite graph G = (V1∪· V2, E ) having some
“hidden” structure

Organisations Projects

find that structure

Organisations Projects

O1

O2

P1
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The projection

How can we efficiently split O into O1 and O2?

Idea 1: The projection

1. Construct the graph GO(O, EO) with

{o1, o2} ∈ EO ⇐⇒ o1, o2 have a common project p

⇐⇒ {o1, p} ∈ E and {o2, p} ∈ E

for some p ∈ P

2. Partition GO using spectral methods.
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The projection

What happens in the first step?

o1

o2

o3

o4

o5

o6

p1

p2

o1 o2

o3 o4

o5

o6
=⇒

p3

p4

p2

Still the same!

I We construct many cliques.
⇒ Maybe, large cliques “confuse” the spectral method.
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The projection

Idea 2: Weighted projection graph

1. The weight of {u, v} is the number of projections both u
and v are involved in.

2. Partition the graph using spectral methods.

Advantage: More robust than the simple projection.

Idea 3: No projection
1. Partition G itself by spectral methods.

Advantage: No additional combinatorical structure introduced.
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Experiments

Random bipartite graphs with planted clusters:

I Choose O1, O2, P1 and P2 arbitrary.

I Omit edges inside O1 ∪ O2 and inside P1 ∪ P2.

I Insert the remaining edges independently.

I Prefer edges between O1 and P1 (resp. O2 and P2).

I Let the degrees nearly follow a power law.

Organisations Projects

O1

O2

P1

P2
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Experiments

Random bipartite graphs with planted clusters:

I Choose O1, O2, P1 and P2 arbitrary.

I Omit edges inside O1 ∪ O2 and inside P1 ∪ P2.

I Insert the remaining edges independently.
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The spectral part

An eigenvector e of a matrix A fulfills

A · e = λ · e

for some scalar λ (=eigenvalue).

If A is “clever”, then its eigenvectors reflect G ’s structure.

The normalized Laplacian L = (luv):

luv =


1 if u = v

−1/
√

du · dv if {u, v} ∈ E

0 otherwise
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The spectral part

1. Delete vertices of very small degree.

2. Take L’s eigenvector e to the second-smallest eigenvalue.

3. Divide each entry eu by
√

du.

For refinement:
Split the clusters found using additional eigenvectors.
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The comparison

Planted two communities (each of size 2 500) so that 1/6 of
all edges are between them.

9



The comparison

Planted two communities (each of size 2 500) so that 1/6 of
all edges are between them.

Fraction of edges between the communities found:
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The comparison

Planted two communities (each of size 2 500) so that 1/6 of
all edges are between them.

Relative performance:

0,9

1

1,1

1,2

1,3

1,4

1,5

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

d

PRO

MULT

EVD

0,35

0,4

0,45

0,5

PRO

MULT

EVD

0

0,05

0,1

0,15

0,2

0,25

0,3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

d

9



Details on the graphs generated

Model extends Chung-Lu model (2002)

1. Split V = O∪· P into O1, O2, P1 and P2.

2. Choose non-negative constants dij for i , j ∈ {1, 2}.
3. Choose weights (w1, . . . , w|O|) and (w ′

1, . . . , w
′
|P|) such

that
∑

m wm =
∑

m w ′
m.

4. Insert edge between u ∈ Oi and v ∈ Pj independently
with probability

dij ·
wu · w ′

v∑
m wm

10



Details on the graphs generated

To be concrete:

1. Oi and Pi are chosen randomly, each has size 2 500.

2. dii = 5, d12 = d21 = 1

3. The weights follow a power law with exponent 2.5.

To get denser graphs, we multiplied each weight with
some constant. (This gives no power law anymore, but is
similar to one and still highly skewed).

11
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 FROM THE NONLOCAL PROBLEMS TO 
FRACTIONAL DIFFERENTIAL EQUATIONS  
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NONLOCALITY: 
IN SPACE : Long Range Interactions (Many Space Scales) 

IN TIME : Effects with Memory / Delay (Many Time Scales) 

INTEGRODIFFERENTIAL  //  INTEGRAL EQUATIONS 

Scenarios of Integral Equations 

•  Potential Theory: Newton’s inverse square law of gravitational attraction and 
Coulomb’s law in electromagnetism. 

•  Problems in Geophysics: Three dimensional map of Earth’s interior. 
Gravimetric methods. 

