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Abstract
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1 Introduction
The aim of this work is to study the solution of the following Cauchy problem
corresponding to the heat equation

{
∂
∂tX(t, x, ω) = a∆X(t, x, ω) + X(t, x, ω) ∗ V (t, x, ω)

X(0, x, ω) = f(x, ω),
(1)
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where a ∈ R+, t ∈ [0,∞) is the time parameter, x = (x1, . . . , xr) ∈ Rr is the
spatial variable, r ∈ N, ∆ =

∑r
i=1

∂2

∂x2
i

is the Laplacian on Rr. The stochastic
vector variable ω = (ω1, . . . , ωd) is an the tempered Schwartz distribution space
S ′d := S ′(R, Rd) with the standard Gaussian measure, d ∈ N, ∗ is the convolution
product between generalized functions (see Subsection 2.2 below) and the initial
condition f as well as the potential V are generalized stochastic processes.

The Cauchy problem (1) was analyzed by many authors from different point
of view, see e.g., [1], [7], and references therein. Often in the literature is used the
Wick product♦ (see [8] for this notion) instead of convolution product ∗ proposed
here.

The motivation to study these equations in such general framework is due to
the fact that usually we have insufficient information on the parameters values of
the system. In some cases these parameters may be very complicated because
they are influenced by the surrounding, the medium or fluctuate due to external or
internal random force.

Recently Ouerdiane et al. [14] obtained the solution of (1) in terms of the
convolution exponential as a well defined generalized function in a suitable distri-
bution space, see Theorem 3.1 below. The main result of this paper is to prove that
for positive generalized stochastic process V = (V (t))t≥0 and initial condition f
the solution is given in terms of a convergent series of integrals. For time indepen-
dent deterministic potential V and initial condition f the solution is in agreement
with the known from the literature, e.g., [1], cf. Proposition 3.5 below.

The starting point is the following Gelfand triple

F ′
θ(N ′) ⊃ L2(M′, γ) ⊃ Fθ(N ′), (2)

where N ′ is a the dual of a complex nuclear Fréchet space N , θ is a Young func-
tion (see definition in Section 2), γ is the usual Gaussian measure on M′ which
corresponds to the real part of N ′. The test function space Fθ(N ′) is defined as
the space of all holomorphic functions on N ′ with an exponential growth condi-
tion of order θ. The generalized function space F ′

θ(N ′) represents the topologi-
cal dual of Fθ(N ′). In the following we will choose the complex nuclear space
N = (Sd × Rr)C, the complexification of the real nuclear space Sd × Rr, which
is adapted to our situation.

Using the Laplace transform L (which is a topological isomorphism, cf. The-
orem 2.1 below) we may define the convolution of two generalized functions
Φ, Ψ ∈ F ′

θ(N ′) by
Φ ∗Ψ = L−1(LΦ · LΨ).
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The convolution exponential of Φ denoted by exp∗ Φ is then introduced as an
element in F ′

ϕ(N ′), where the Young function ϕ = (eθ∗)∗ and

θ∗(x) := sup
y≥0

(yx− θ(y)) (3)

denotes the polar function associated to θ, see e.g., [9].
For positive generalized stochastic process V = (V (t))t≥0 there exists a fam-

ily of Radon measures µ = (µt)t≥0 (see e.g., [13]) onM′ which represents V and,
therefore, the Fourier transform of µt, t ≥ 0 is given by

µ̂t(ξ) = 〈〈V (t), exp(iξ)〉〉 =

∫

M′
exp(i〈y, ξ〉)dµt(y),

where 〈〈·, ·〉〉 denotes the duality between F ′
θ(N ′) and Fθ(N ′) which corresponds

to the extension of the inner product of L2(M′, γ). Under these hypothesis we
prove that for any test function ϕ ∈ Fθ(N ′) and all u ∈ N ′ we have

(
exp∗

(∫ t

0

Vsds

)
∗ ϕ

)
(u)

= ϕ(u) +
∞∑

n=1

1

n!

