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Abstract

In this talk we will show a transparent relation between the intrinsic
pre-Dirichlet form EΓ

µ and the extrinsic one EP
µ,HX

σ
corresponding to the

Gibbs measure µ on the configuration space ΓX . This extends the result
obtained in [1] (see also [2]) for Poisson measure πσ. As a consequence we
prove the closability of EΓ

µ on L2(ΓX , µ) under very general assumptions
on the interaction potential of the Gibbs measures µ, see also. [3]

1 Introduction

In the recent papers, [2] [4] [1] and [5] analysis and geometry on configu-
ration spaces ΓX over a Riemannian manifold X, i.e,

Γ := ΓX := {γ ⊂ X | |γ ∩K| <∞ for any compact K ⊂ X}, (1)

was developed. They realized that the Dirichlet form of the Poisson mea-
sure πσ with intensity measure σ on B(X) describes the well-known equi-
librium process on configuration spaces, moreover this form is canonically
associated with the introduced geometry on configuration spaces and is
called intrinsic Dirichlet form of the measure πσ.

On the other hand there is a well-known realization of the Hilbert
space L2(ΓX , πσ) and the corresponding Fock space

ExpL2(X,σ) :=

∞⊕
n=0

ExpnL
2(X,σ), (2)

where ExpnL
2(X,σ) denotes the n-fold symmetric tensor product of L2(X,σ)

and Exp0L
2(X,σ) := R. This isomorphism gives us the possibility to pro-

duce natural operations in L2(Γ, πσ) as images of the standard Fock space
operators, see e.g., [6] and references therein. In particular, the image of
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the annihilation operator on the Fock space produces a natural version of a
“gradient” operator in L2(Γ, πσ). The differentiable structure in L2(Γ, πσ)
which appears in this way we consider as external.

In [1] the authors shown that the intrinsic Dirichlet form EΓ
πσ

of the
measure πσ can be represented also in terms of the external Dirichlet form
EP
πσ,H

X
σ

with coefficient HX
σ (the Dirichlet operator associated with σ on

X) which uses this external differentiable structure, i.e.,∫
Γ

〈∇ΓF (γ),∇ΓG(γ)〉TγΓdπσ(γ) =

∫
Γ

(∇PF (γ), HX
σ ∇PG(γ))L2(X,σ)dπσ(γ).

(3)
If we change the Poisson measure πσ to a Gibbs measure µ on the con-
figuration space Γ which describes the equilibrium of interacting particle
systems, the corresponding intrinsic Dirichlet form can still be used for
constructing the corresponding stochastic dynamics (cf. [5]) or for con-
structing a quantum infinite particle Hamiltonian in models of quantum
fields theory, see. [7]

The aim of this talk is to show that even for the interacting case
there is a transparent relation between the intrinsic Dirichlet form and
the extrinsic one, see Theorem 5.1. The proof is based on the Nguyen-
Zessin characterization of Gibbs measure (cf. [8] or Proposition 5.2 below)
which on a heuristic level can be considered as a consequence of the Mecke
identity (cf. [9]).

As a consequence of the mentioned relation we prove the closability
of the pre-Dirichlet form (EΓ

µ ,FC∞
b (D,Γ)) on L2(ΓX , µ), where µ is a

tempered grand canonical Gibbs measure, see Section 2 for this notion.
We would like to emphasize that we achieve this result under a general
condition (see (35) below) on the potential Φ which is not covered by
condition (A.6) in. [10] Finally we mention the closability of the Dirichlet
form EΓ

µ which is crucial (for physical reasons, see, [7] and) for applying
the general theory of Dirichlet forms including the construction of a cor-
responding diffusion process (cf. [11]) which models an infinite particle
system with (possibly) very singular interactions (cf. [5]).

2 Framework

In this section we describe some facts about probability measures on con-
figuration spaces which are necessary later on.