•  Problems in Electricity and Magnetism. 
•  Hereditary Phenomena in Physics (materials with memory; hysteresis) and 

Biology (ecological processes: accumulation of metals). 
•  Problems in Population Growth and Industrial Replacement. 
•  Radiation Problems. 
•  Optimization, Automatic Control Systems. 
•  Communication Theory. 
•  Mathematical Economics. 



PHYSICAL CONTEXTS WITH THE SAME EQUATION 

DARCY (*) 
LAW 
q=-K Grad h 

FOURIER 
LAW 
Q=-κ Grad T 

FICK  
LAW 
f=-D Grad C 

OHM 
LAW 
j=-σ Grad V 

Flux of Groundwater 
        q 

      Heat: Q   Solute: f  Charge: j 

Potential Head: h Temperature 
         T 

Concentration 
          C 

Voltage: V 

Medium 
Property 

K: Hydraulic 
Conductivity 

κ:  
Thermal 
Conductivity 

D: 
Diffusion 
Coefficient 

σ: 
Electrical 
Conductivity 

(*) Henry Darcy, “Les Fontaines Publiques de la Ville de Dijon” (1856) 



WAVES  + FRACTALS   FRACTIONAL CALCULUS (1) 

•  XIX Century: James Clerk Maxwell and Lor Rayleigh 
studied the interaction of electromagnetic waves with 
Euclidean regular structures (cilinders, spheres,…). 

•  There are either nonregular artificial structures or from 
Nature that show many lenght scales and they are no 
suitable to be studied in the Euclidean context: 

• Nonregular surfaces, disordered media, structures 
with specific properties of scattering,..etc. 

• Relation between the geometrical parameters 
(structure descriptors) and the physical quantities 
that characterize electromagnetically the system. 

• Tecnology: New space and time scales. 



WAVES  + FRACTALS   FRACTIONAL CALCULUS (2)  

•  Geometrical Optics: 
•  Wave length λ<<<< Dimension of any change in the media. 

The eikonal is not longer valid. 

•  The Geometrical Optics cannot be applied in fractal media. 

•  Stationary eigenvalue problem: 
–  Wave equation in a fractal potential. 
–  Wave equation with fractal boundary conditions: 
Ex.   Lu= λ u      
        -L is a linear differential operator on Rn with boundary conditions  

u0(x) on a non-differentiable surface but which admits  the fractional 
derivative Dβ   with β < 1. 

        - If we define  Φ = D β-1  u  , we have the problem L Φ = λ Φ with the 
boundary condition Φ0(x), being Φ  differentiable    

 The new boundary problem is smooth! 



Application: Distribution of Suspended Particles in the Atmosphere 
+ Radiation Effects 

•  The family of fractional differential equations 

     associated to diffusion pocesses allows to define a set of probability 
distributions which are an analytic instrument to approximate the study  

     of problems as particles suspended in the atmosphere, radiation,..etc 

•  To characterize the influence on the radiation arriving to the 
Earth surface (dispersion + absorption Optical Depth  τ(λ) 
is a measure of the radiation damping) 

•  Example: Junge Distribution  N(z,a)= C(z,a) a-(1+ν)  where 
–  z is the high in the atmosphere;  a is the size particles 

(tipically for aerosols  0.01-10 µm );  and  2 < ν < 4 
– C(z,a)   is  a  scale  factor  depending  on  the  particle 

concentration. 
–  τ(λ)=k λ(2-ν) 



Mars Exploration 
•  REMS-MSL Project  (Approved)  
  (Rover Environmental Monitoring Station – Mars Science Laboratory) 
   NASA Mission to Mars (2009, 2011?) 
   → Models of the Boundary Layer and Martian Atmosphere 
         Pressure, Humidity, Temperature (Air and Ground), UV Radiation  
         and Wind. 
   →M.P. Zorzano, A.M. Mancho and L. Vazquez: Appl. Math. and  
       Comp. 164, 263-274 (2005). 
        M. P. Zorzano and L. Vázquez: Optics Letters 31, 1420-1423  (2006). 
        L. Vázquez, M.P. Zorzano and S. Jiménez: Optics Letters  32, 2596-2598 (2007)        

•  MiniHUM Project (Approved)      
     ESA Mission to Mars (2011,2013?) 
     →Models of diffusion processes in the Martian Ground 

•  METNET (Meteorological Network) Project  
–   Precursor: 2 Stations (2009, 2011?) (Approved) 
–  Global: 15 Stations (2015?) (Evaluation Process) 



Basic Considerations (1) 

•  Fundamental Theorem of Calculus: 
– dX/dt =F(t) , X(0) =Xo 
      ↓ 
X(t) = Xo + ∫ot   1  F(τ) dτ  
                          ↓ 
X(t) = Xo + ∫ot  K(t-τ)   F(τ) dτ 
Question: 
 Integral Transform  ↔ Fractional Derivative ?  

