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Abstract. We consider the estimation of parameters in stochastic differential equations (SDEs). The
problem is treated in the setting of nonlinear filtering theory with a degenerate diffusion matrix.
A robust stochastic Feynman–Kac representation for solutions of SDEs of Zakai-type is derived.
It is verified that these solutions are conditional densities for the conditional measures defined by
degenerate filtering problems. We show that the corresponding estimator for the parameters is robust
in the following sense: It depends continuously on both the measurement path and on the intensity
of the measurement noise. An algorithm based on a Monte-Carlo approach is given for the practical
application of the estimator, and numerical results are reported.

Mathematics Subject Classifications (2000): Primary: 62M05, 62M20; secondary: 62F15.

Key words: Zakai equation, robust nonlinear filtering, Feynman–Kac formula, numerics.

1. Introduction

Consider a stochastic process Xt in Rd , which satisfies a stochastic differential
equation (SDE) of Itô type with respect to a d-dimensional Brownian motion W

(1)
t :

dXt = bθ(t, Xt) dt + σθ(t, Xt) dW
(1)
t . (1.1)

The successful application of such equations to real-world phenomena often de-
pends on the ability to identify unknown parameters θ in (1.1), based on ob-
servations of the modelled phenomena. Depending on the kind of observations
several rather distinct approaches to this problem exist, see, e.g., the recent mono-
graph [40], and also [1, 29, 31]. Here we suppose that Xt can only partially be
observed, and moreover the observation errors introduce some additional stochastic
noise. Our work consists of two main parts: The first part investigates the estima-
tion problem for θ from the mathematical viewpoint. Let (W

(1)
t , W

(2)
t )t!0 be an

Rd × Rm-valued Brownian motion (BM) on an probability space (#1, F1, P1).
We assume X is the unique strong solution of (1.1), and X0 is independent of the
Brownian filtration. The drift vector bθ and the diffusion matrix σθ are assumed
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to be known functions (cf. conditions 5.3), up to an unknown parameter θ from
some set $ ⊂ Rk. Moreover, we assume that X is partially observed through the
Rm-valued process

Yt =
∫ t

0
h(Xs) ds + αW

(2)
t , (1.2)

where h denotes an Rm-valued bounded function. The parameter α > 0 reflects
the size of the noise in the observations and is related to how the measurements are
taken (details are given below). Our estimation problem reads: Find an optimal es-
timate (in a sense to be specified) for θ , given a single observation path (Yt )t∈[0,T ].
To solve this problem we adopt a Bayesian viewpoint, and consider θ as a random
variable, denoted θ0. We augment (1.1) by the additional ‘state’ equation

dθt = 0, (1.3)

which has the trivial solution θt = θ0 for all t ! 0. (This procedure is sometimes
called ‘state augmentation’.) Then we estimate θ by the expectation value of θ0,
conditioned on an observation path. This estimator is optimal in the mean square
sense. We will investigate some of its mathematical properties in detail. In the
second part of this work we provide a numerical method for the explicit calculation
of the estimator, and we present some simulation examples which show that it
performs quite well. Our main practical obstacle for the parameter estimation based
on nonlinear filtering is to solve the Zakai equation. The numerical solution of this
equation has been the subject of intensive research during the last two decades.
Many different methods were proposed, cf. [7, 11, 14, 18, 19, 32, 37, 42]. In the
present paper we introduce a solution method for the Zakai equation based on the
Monte-Carlo simulation of a robust, recursive Feynman–Kac formula. Before we
can describe our main results we need to supply some further details about the
measurement model and the Bayesian estimator to be used in this work.