Let X be a connected, oriented C∞ (non-compact) Riemannian man-
ifold. For each point x ∈ X, the tangent space to X at x will be denoted
by TxX; and the tangent bundle will be denoted by TX = ∪x∈XTxX.
The Riemannian metric on X associates to each point x ∈ X an inner
product on TxX which we denote by 〈·, ·〉TxX

and the associated norm
will be denoted by | · |TxX . Let m denote the volume element.

O(X) is defined as the family of all open subsets of X and B(X)
denotes the corresponding Borel σ-algebra. Oc(X) and Bc(X) denote the
systems of all elements in O(X), B(X) respectively, which have compact
closures.
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Let Γ := ΓX be the set of all locally finite subsets in X:

ΓX := {γ ⊂ X | |γ ∩K| <∞ for any compact K ⊂ X}. (4)

We will identify γ with the positive integer-valued measure
∑

x∈γ εx.

Then for any ϕ ∈ C0(X) we have a functional Γ 3 γ 7→ 〈ϕ, γ〉 =∑
x∈γ ϕ(x) ∈ R. Here C0(X) is the set of all real-valued continuous

functions on X with compact support. The space Γ is endowed with the
vague topology. Let B(Γ) denote the corresponding Borel σ-algebra. For
Λ ⊂ X we sometimes use the shorthand γΛ for γ ∩ Λ.

For any B ∈ B(X) we define, as usual, Γ 3 γ 7→ NB(γ) := γ(B) ∈
Z+ ∪ {+∞}. Then B(Γ) = σ({NΛ|Λ ∈ Oc(X)}). For any A ∈ B(X) we
also define BA(Γ) := σ({NB |B ∈ Bc(X), B ⊂ A}).

Let dσ(x) = ρ(x)dm(x), where ρ > 0 m-a.e. be such that ρ
1
2 ∈

H1,2
loc (X) (the Sobolev space of order 1 in L2(X,m)) and ρ /∈ L1(X,m).

We recall that the Poisson measure πσ (with intensity measure σ) on
(Γ,B(Γ)) is defined via its Laplace transform by∫

Γ

e〈γ,ϕ〉dπσ(γ) = exp

(∫
X

(eϕ(x) − 1)dσ(x)

)
, ϕ ∈ C0(X), (5)

see e.g.,[1] [12] [13]. Let us mention that if ρ ∈ L1(X,m), then we have a
finite intensity measure σ on X, and in this case the corresponding mea-
sure πσ will be concentrated on finite configurations. The latter can be
considered as a degenerated case which can be reduced to finite dimen-
sional analysis on every subset of n-particle configurations.

Let us briefly recall the definition of grand canonical Gibbs measures
on (Γ,B(Γ)). We adopt the notation in, [5] and refer the interested reader
to the beautiful work by C. Preston, [14], but also. [15] [16]

A function Φ : Γ → R ∪ {+∞} will be called a potential iff for all
Λ ∈ Bc(X) we have Φ(∅) = 0, Φ = 11{NX<∞}Φ, and γ 7→ Φ(γΛ) is BΛ(Γ)-
measurable.

For Λ ∈ Bc(X) the conditional energy EΦ
Λ : Γ → R ∪ {+∞} is defined

by

EΦ
Λ (γ) :=


∑

γ′⊂γ,γ′(Λ)>0
Φ(γ′) if

∑
γ′⊂γ,γ′(Λ)>0

|Φ(γ′)| <∞,

+∞ otherwise,

(6)

where the sum of the empty set is defined to be zero.
Later on we will use conditional energies which satisfy an additional

assumption, namely, the stability condition, i.e., there exists B ≥ 0 such
that for any Λ ∈ Bc(X) and for all γ ∈ ΓΛ

EΦ
Λ (γ) ≥ −B|γ|.