•  Roots in the Complex Plane: 
    x3 = 1 →  R1, R2, R3 



Basic Considerations (2) 

• Numerical Schemes for Systems of first and 
second order: 
– dX/dt =F(X) , X(0) =Xo 
      ↓ 
– d2X/dt2 =F(X) dX/dt = F(X)  F´(X)  = 1/2 dF(X)2/dX  
                          ↓ 
Newton Equation: d2X/dt2  = G(X) = - dU(X)/dX 

» U(X) = Potential Energy → U(X) = -1/2 F(X)2 

» Conservative Schemes, Symplectic Schemes. 



CONTINUOUS MEDIA THEORY:  
TIMOSHENKO EQUATION-(1) 

∂4φ/ ∂x4-(a2 +b2) ∂4φ / ∂x2 ∂t2 +a2 b2 ∂4φ/ ∂t4+ a2 c2 ∂2φ/ ∂t2=0 
•  Flexural vibrations of an infinite uniform beam free from lateral 

loading and including the shear deflection of the beam: 
–  1/a has the dimension of a velocity. 
–  1/b has the dimension of a velocity and it is related to the shear 

modulus of elesticity. 
–  c=1/R, R is the radius of gyration of the cross section. 

•  The Timoshenko equation was introduced to avoid the unphysical 
behaviour of the Rayleigh equation a2 c2 ∂2φ/ ∂t2  + ∂4φ/ ∂x4 = 0, 
which  is not accurate to describe the effect of impact loads on a 
beam: the phase and group velocities tend to infinity as the wave 
length tend to zero.  

»     ω = k2 /ac 



CONTINUOUS MEDIA THEORY:  
TIMOSHENKO EQUATION-(2) 

∂4φ/ ∂x4-(a2 +b2) ∂4φ / ∂x2 ∂t2 +a2 b2 ∂4φ/ ∂t4+ a2 c2 ∂2φ/ ∂t2=0 
•  If a=b the square root of Timoshenko equation has a 

simple algebraic structure: 
•   i a c ∂φ/ ∂t =  a2 ∂2φ/ ∂t2 - ∂2φ/ ∂x2 

•  We can name this equation:   
          Schrödinger—Klein-Gordon equation 

• The dispersion relation is: ω = (k2- a2 ω2) /ac 

•  Relativistic and nonrelativistic properties. 

•  If a≠b the algebraic structure is more complicated. 



Fractional Diffusion Equation 



•  We can interpret it as a system with two coupled diffusion processes or 
a diffusion process with internal degrees of freedom. 

•  The components φ and χ  satisfy the classical diffusion equation and 
they  are  named  difunors  in  analogy  with  the  spinors  of  Quantum 
Mechanics. 

•  It is other panoramic view of the possible interpolations between the 
hyperbolic operator of the wave equation and the parabolic one of the 
classical diffusion equation. 

•  According to the representation of the Pauli algebra of A and B, we 
have either an uncoupled system or a coupled system of equations.  



Time Inversion (t—>-t) 

•  If α=1 we have the Dirac and wave equations which are 
invariant under time inversion. 

•  If α=½ the classical diffusion equation and its square root 
are not invariants under time inversion.  

•  Interpolation for : 0< α < 1. The invariance under time 
inversion is satisfied for 

•  Dirac Fractional Equation: 

•  Diffusion Fractional Equation: 



Space-Time Inversion (x—>-x, t—>-t) 
•  Both equations are invariants under space inversion. 
•  Interpolation : 0< α < 1. The invariance under space-time 

inversion is satisfied for the same values of  α in both 
equations: 

-------------------------------------------------------------------------- 
The fractional Dirac equation is not invariant under time 
traslations due to the nonlocal behaviour of the fractional 

time derivative.  