∫

[0,t]n

∫

(M′)n

ϕ(u + y1 + . . . + yn)
n∏

i=1

dµsi(yi)dsi

which connects the convolution calculus and convergent series of integrals. We
will use this equality to write the solution X(t, x) of (1) for deterministic potential
V and suitable choice of ϕ as

X(t, x) = (4aπt)−r/2

∫

Rr

f(y)e
|x−y|2

4at dy

+ (4aπt)−r/2
∞∑

n=1

1

n!

∫

[0,t]n

∫

(Rr)n

∫

Rr

f(y)e
|x+y1+...+yn−y|2

4at dy
n∏

i=1

dµsi(yi)dsi.

We would like to mention that the positivity of the potential V implies the
following property for µ: for each t ≥ 0 there exists n ∈ N, m > 0 with
µt(M−n) = 1 and µt satisfies the integrability condition,

∫

M−n

exp(θ(m|y|−n))dµt(y) < ∞. (4)

If V is deterministic and time independent, then the corresponding measure µ
which verify (4) implies that V belongs to the so-called Albeverio-Høegh-Krohn
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class, see [1]. This class of potentials was studied by Asai et al. [2] and Kuna
et al. [10] for the Schrödinger equation in connection with Feynman integrals.
Our method may also be applied to solve the Cauchy problem corresponding to
the Schrödinger equation if we replace a by i !

2m , where ! is the Plank’s constant
divided by 2π and m is the mass of the non relativistic particle, see Remark 3.8
for more details.

Finally, we would like to mention that our method also applies to smooth
initial conditions f and potential V . In fact, any test function ϕ ∈ Fθ(N ′) or any
h ∈ L2(M′, γ) may be considered for initial condition f or to play the role of the
potential V because, in both cases we have an element in F ′

θ(N ′) due to the triple
(2). In that case the convolution product turns into the usual convolution product
with respect to γ and the dual pairing is simply the inner product in L2(M′, γ),
see Remark 3.9-2.

2 Preliminaries

2.1 Test and generalized functions spaces
In this section we introduce the framework need later on. The starting point is the
real Hilbert space H = L2(R, Rd) × Rr, d, r ∈ N with scalar product (·, ·) and
norm | · |. More precisely, if (f, x) = ((f1, . . . , fd), (x1, . . . , xr)) ∈ H, then

|(f, x)|2 :=
d∑

i=1

∫

R
f 2

i (u)du +
r∑

i=1

x2
i = |f |2L2(R,Rd) + |x|2Rr .

Let us consider the real nuclear triplet

M′ = S ′(R, Rd)× Rr ⊃ H ⊃ S(R, Rd)× Rr = M. (5)

The pairing 〈·, ·〉 between M′ and M is given in terms of the scalar product in
H, i.e., 〈(ω, x), (ξ, p)〉 := (ω, ξ)L2(R,Rd) + (x, p)Rr , (ω, x) ∈ M′ and (ξ, p) ∈ M.
Since M is a Fréchet nuclear space, then it can be represented as

M =
∞⋂

n=0

Sn(R, Rd)× Rr =
∞⋂

n=0

Mn,

where Sn(R, Rd)×Rr is a Hilbert space with norm square given by | · |2n + | · |2Rr ,
see e.g., [6] or [4] and references therein. We will consider the complexification
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of the triple (5) and denote it by

N ′ ⊃ Z ⊃ N , (6)

where N = M + iM and Z = H + iH. On M′ we have the standard Gaussian
measure γ given by Minlos’s theorem via its characteristic functional: for every
(ξ, p) ∈M

Cγ(ξ, p) =

∫

M′
exp(i〈(ω, x), (ξ, p)〉)dγ((ω, x)) = exp(−1

2
(|ξ|2 + |p|2)).