Definition 2.1 For any Λ ∈ Oc(X) define for γ ∈ Γ the measure ΠΦ
Λ(γ, ·)

by

Πσ,Φ
Λ (γ,∆):=11{Zσ,Φ

Λ <∞}(γ)[Z
σ,Φ
Λ (γ)]−1

∫
Γ

11∆(γX\Λ + γ′Λ) (7)

· exp[−EΦ
Λ (γX\Λ + γ′Λ)]dπσ(γ

′), ∆ ∈ B(Γ),
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where

Zσ,ΦΛ (γ) :=

∫
Γ

exp[−EΦ
Λ (γX\Λ + γ′Λ)]dπσ(γ

′). (8)

A probability measure µ on (Γ,B(Γ)) is called grand canonical Gibbs
measure with interaction potential Φ if for all Λ ∈ Oc(X)

µΠΦ
Λ = µ. (9)

Let Ggc(σ,Φ) denote the set of all such probability measures µ. The Equa-
tions (9) are called Dobrushin-Landford-Ruelle (DLR) equations.

3 Intrinsic geometry on Poisson space

We recall some results to be used below from [1] [4] to which we refer for
the corresponding proofs and more details.

A homeomorphism ψ : X → X defines a transformation of Γ by ψ(γ) =
{ψ(x)|x ∈ γ}. Any vector field v ∈ V0(X) (i.e., the set of all smooth
vector fields on X with compact support) defines a one-parameter group
ψvt , t ∈ R, of diffeomorphisms on X.

Definition 3.1 For F : Γ → R we define the directional derivative along
the vector field v as (provided the right hand side exists)

(∇Γ
vF )(γ) :=

d

dt
F (ψvt (γ))|t=0.

This definition applies to F in the following class FC∞
b (D,Γ) of so-

called smooth cylinder functions. Let D := C∞
0 (X) (the set of all smooth

functions on X with compact support). We define FC∞
b (D,Γ) as the set

of all functions on Γ of the form

F (γ) = gF (〈γ, ϕ1〉, . . . , 〈γ, ϕN 〉), γ ∈ Γ, (10)

where ϕ1, . . . , ϕN ∈ D and gF is from C∞
b (RN ). Clearly, FC∞

b (D,Γ) is
dense in L2(πσ) := L2(Γ, πσ). For any F ∈ FC∞

b (D,Γ) we have

(∇Γ
vF )(γ) =

N∑
i=1

∂gF
∂si

(〈γ, ϕ1〉, . . . , 〈γ, ϕN 〉)〈γ,∇X
v ϕi〉, (11)

where x 7→ (∇X
v ϕ)(x) = 〈∇Xϕ(x), v(x)〉TX is the usual directional deriva-

tive on X along the vector field v and ∇X denotes the gradient on X.
The logarithmic derivative of the measure σ is given by the vector

field βσ := ∇X log ρ = ∇Xρ/ρ (where βσ = 0 on {ρ = 0}). Then
the logarithmic derivative of σ along v is the function x 7→ βσv (x) =
〈βσ(x), v(x)〉TxX + divXv(x), where divX denotes the divergence on X
w.r.t. the volume element m. Analogously, we define divXσ as the diver-
gence on X w.r.t. σ, i.e., divXσ is the dual operator on L2(σ) := L2(X,σ)
of ∇X .
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Definition 3.2 For any v ∈ V0(X) we define the logarithmic derivative
of πσ along v as the following function on Γ :

Γ 3 γ 7→ Bπσ
v (γ) := 〈βσv , γ〉 =

∫
X

[〈βσ(x), v(x)〉TxX + divXv(x)]dγ(x).

(12)

Theorem 3.3 For all F,G ∈ FC∞
b (D,Γ) and any v ∈ V0(X) the follow-

ing integration by parts formula for πσ holds:∫
Γ

∇Γ
vFGdπσ = −

∫
Γ

F∇Γ
vGdπσ −

∫
Γ

FGBπσ
v dπσ, (13)

or (∇Γ
v )
∗ = −∇Γ

v−Bπσ
v , as an operator equality on the domain FC∞

b (D,Γ)
in L2(πσ).