OTHER FRACTIONAL DIFFERENTIAL EQUATIONS WITH 
INTERNAL DEGREES OF FREEDOM: 

The 1/3-root of the Wave and Diffusion Equations  
•  Wave Equation: 
      P ∂t 

2/3 φ   +   Q ∂x
2/3

 φ = 0 

•  Diffusion Equation:  
       P ∂t 

1/3 φ   +   Q ∂x
2/3

 φ = 0 

•  P3 = I , Q3 = -I  
•  PPQ + PQP + QPP = 0 ; QQP + QPQ + PQQ = 0,  

•  A possible realization is in terms of the matrices 3x3 associated to 
the Silvester Algebra: 

Where:         0    0   1                                              0   0    1 
                      ω2    0   0                                     Ω     ω    0    0 
                      0    ω   0                                             0   ω2   0 
     being ω a cubic root of unity and Ω a cubic root of the negative 

unity. 
•  φ has three components 

P= Q= 



Mars Exploration Rover  



Communication Index
a study of a new efficiency measure
for networks – work in progress !!!
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6.3.2008
Math Encounters 34

Funchal, Madeira, PT



1

1/3
1/6

0

0

(yellow) unaware knowing (red)

= 3

1/degree weighing of the
knowing neighbours

=1+1/3+1/6 =1.5

Where does it come from …?
GEP modell for knowledge diffusion on networks …
… the local interaction depends on how busy s.o. is



From that process to a static measure

• Let an existing edge x~y symbolize
communication between node x and y

• Time someone can spend with neighbours
be equally divided among them � 1/degree

• BUT: Relevant for the time that is actually spent …
• … is the more busy of both nodes:
� edgeweight(x,y) = min [1/degree(x), 1/degree(y)]

• Sum of all such edgeweights around each x: 
communication „capacity utilisation“ („workload“) of x

• then Sum this over all nodes / take the average
=: „communication index“ of whole network
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UNIMODAL networks
projection onto organisations

(network-sum in brackets)
 FP1 (0.545)
 FP2 (0.528)
 FP3 (0.516)
 FP4 (0.563)

Very similiar over all FPs !!!

Network-average communication-index
is one number that characterizes the
network for communication purposes

UNIMODAL ORGs Projection (unweighted) 
Node statistics of „capacity utilisation“ („workload“)
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UNIMODAL ORGs Projection (unweighted) 
communication-edgeweights statistics

0.00781 0.01563 0.03125 0.0625 0.125 0.25 0.5

1E-3

0.01

0.1

1

 

 

re
la

tiv
e 

fr
eq

ue
nc

y 
of

 s
uc

h 
ed

ge
s

communication on edge

UNIMODAL ORGs networks
projection onto organisations

(network-sum in brackets)
 FP1 (0.059)
 FP2 (0.024)
 FP3 (0.020)
 FP4 (0.028)

LOG–LOG � Power-Law statistics!

Network-average (given in brackets)
is not a good proxy for whole statistics
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BIMODAL (projects also treated as actors!)
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LOG–LIN � Exponential decay statistics!



Further iterations

• The unbusy nodes still have
free communication capacity
among each other

• The busy nodes (nodeSum=1.0) are taken
out of the game … then it is iterated

• At some iteration, it stagnates.
• Interesting question: How many of the

nodes have ~100% communication after
stagnation



Iterations until stagnation
(FP2_ORGS)
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Analytically tractable model !

� Bollobas-Riordan Kernel Method
� Sascha, Tyll, Madeleine, Philippe
� Andreas: Mathematica numerics, EVs and plots

e.g. 3 node types society with mixture of
hubs, middle-degree, low-degree :

1) Setup the kernel for 1/degree communication
with a knowledge transmission probability λ

2) If Operator-norm of that kernel reaches 1
� birth of giant component

3) For which λcrit does it happen?



Resulting plot, very preliminary:
critical transmission probability λcrit

c1 of α-degree-type c2 of β-degree-type c3 of γ-degree-type

c1 fixed to 65% of nodes plot over c2   � c3 = 1 - c1 - c2

So to the right: more hubs,      to the left: more middle-degree nodes

ratios of the degrees of the 3 node types = α:β:γ



Resulting plot, very preliminary
Multiplicative vs additive coupling
(green)               (red)



Resulting plot, very preliminary
Multiplicative vs additive coupling
(green)               (red)
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