In order to solve the Cauchy problem (1) we need to introduce an appropriate
space of generalized functions. We borrow this construction from [11]. Let
θ = (θ1, θ2) : R2

+ → R, (t1, t2) ,→ θ1(t1) + θ2(t2) where θ1, θ2 are two Young
functions, i.e., θi : R+ → R+ continuous convex strictly increasing function and

lim
t→∞

θi(t)

t
= ∞, θi(0) = 0, i = 1, 2.

For every pair m = (m1, m2) with m1, m2 ∈]0,∞[, we define the Banach space
Fθ,m(N−n), n ∈ N by

Fθ,m(N−n) := {f : N−n → C, entire, ‖f‖θ,m,n = sup
z∈N−n

|f(z)| exp(−θ(m|z|−n)) < ∞},

where for each z = (ω, x) we have θ(m|z|−n) := θ1(m1|ω|−n) + θ2(m2|x|). Now
we consider as test function space the space of entire functions on N ′ of (θ1, θ2)-
exponential growth and minimal type

Fθ(N ′) =
⋂

m∈(R∗
+)2,n∈N0

Fθ,m(N−n),

endowed with the projective limit topology. We would like to construct the triple
of the complex Hilbert space L2(M′, γ) by Fθ(N ′). To this end we need another
condition on the pair of Young functions (θ1, θ2). Namely,

lim
t→∞

θi(t)

t2
< ∞, i = 1, 2. (7)

This is enough to obtain the following Gelfand triple

F ′
θ(N ′) ⊃ L2(M′, γ) ⊃ Fθ(N ′), (8)
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where F ′
θ(N ′) is the topological dual of Fθ(N ′) with respect to L2(M′, γ) en-

dowed with the inductive limit topology.
In applications it is very important to have the characterization of generalized

functions from F ′
θ(N ′). First we define the Laplace transform of an element in

F ′
θ(N ′). For every fixed element (ξ, p) ∈ N the exponential function exp((ξ, p))

is a well defined element in Fθ(N ′), see [5]. The Laplace transform L of a gener-
alized function Φ ∈ F ′

θ(N ′) is defined by

Φ̂(ξ, p) := (LΦ)(ξ, p) := 〈〈Φ, exp((ξ, p))〉〉. (9)

We are ready to state to characterization theorem (see e.g., [5] for the proof) which
is the main tool in our further consideration.

Theorem 2.1 1. The Laplace transform is a topological isomorphism between
F ′

θ(N ′) and the space Gθ∗(N ), where Gθ∗(N ) is defined by

Gθ∗(N ) =
⋃

m∈(R∗
+)2,n∈N0

Gθ∗,m(Nn),

and Gθ∗,m(Nn) is the space of entire functions on Nn with the following
θ-exponential growth condition

Gθ∗,m(Nn) . g, |g(ξ, p)| ≤ k exp(θ∗1(m1|ξ|n) + θ∗2(m2|p|)), (ξ, p) ∈ Nn.

2. The Laplace transform is a topological isomorphism between Fθ(N ′) and
itself.

2.2 The Convolution Product ∗
It is well known that in infinite dimensional complex analysis the convolution
operator on a general function space F is defined as a continuous operator which
commutes with the translation operator. Let us define the convolution between a
generalized and a test function. Let Φ ∈ F ′

θ(N ′) and ϕ ∈ Fθ(N ′) be given, then
the convolution Φ ∗ ϕ is defined by

(Φ ∗ ϕ)(ω, x) := 〈〈Φ, τ−(ω,x)ϕ〉〉,

where τ−(ω,x) is the translation operator, i.e.,

(τ−(ω,x)ϕ)(η, y) := ϕ(ω + η, x + y).

6



It is not hard the see that Φ ∗ ϕ ∈ Fθ(N ′). The convolution product is given in
terms of the dual pairing as (Φ ∗ ϕ)(0, 0) = 〈〈Φ, ϕ〉〉 for any Φ ∈ F ′

θ(N ′) and
ϕ ∈ Fθ(N ′).