Definition 3.4 We introduce the tangent space TγΓ to the configuration
space Γ at the point γ ∈ Γ as the Hilbert space of γ-square-integrable
sections (measurable vector fields) V : X → TX with scalar product
〈V 1, V 2〉TγΓ =

∫
X
〈V 1(x), V 2(x)〉TxXdγ(x), V

1, V 2 ∈ TγΓ = L2(X →
TX; γ). The corresponding tangent bundle is denoted by TΓ.

The intrinsic gradient of a function F ∈ FC∞
b (D,Γ) is a mapping

Γ 3 γ 7→ (∇ΓF )(γ) ∈ TγΓ such that (∇Γ
vF )(γ) = 〈∇ΓF (γ), v〉TγΓ for any

v ∈ V0(X). Furthermore, by (11), if F is given by (10), we have for γ ∈ Γ,
x ∈ X

(∇ΓF )(γ;x) =

N∑
i=1

∂gF
∂si

(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)∇Xϕi(x). (14)

Definition 3.5 For a measurable vector field V : Γ → TΓ the divergence
divΓ

πσ
V is defined via the duality relation for all F ∈ FC∞

b (D,Γ) by∫
Γ

〈Vγ ,∇ΓF (γ)〉TγΓdπσ(γ) = −
∫

Γ

F (γ)(divΓ
πσ
V )(γ)dπσ(γ), (15)

provided it exists (i.e., provided F 7→
∫
Γ
〈Vγ ,∇ΓF (γ)〉TγΓdπσ(γ) is contin-

uous on L2(πσ)).

Proposition 3.6 For any vector field V = Gv, where G ∈ FC∞
b (D,Γ),

v ∈ V0(X) we have

(divΓ
πσ
V )(γ) = 〈(∇ΓG)(γ), v〉TγΓ +G(γ)Bπσ

v (γ). (16)

For any F,G ∈ FC∞
b (D,Γ) we introduce the pre-Dirichlet form which

is generated by the intrinsic gradient ∇Γ as

EΓ
πσ

(F,G) =

∫
Γ

〈(∇ΓF )(γ), (∇ΓG)(γ)〉TγΓdπσ(γ). (17)

We will also need the classical pre-Dirichlet form for the intensity
measure σ which is given as EXσ (ϕ,ψ) =

∫
X
〈∇Xϕ,∇Xψ〉TXdσ for any

ϕ,ψ ∈ D. This form is associated with the Dirichlet operator HX
σ which
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is given on D by HX
σ ϕ(x) := −4Xϕ(x)−〈βσ(x),∇Xϕ(x)〉TxX and which

satisfies EXσ (ϕ,ψ) = (HX
σ ϕ,ψ)L2(σ), ϕ,ψ ∈ D, see e.g. [17] and [11].

For any F ∈ FC∞
b (D,Γ), (∇Γ∇ΓF )(γ, x, y) ∈ TγΓ⊗ TγΓ and we can

define the Γ-Laplacian (4ΓF )(γ) := Tr(∇Γ∇ΓF )(γ) ∈ FC∞
b (D,Γ). We

introduce a differential operator in L2(πσ) on the domain FC∞
b (D,Γ) by

the formula

(HΓ
πσ
F )(γ) = −4ΓF (γ)− 〈divXσ (∇ΓF )(γ, ·), γ〉. (18)

Theorem 3.7 The operator HΓ
πσ

is associated with the intrinsic Dirichlet
form EΓ

πσ
, i.e.,

EΓ
πσ

(F,G) = (HΓ
πσ
F,G)L2(πσ), (19)

or HΓ
πσ

= −divΓ
πσ
∇Γ on FC∞

b (D,Γ). We call HΓ
πσ

the intrinsic Dirichlet
operator of the measure πσ.

4 Extrinsic geometry on Poisson space

We recall the extrinsic geometry on L2(πσ) based on the isomorphism with
the Fock space. Our approach is based on [18] but we should also mention
[19] [20] [6] [21] [22] for related considerations and references therein. For
proofs of the results stated below in this section, we refer to. [1]

Let us define another “gradient” on functions F : Γ → R. This gra-
dient ∇P has specific useful properties on Poissonian spaces. We will
call ∇P the Poissonian gradient. To this end the tangent space to Γ at
any point γ ∈ Γ we consider the same space L2(σ) and define a mapping
FC∞

b (D,Γ) 3 F 7→ ∇PF ∈ L2(πσ)⊗ L2(σ) by

(∇PF )(γ, x) := F (γ + εx)− F (γ), γ ∈ Γ, x ∈ X. (20)

We stress that the transformation Γ 3 γ 7→ γ + εx ∈ Γ is πσ-a.e. well-
defined because πσ({γ ∈ Γ|x ∈ γ}) = 0 for any x ∈ X. The directional
derivative is then defined as

(∇P
ϕF )(γ) =

∫
X

[F (γ + εx)− F (γ)]ϕ(x)dσ(x), ϕ ∈ D. (21)

The Poissonian gradient ∇P yields an orthogonal system of Charlier poly-
nomials on the Poisson space (Γ,B(Γ), πσ).

For any n ∈ N and all ϕ ∈ D we introduce a function in L2(πσ) by

Qπσ
n (γ;ϕ⊗n) := ((∇P

ϕ )∗n1)(γ), (22)

and define Qπσ
0 := 1. Due to the kernel theorem [17] these functions

have the representation Qπσ
n (γ;ϕ⊗n) = 〈Qπσ

n (γ), ϕ⊗n〉, with generalized
symmetric kernels Γ 3 γ 7→ Qπσ

n (γ) ∈ ExpnD′, n ∈ N. Here and below by
ExpnE we denote the n-th symmetric tensor power of a linear space E.
Then for any smooth kernel ϕ(n) ∈ ExpnD⊗n we introduce the function
Qπσ
n (γ;ϕ(n)) := 〈Qπσ

n (γ), ϕ(n)〉 such that for all ϕ(n) ∈ ExpnD⊗n, ψ(m) ∈
ExpmD⊗m∫

Γ

Qπσ
n (γ;ϕ(n))Qπσ

m (γ;ψ(m))dπσ(γ) = δnmn!(ϕ(n), ψ(m))L2(σ⊗n). (23)

6



Hence (22) extends to the case of kernels from the so-called n-particle
Fock space ExpnL

2(σ), n ∈ N, and we set Exp0L
2(σ) := R.

As usual the symmetric Fock space over the Hilbert space L2(σ) is
defined as ExpL2(σ) := ⊕∞

n=0ExpnL
2(σ), see e.g. [17] and [23]. It is well-

known that there exists an isomorphism between ExpL2(σ) and L2(πσ)
given by

ExpL2(σ) 3 (f (n))∞n=0 ↔ F (γ) =

∞∑
n=0

Qπσ
n (γ; f (n)).

The following proposition shows that the operators ∇P
ϕ and ∇P∗

ϕ play
the role of the annihilation resp. creation operators in the Fock space
ExpL2(σ).

Proposition 4.1 For all ϕ,ψ ∈ D, n ∈ N the following formulas hold

∇P
ψQ

πσ
n (γ;ϕ⊗n) = n(ϕ,ψ)L2(σ)Q

πσ
n−1(γ;ϕ

⊗(n−1)) (24)

∇P∗
ψ Qπσ

n (γ;ϕ⊗n) = Qπσ
n+1(γ;ϕ

⊗n⊗̂ψ), γ ∈ Γ, (25)

where ϕ⊗n⊗̂ψ means the symmetric tensor product of ϕ⊗n and ψ.

Next we give an explicit expression for the adjoint of the Poissonian
gradient ∇P∗.

Proposition 4.2 For any function F ∈ L1(πσ) ⊗ L1(σ) we have F ∈
D(∇P∗) and the following equality holds

(∇P∗F )(γ) =

∫
X

F (γ − εx, x)dγ(x)−
∫
X

F (γ, x)dσ(x), γ ∈ Γ, (26)

provided the right hand side of (26) is in L2(πσ).