We can generalize the above convolution product for generalized functions as
follows. Let Φ, Ψ ∈ F ′

θ(N ′) be given, then Φ ∗Ψ is defined by

〈〈Φ ∗Ψ, ϕ〉〉 := 〈〈Φ, Ψ ∗ ϕ〉〉, ∀ϕ ∈ Fθ(N ′). (10)

This definition of convolution product for generalized functions will be used on
Section 3 in order to write the solution of the stochastic heat equation in (1). We
have the following equality, see [14], Proposition 3.3:

Φ ∗ exp((ξ, p)) = (LΦ)(ξ, p) exp((ξ, p)), (ξ, p) ∈ N .

As a consequence of the above equality and definition (10) we obtain

L(Φ ∗Ψ) = LΦLΨ, Φ, Ψ ∈ F ′
θ(N ′) (11)

which says that the Laplace transform maps the convolution product of F ′
θ(N ′)

into the usual pointwise product in the algebra of functions Gθ∗(N ). Therefore
we may use Theorem 2.1 to define convolution product between two generalized
functions as

Φ ∗Ψ = L−1(LΦLΨ).

This allows us to introduce the convolution exponential of a generalized func-
tion. In fact, for every Φ ∈ F ′

θ(N ′) we may easily check that exp(LΦ) ∈
Geθ∗ (N ). Using the inverse Laplace transform and the fact that any Young func-
tion θ verify the property (θ∗)∗ = θ we obtain that L−1(Geθ∗ (N )) = F ′

(eθ∗ )∗
(N ′).

Now we give the definition of the convolution exponential of Φ ∈ F ′
θ(N ′), de-

noted by exp∗ Φ
exp∗ Φ := L−1(exp(LΦ)).

Notice that exp∗ Φ is well a defined element in F ′
(eθ∗ )∗

(N ′) and therefore the
distribution exp∗ Φ is given in terms of a convergent series

exp∗ Φ = δ0 +
∞∑

n=1

1

n!
Φ∗n, (12)

where Φ∗n is the convolution of Φ with itself n times, Φ∗0 := δ0 by convention
with δ0 denoting the Dirac distribution at 0. We refer to [3] for more details
concerning convolution product on F ′

θ(N ′).
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3 Applications to the heat equation
A one parameter generalized stochastic process with values in F ′

θ(N ′) is a family
of distributions {Φ(t), t ≥ 0} ⊂ F ′

θ(N ′). The process Φ(t) is said to be con-
tinuous if the map t ,→ Φ(t) is continuous. For a given continuous generalized
stochastic process (X(t))t≥0 we define the generalized stochastic process

Y (t, x, ω) =

∫ t

0

X(s, x, ω)ds ∈ F ′
θ(N ′)

by

L
(∫ t

0

X(s, x, ω)ds

)
(ξ, p) :=

∫ t

0

LX(s, p, ξ)ds. (13)

The process Y (t, x, ω) is differentiable and we have ∂
∂tY (t, x, ω) = X(t, x, ω).

The details of the proof can be seen in [14], Proposition 4.11. The main result in
[14] is stated in the following theorem.

Theorem 3.1 1. The Cauchy problem (1) has an unique solution X(t) which
is a generalized F ′

β(N ′)-valued stochastic process, where the Young func-
tion β is given by β = (eθ∗)∗. Moreover, the solution X(t) is given explicitly
by

X(t, ω, x) = f(ω, x) ∗ exp∗
(∫ t

0

V (s)(ω, x)ds

)
∗ γ2at, (14)

where γ2at is Gaussian measure on Rr with variance 2at.

2. If the potential V and the initial condition f do not depend on the random
parameter ω then the solution of (1) is given by

X(t, x) = (g(t, ·) ∗ γ2at)(x), (15)

where g is equal to

g(t, x) = f(x) exp

(∫ t

0

V (s, x)ds

)
.