Proof. For X = Rd this proposition was proved in [6]. The general case
follows from (20) and the Mecke identity, see e.g., [9]∫

Γ

(∫
X

h(γ, x)dγ(x)

)
dπσ(γ) =

∫
X

∫
Γ

h(γ + εx, x)dπσ(γ)dσ(x), (27)

where h is any non-negative, B(Γ)× B(X)-measurable function.
For any contraction B in L2(σ) it is possible to define an operator

ExpB as a contraction in ExpL2(σ) which in any n-particle subspace
ExpnL

2(σ) is given by B⊗· · ·⊗B (n times). For any positive self-adjoint
operator A in L2(σ) (with D ⊂ D(A)) we have a contraction semigroup
e−tA, t ≥ 0, hence it is possible to introduce the second quantization
operator dExpA as the generator of the semigroup Exp(e−tA), t ≥ 0, i.e.,
Exp(e−tA) = exp(−tdExpA), see e.g. [24] We denote by HP

A the image
of the operator dExpA in the Poisson space L2(πσ) under the described
isomorphism.

Proposition 4.3 Let D ⊂ D(A). Then the symmetric bilinear form cor-
responding to the operator HP

A has the following form, (F,G ∈ FC∞
b (D,Γ))

(HP
AF,G)L2(πσ) =

∫
Γ

(∇PF (γ), A∇PG(γ))L2(σ)dπσ(γ). (28)

The right hand side of (28) is called the “Poissonian pre-Dirichlet form”
with coefficient operator A and is denoted by EPπσ,A.
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Let us consider the special case of the second quantization operator
dExpA, where the one-particle operator A coincides with the Dirichlet
operator HX

σ generated by the measure σ on X. Then we have the fol-
lowing theorem which relates the intrinsic Dirichlet operator HΓ

πσ
and the

operator HP
HX

σ
.

Theorem 4.4 HΓ
πσ

= HP
HX

σ
on FC∞

b (D,Γ). In particular, for all F,G ∈
FC∞

b (D,Γ)∫
Γ

〈∇ΓF (γ),∇ΓG(γ)〉TγΓdπσ(γ) =

∫
Γ

(∇PF (γ), HX
σ ∇PG(γ))L2(σ)dπσ(γ).

(29)

5 Relation between intrinsic and extrin-
sic Dirichlet forms

Here we consider the class of measures G1
gc(σ,Φ) consisting of all µ ∈

Ggc(σ,Φ) such that∫
Γ

γ(K)dµ(γ) <∞ for all compact K ⊂ X.

We define for any µ ∈ G1
gc(σ,Φ) the pre-Dirichlet form EΓ

µ by

EΓ
µ (F,G) :=

∫
Γ

〈∇ΓF (γ),∇ΓG(γ)〉TγΓdµ(γ), F,G ∈ FC∞
b (D,Γ). (30)

After all our preparations we are now going to prove an analogue
of (29) for µ ∈ G1

gc(σ,Φ). We would like to emphasize that the corre-
sponding formula (31) is not obtained from (29) by just replacing πσ by
µ ∈ G1

gc(σ,Φ). The essential difference is, in addition, an extra factor
involving the conditional energy EΦ

Λ .

Theorem 5.1 For any µ ∈ G1
gc(σ,Φ), we have for all F,G ∈ FC∞

b (D,Γ)

EΓ
µ (F,G) =

∫
Γ

∫
X

〈∇X∇PF (γ, x),∇X∇PG(γ, x)〉TxX e
−EΦ

{x}(γ+εx)
dσ(x)dµ(γ).

(31)

Proof. Let us take any F ∈ FC∞
b (D,Γ) of the form (10). Then given

γ ∈ Γ and x ∈ X (20) implies that

∇X∇PF (γ, x) =

N∑
i=1

∂gF
∂si

(〈ϕ1, γ〉+ϕ1(x), . . . , 〈ϕN , γ〉+ϕN (x))∇Xϕi(x).

Let us define F̂i(γ) := ∂gF
∂si

(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉), i = 1, . . . , N . Obviously,

it is enough to prove the equality (31) for F = G. Thus, inserting the
result of ∇X∇PF (γ, x) into the right hand side of (31) we obtain∫

Γ

∫
X

N∑
i,j=1

〈∇Xϕi(x),∇Xϕj(x)〉TxX F̂i(γ+εx)F̂j(γ+εx)e
−EΦ

{x}(γ+εx)
dσ(x)dµ(γ).

(32)

8



Then we need the following useful proposition which generalizes the Mecke
identity to measures in Ggc(σ,Φ), see. [8] [25]

Proposition 5.2 Let h : Γ×X → R+ be B(Γ)× B(X)-measurable, and
let µ ∈ Ggc(σ,Φ). Then we have∫

Γ

(∫
X

h(γ, x)dγ(x)

)
dµ(γ) =

∫
X

∫
Γ

h(γ+εx, x)e
−EΦ

{x}(γ+εx)
dµ(γ)dσ(x).

(33)

Using this proposition we transform (32) into∫
Γ

N∑
i,j=1

F̂i(γ)F̂j(γ)〈〈∇Xϕi(·),∇Xϕj(·)〉TX , γ〉dµ(γ).

On the other hand using (14) we obtain

〈∇ΓF (γ),∇ΓG(γ)〉TΓ =

N∑
i,j=1

F̂i(γ)F̂j(γ)〈〈∇Xϕi(·),∇Xϕj(·)〉TX , γ〉.

Therefore the equality on the dense FC∞
b (D,Γ) is valid which proves the

theorem.

6 Closability of intrinsic Dirichlet forms

In this section we will prove the closability of the intrinsic Dirichlet form
(EΓ
µ ,FC∞

b (D,Γ)) on L2(µ) := L2(Γ, µ) for all µ ∈ G1
gc(σ,Φ), using the in-

tegral representation (31) in Theorem 5.1. The closability of (EΓ
µ ,FC∞

b (D,Γ))
over Γ is implied by the closability of an appropriate family of pre-Dirichlet
forms over X. Let us describe this more precisely. We define new intensity
measures on X by dσγ(x) := ργ(x)dm(x), where

ργ(x) := e
−EΦ

{x}(γ+εx)
ρ(x), x ∈ X, γ ∈ Γ (34)

It was shown in [26, Theorem 5.3] (in the case X = Rd) that the compo-
nents of the Dirichlet form (EXσγ

,Dσγ ) corresponding to the measure σγ

are closable on L2(Rd, σγ) if and only if σγ is absolutely continuous with
respect to Lebesgue measure on Rd and the Radon-Nikodym derivative
satisfies some condition, see (35) below for details. This result allows us
to prove the closability of (EΓ

µ ,FC∞
b (D,Γ)) on L2(µ). Let us first recall

the above mentioned result.

Theorem 6.1 (cf. Theorem 5.3 in [26]) Let ν by a probability measure
on (Rd,B(Rd), d ∈ N and let Dν denote the ν-classes determined by D.
Then the forms (Eν,i,Dν) defined by

Eν,i(u, v) :=

∫
Rd

∂u

∂xi

∂v

∂xi
dν, u, v ∈ D,

9



are well-defined and closable on L2(Rd, ν) for 1 ≤ i ≤ d if and only if ν
is absolutely continuous with respect to Lebesgue measure λd on Rd, and
the Radon-Nikodym derivative ρ = dν/dλd satisfies the condition:

for any 1 ≤ i ≤ d and λd−1−a.e. x ∈
{
y ∈ Rd−1|

∫
R

ρ(i)
y (s)dλ1(s) > 0

}
,

ρ(i)
x = 0 λ1−a.e. on R\R(ρ(i)

x ), where ρ(i)
x (s) := ρ(x1, . . . , xi−1, s, xi, . . . , xd),

s ∈ R, if x = (x1, . . . , xd−1) ∈ Rd−1, and where (35)

R(ρ(i)
x ) :=

{
t ∈ R|

∫ t+ε

t−ε

1

ρ
(i)
x (s)

ds <∞ for some ε > 0

}
. (36)

There is an obvious generalization of Theorem 6.1 to the case where
a Riemannian manifold X is replacing Rd, to be formulated in terms of
local charts. Since here we are only interested in the “if part” of Theorem
6.1, we now recall a slightly weaker sufficient condition for closability in
the general case where X is a manifold as before.