We are now going to write the solution of the Cauchy problem (1) as a limit of
convergent series of integrals. To this end, we choose the potential V = (V (t))t≥0
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as a positive generalized stochastic process represented by the family of Radon
measures (µt)t≥0, i.e., for any t ≥ 0

〈〈V (t), ϕ〉〉 =

∫

M′
ϕ(y)dµt(y), ϕ ∈ Fθ(N ′).

Moreover the measure µt verify the following integrability condition: there exists
n ∈ N and m > 0 with µt(M−n) = 1 such that

∫

M−n

exp(θ(m|y|−n))dµt(y) < ∞. (16)

Lemma 3.2 For each Radon measure µ onM′ verifying (16) and all ϕ ∈ Fθ(N ′)
we have for any u = (x, ω) ∈ N ′ = M′ + iM′

((exp∗ µ) ∗ϕ)(u) = ϕ(u) +
∞∑

n=1

1

n!

∫

(M′)n

ϕ(u + y1 + . . . + yn)dµ(y1) . . . dµ(yn).

(17)

Proof. First we compute µ∗n∗ϕ, for any ϕ ∈ Fθ(N ′) and n = 2. Hence if u ∈ N ′

we have

((µ ∗ µ) ∗ ϕ)(u) = (µ ∗ (µ ∗ ϕ))(u)

= 〈〈µ, τ−u(µ ∗ ϕ)〉〉

=

∫

M′
τ−u(µ ∗ ϕ)(y1)dµ(y1)

=

∫

M′
(µ ∗ ϕ)(u + y1)dµ(y1)

=

∫

M′

(∫

M′
ϕ(u + y1 + y2)dµ(y2)

)
dµ(y1).

Now, using iteratively this procedure on the equality (12) we obtain for every
ϕ ∈ Fθ(N ′) and any u ∈ N ′

((exp∗ µ) ∗ ϕ)(u) (18)

= ϕ(u) +
∞∑

n=1

1

n!
(µ∗n ∗ ϕ)(u)

= ϕ(u) +
∞∑

n=1

1

n!

∫

(M′)∗
ϕ(u + y1 + . . . + yn)dµ(y1) . . . dµ(yn).

This proves the desired result.
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Lemma 3.3 Let (V (s))s≥0 ⊂ F ′
θ(N ′) be a positive generalized stochastic pro-

cess represented by the family of measures (µs)s≥0. Then for any ϕ ∈ Fθ(N ′) we
have

〈〈∫ t

0

V (s)ds, ϕ

〉〉
=

∫ t

0

〈〈V (s), ϕ〉〉ds (19)

=

∫ t

0

(∫

M′
ϕ(y)dµs(y)

)
ds,

Moreover, we have
〈〈

exp∗
(∫ t

0

V (s)ds

)
, ϕ

〉〉
=

〈〈
exp∗

(∫ t

0

µsds

)
, ϕ

〉〉
. (20)

Proof. In fact equality (19) is nothing but the definition (13) with ϕ = exp((ξ, p)).
Therefore by a limit procedure we get the required result (19) for general test
function ϕ ∈ Fθ(N ′) since the set of exp((ξ, p)), (ξ, p) ∈ N is total in Fθ(N ′).

To prove equality (20) we proceed in two steps: first we notice that for every
s ≥ 0 V (s) ∗ V (s) is represented by µs ∗ µs which follows from the following
calculation with ϕ ∈ Fθ(N ′)

〈〈V (s) ∗ V (s), ϕ〉〉 = 〈〈V (s), V (s) ∗ ϕ〉〉

=

∫

M′
(V (s) ∗ ϕ)(x)dµs(x)

=

∫

M′

(∫

M′
ϕ(x + y)dµs(y)

)
dµs(x)

= 〈〈µs ∗ µs, ϕ〉〉.