Theorem 6.2 Suppose σ1 = ρ1 · m, where ρ1 : X → R+ is B(X)-
measurable such that

ρ1 = 0 m−a.e. on X\
{
x ∈ X|

∫
Λx

1

ρ1
dm <∞ for some open neighbourhood Λx of x

}
.

(37)
Then (EXσ1 ,D

σ1) defined by

EXσ1(u, v) :=

∫
X

〈∇Xu(x),∇Xv(x)〉TxX dσ1(x); u, v ∈ D,

is closable on L2(σ1).

The proof is a straightforward adaptation of the line of arguments in
[11] (Chap. II, Subsection 2a), see also Theorem 4.2 in [27] for details. We
emphasize that (37) e.g. always holds, if ρ1 is lower semicontinuous, and
that neither ν in Theorem 6.1 nor σ1 in Theorem 6.2 is required to have
full support, so e.g. ρ1 is not necessarily strictly positive m-a.e. on X.

We are now ready to prove the closability of (EΓ
µ ,FC∞

b (D,Γ)) on L2(µ)
under the above assumption.

Theorem 6.3 Let µ ∈ G1
gc(σ,Φ). Suppose that for µ-a.e. γ ∈ Γ the

function ργ defined in (34) satisfies (37) (resp. (35) in case X = Rd).
Then the form (EΓ

µ ,FC∞
b (D,Γ)) is closable on L2(µ).

We address the interested reader to [3] for the details of the proof.

Remark 6.4 The above method to prove closability of pre-Dirichlet forms
on configuration spaces ΓX extends immediately to the case where X is
replaced by an infinite dimensional “manifold” such as the loop space
(cf. [28]).

Example 6.5 Let X = Rd with the Euclidean metric and σ := z · m,
z ∈ (0,∞). A pair potential is a B(Rd)-measurable function φ : Rd →
R∪{∞} such that φ(−x) = φ(x). Any pair potential φ defines a potential

10



Φ = Φφ in the sense of Section 2 as follows: we set Φ(γ) := 0, |γ| 6= 2
and Φ(γ) := φ(x − y) for γ = {x, y} ⊂ Rd. For such pair potentials
φ the condition in Theorem 6.3 ensuring closability of (EΓ

µ ,FC∞
b (D,Γ))

on L2(µ) for µ ∈ G1
gc(σ,Φ) can be now easily formulated as follows: for

µ-a.e. γ ∈ Γ and m-a.e. x ∈ {y ∈ Rd|
∑

y′∈γ\{y} |φ(y − y′)| < ∞} it

holds that
∫
Vx
e

∑
y′∈γ\{y}

φ(y−y′)
m(dy) < ∞ for some open neighborhood

Vx of x. This condition trivially holds e.g. if suppφ is compact, {φ <∞}
is open, and φ+ ∈ L∞loc)({φ < ∞};m). If even µ ∈ Gtgc(z, φ) and φ
satisfies the assumptions in Proposition 7.1, then it suffices to merely
assume that {φ < ∞} is open and φ+ ∈ L∞loc({φ < ∞};m). This follows
by an elementary consideration.

Remark 6.6 1. We emphasize that Example 6.5 generalizes the clos-
ability result in [10], though an a-priori bigger domain for EΓ

µ is
considered there. However, Theorems 6.1-6.3 are also valid for this
bigger domain. The proofs are exactly the same.

2. We also like to emphasize that similarly to Example 6.5 one proves
the closability of (EΓ

µ ,FC∞
b (D,Γ)) (or with a larger domain in [10])

on L2(µ) for µ ∈ G1
gc(σ,Φ) in the case of multi-body potentials φ.
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