Iterating this process we obtain

〈〈exp∗ V (s), ϕ〉〉 = 〈〈exp∗ µs, ϕ〉〉. (21)

Then equality (20) is a consequence of (19) and (21).
We now use these two lemmas to derive the following corollary.

Corollary 3.4 Let (V (s))s≥0 ⊂ F ′
θ(N ′) be a positive generalized stochastic pro-

cess represented by the family of measures (µs)s≥0. Then for any test function
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ϕ ∈ Fθ(N ′), u ∈ N ′ holds
(

exp∗
(∫ t

0

V (s)ds

)
∗ ϕ

)
(u) (22)

= ϕ(u) +
∞∑

n=1

1

n!

∫

[0,t]n

∫

(M′)n

ϕ(u + y1 + . . . + yn)
n∏

i=1

dµsi(yi)dsi.

We are now ready to write the solution (14) of the Cauchy problem (1) as a
convergent series of integrals. We will apply the preceding corollary with ϕ of the
following form

ϕt(x) = (γ2at ∗ f)(x) = (4aπt)−r/2

∫

Rr

f(y)e−
|x−y|2

4at dy, x ∈ Rr,

where the initial condition f is a given function.

Proposition 3.5 Let V, f be deterministic functions. The solution of the Cauchy
problem (1) admits the following representation

Xt(x)

= ϕt(x) +
∞∑

n=1

1

n!

∫

[0,t]n

∫

(Rr)n

ϕt(x + y1 + . . . + yn)
n∏

i=1

dµsi(yi)dsi

= (4aπt)−r/2

∫

Rr

f(y)e−
|x−y|2

4at dy

+(4aπt)−r/2
∞∑

n=1

1

n!

∫

[0,t]n

∫

(Rr)n

∫

Rr

f(y)e−
|x+y1+...+yn−y|2

4at dy
n∏

i=1

dµsi(yi)dsi.

If the potential V is time independent and r = 1 then the solution is given by

Xt(x) = (4aπt)−1/2

∫

R
f(y)e−

|x−y|2
4at dy

+(4πat)−1/2
∞∑

n=1

tn

n!

∫

Rn

∫

R
f(y)e−

(x+y1+...+yn−y)2

4at dydµ(y1) . . . dµ(yn).

We are now going to obtain the analogous of Proposition 3.5 for initial condi-
tion from our generalized function space F ′

θ∗(N ′). Before let us define the adjoint
of the translation operator applied to a generalized function from F ′

θ∗(N ′). For
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any x ∈ N ′ and Φ ∈ F ′
θ∗(N ′) we define the generalized function τ ∗−xΦ ∈ F ′

θ∗(N ′)
as

〈〈τ ∗−xΦ, ϕ〉〉 = 〈〈Φ, τ−xϕ〉〉, ∀ϕ ∈ Fθ∗(N ′).

Now we generalize Lemma 3.2.

Lemma 3.6 Let µ be a Radon measure on M′ fulfilling condition (16), then for
every distribution Φ ∈ F ′

θ∗(N ′) we have

(exp∗ µ) ∗ Φ = Φ +
∞∑

n=1

1

n!

∫

(M′)n

τ ∗−y1−...−yn
Φdµ(y1) . . . dµ(yn), (23)

where for every n = 1, 2, . . . the distribution
∫

(M′)n τ ∗−y1−...−yn
Φdµ(y1) . . . dµ(yn)

is defined for any ϕ ∈ Fθ(N ′) as
〈〈∫

(M′)n

τ ∗−y1−...−yn
Φdµ(y1) . . . dµ(yn), ϕ

〉〉

=

∫

(M′)n

〈〈τ ∗−y1−...−yn
Φ, ϕ〉〉dµ(y1) . . . dµ(yn)

=

∫

(M′)n

〈〈Φ, τ−y1−...−ynϕ〉〉dµ(y1) . . . dµ(yn)

=

∫

(M′)n

(Φ ∗ ϕ)(y1 + . . . + yn)dµ(y1) . . . dµ(yn).

Proof. Equality (23) may be derived as follows: for any test function ϕ ∈ Fθ(N ′)
definition (10) gives

〈〈(exp∗ µ) ∗ Φ, ϕ〉〉 = 〈〈exp∗ µ, Φ ∗ ϕ〉〉.

Now we use the relation between the convolution product and dual pairing to ob-
tain

〈〈exp∗ µ, Φ ∗ ϕ〉〉) = ((exp∗ µ) ∗ (Φ ∗ ϕ))(0).
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Applying Lemma 3.2 with Φ ∗ ϕ replacing ϕ yields

〈〈(exp∗ µ) ∗ Φ, ϕ〉〉

= (Φ ∗ ϕ)(0) +
∞∑

n=1

1

n!

∫

(M′)n

(Φ ∗ ϕ)(0 + y1 + . . . + yn)dµ(y1) . . . dµ(yn)

= 〈〈Φ, ϕ〉〉+
∞∑

n=1

1

n!

∫

(M′)n

〈〈Φ, τ−y1−...−ynϕ〉〉dµ(y1) . . . dµ(yn)

= 〈〈Φ, ϕ〉〉+
∞∑

n=1

1

n!

∫

(M′)n

〈〈τ ∗−y1−...−yn
Φ, ϕ〉〉dµ(y1) . . . dµ(yn).

Theorem 3.7 Let (V (t))t≥0 be a positive generalized stochastic process repre-
sented by the family of Radon measures (µt)t≥0 on M′ which verify the integra-
bility condition (16). If the initial condition f is a generalized function inF ′

θ∗(N ′),
then the solution of the Cauchy problem (1) is given by
(

exp∗
∫ t

0

V (s)ds

)
∗Ψ = Ψ +

∞∑

n=1

1

n!

∫

[0,t]n

∫

(M′)n

τ ∗−y1−...−yn
Ψ

n∏

i=1

dµsi(yi)dsi,

where Ψ is the distribution given by f ∗ (γ2at ⊗ δ0), here γ2at is the Gaussian
measure on Rr with variance 2at and δ0 is the Dirac measure on S ′d.

Proof. The prove is a consequence of (22) and (23).

Remark 3.8 The Cauchy problem corresponding to the Schrödinger equation is
{

i! ∂
∂tX(t, x) = − !2

2m∆X(t, x) + X(t, x) ∗ V (t, x)

X(0, x) = f(x).

In our framework this corresponds to choose a = i !
2m and interpret the measure

γ2at as a generalized function defined for any test function ϕ ∈ Fθ(Cr) by

(γ2at ∗ ϕ)(x) = (2πit!/m)−r/2

∫

Rr

ϕ(y)eim |x−y|2
2t! dy.

Hence the corresponding solution is given by

X(t, x) = (2πit!/m)−r/2

∫

Rr

f(y) exp

(∫ t

0

V (s, y)ds

)
eim |x−y|2

2t! dy.
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Remark 3.9 1. We would like to mention that the spaces Fθ(N ′) and its dual
F ′

θ(N ′) are independent of the Gaussian measure γ. For another probabil-
ity measure P on M′ we can construct the analogous Gelfand triple as in
(8) changing in an appropriate way the condition on the Young function θ
in (7).

2. If one wants to handle potential not as generalized functions as we do here
but as an ordinary function, e.g., v ∈ Fθ(N ′), then we may identify v with
the generalized function vP ∈ F ′

θ(N ′). In fact, for any test function ϕ ∈
Fθ(N ′) we have

〈〈vP, ϕ〉〉 = 〈〈P, vϕ〉〉 =

∫

M′
v(x)ϕ(x)dP (x)

and this obviously defines a linear continuous functional onFθ(N ′). Notice
that in this case vP ∗ ϕ coincides with the usual convolutions (v ∗ ϕ)P

between functions with respect to the measure P .

Acknowledgments

The first author would like to thank our colleagues and friends Ludwig Streit and
Margarida Faria for the warm hospitality during a very pleasant stay at CCM of
Madeira University in July 2002. The second author would like to thank Habib
Ouerdiane for the warm hospitality during a very pleasant and fruitful stay at
the Faculté des Sciences de Tunis in October 2001 where the main ideas of this
note were realized. Financial support of the project Luso/Tunisino, Convénio IC-
CTI/Tunisia, proc. 4.1.5 Tunisia, “Analyse en Dimension Infinie et Stochastique:
Theorie et applications”, is gratefully acknowledged.

References
[1] S. Albeverio and R. Høegh-Krohn, Mathematical theory of Feynman path

integrals, Lecture Notes in Math., vol. 523, Springer-Verlag, Berlin, Heidel-
berg and New York, 1976.

[2] N. Asai, I. Kubo, and H.-H. Kuo, Feynman integrals associated with
Albeverio-Høegh-Krohn potentials, Stochastics in Finite and Infinite Dimen-
sions: In Honor of Gopinath Kallianpur (Boston ; Basel ; Berlin) (T. Hida,

14



R. L. Karandikar, H. Kunita, B. S. Rajput, S. Watanabe, and J. Xiong, eds.),
Trends in Mathematics, Birkhäuser, 2001, pp. 29–48.

[3] M. Ben Chrouda, M. El Oued and H. Ouerdiane, Convolution Calculus
and Applications to Stochastic Differential Equations, Soochow J. Math.,
28 (2002) no. 4, 375–388.

[4] Yu. M. Berezansky and Yu. G. Kondratiev, Spectral methods in infinite-
dimensional analysis, vol. 1, Kluwer Academic Publishers, Dordrecht, 1995,
Em Russo.

[5] R. Gannoun, R. Hachaichi, H. Ouerdiane, and A. Rezgui, Un théorème de
dualité entre espace de fonctions holomorphes à croissance exponentielle,
J. Funct. Anal. 171 (2000), no. 1, 1–14.

[6] T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White noise. an infinite dimen-
sional calculus, Kluwer Academic Publishers, Dordrecht, 1993.

[7] H. Holden, B. Øksendal, J. Ubøe, and T. Zhang, Stochastic partial differ-
ential equations: a modeling, white noise functional approach, Birkhäuser,
Boston, Basel, Berlin, 1996.

[8] Yu. G. Kondratiev, P. Leukert, and L. Streit, Wick calculus in Gaussian anal-
ysis, Acta Appl. Math. 44 (1996), 269–294.

[9] M-A. Krasnosel’ski and Ya-B. Ritickili, Convex functions and orliez spaces,
P. Nordhoff. Itd, Groningen, The Nethelands, 1961.

[10] T. Kuna, L. Streit, and W. Westerkamp, Feynman integrals for a class of
exponentially growing potentials, J. Math. Phys. 39 (1999), no. 9, 4476–
4491.

[11] H. Ouerdiane, Nuclear * agebra of entire functions and applications, Tech.
Report 00-05-15, BiBoS University of Bielefeld, 2000.

[12] H. Ouerdiane and A. Rezgui, Representation integrale de fonctionnlles an-
alytiques positive, Stochastic processes, physics and geometry: new inter-
plays, I: In Honor of S. Albeverio, (F. Gesztesy, H. Holden, J. Jost, S. Paycha,
M. Rockner and S. Scarlatti eds), CMS Conf. Proc. Amer. Math. Soc. 2000,
pp. 283–290.

15



[13] , Un théorème de Bochner-Minlos avec une condition
d’intégrabilité, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3
(2000), no. 2, 297–302.

[14] Habib Ouerdiane and José Luis Silva, Generaliezed Feymann-Kac formula
with stochastic potential, Infin. Dimens. Anal. Quantum Probab. Relat. Top.
5 (2002), no. 2, 1–13.

16