The Measurement Model. To measure a continuous process X without errors is
practically impossible, and quite often one measures only a real function h of Xt ,
called the measurement function henceforth. The measurement result is then a
quantity of the form h(Xt)+δt , where δt denotes some random error. Let us assume
for a moment that measurements are taken at times tn = n · T/N for n = 1, . . . , N
and that the errors δtn are i.i.d. with zero mean (unbiased measurements) and finite
variance σ 2

M . Then

Ytn :=
n∑

k=1

h(Xtk )'tk +
n∑

k=1

δtk'tk (n = 0, . . . , N) (1.4)

approximates our measurement model (1.2). (For sufficiently large n the second
term in (1.4) behaves approximately like a scalar multiple of a Wiener process, by
the central limit theorem.) The parameter α is determined by the requirement of
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equal variances in (1.2) (for t = tn) and in (1.4). We find α2 = σ 2
MT/N . So α

becomes smaller as the number of observations N increases. In real applications
there is an upper bound on N because for too large N the independence of measure-
ment errors δtn breaks down. Thus, for continuous measurements some maximal
N has to be chosen to fix α. This choice depends on the characteristics of the
measurement device and allows to fix an approximate value for α. Consequently, if
an estimate is based on (1.2) then it should depend continuously on α > 0, to make
practical sense. We note that the previous arguments remain valid for the case of m
measurements h = (h1, . . . , hm), and for i.i.d. errors δt in Rm with nondegenerate
covariance matrix CM : One only has to replace αW

(2)
t in (1.2) by α · C · W

(2)
t ,

with an m-dimensional BM W
(2)
t and a suitable m × m-matrix C. The process

YC
t := C−1Yt is then of the (m-dimensional) form (1.2) with h replaced by C−1h.

The Bayesian Estimator. Subsequently we choose the random vector θ0 to be
independent of the (W

(1)
t , W

(2)
t )-filtration, and independent of the initial value X0.

In view of the extension (1.3) we consider the coefficients in (1.1) as functions of
three variables: b(t, x, θ) := bθ(t, x) and σ(t, x, θ) := σθ(t, x). We estimate θ by
θ̂ αt := E[θ0|Yα

t ], where Yα
t = σ(Ys, s ∈ [0, t]) denotes the σ -algebra generated by

the observation (1.2). Since Y = (Ys)0"s"t is a continuous process the factorization
lemma [38, Proposition 44.1] provides us with a measurable mapping Sαt from
C([0, t])m to Rd , such that

θ̂ αt = E[θ0|Yα
t ] = Sαt (Y ), P1-a.s. (1.5)

Note that since the estimate θ̂ αt is only defined modulo sets of P1-measure zero, the
function Sαt is not path-wise unique. Therefore, one has to choose a suitable version
of Sαt in order to evaluate (1.5) for a concrete measurement. A satisfying situation
arises when one can choose Sαt to be continuous, i.e. for any fixed Ȳ ∈ C([0, t])m

it should hold

Sαt (Y ) → Sαt (Ȳ ), as ‖Y − Ȳ‖∞ → 0. (1.6)

In this case small variations in the observations (Ys)0"s"t result in nearly the
same estimate θ̂ αt . (An estimator without this robustness property is practically
useless.) For numerical evaluation of (1.5) it is even better if (1.6) holds for all
Y, Ȳ ∈ B[0, t]m (the space of bounded, measurable, Rm-valued functions on [0, t])
because then one can approximate Y uniformly by step functions. In addition to
(1.6) our discussion of the measurement model (1.2) shows that the following
“modelling robustness” should be satisfied: For any α0 ∈ (0, ∞) it should hold

Sαt (Y ) → S
α0
t (Y ), as α → α0. (1.7)

The main theoretical result of this paper, Theorem 5.2, gives a concrete formula
to evaluate Sαt (Y ), and establishes the continuity of (α, Y ) (→ Sαt (Y ) on (0, ∞) ×
B[0, t]m. This covers (1.6) and (1.7).
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Remarks. (1) The notion of robustness is used in different meanings in nonlin-
ear filtering theory, cf. [4], and references given there.

(2) To obtain our results we assume sufficiently smooth and bounded coef-
ficients b, σ, h, and also compact support for the law of X0. But we need not
impose nondegeneracy assumptions on the diffusion matrix σ . This is a crucial
point because the system (1.1), (1.3) is highly degenerate.

(3) It is to be expected that our results remain valid for certain unbounded cases
as well, e.g., for h(x) = x. In fact the case of unbounded h is covered by our
formula, provided the process X takes its values only in some interval [a, b]: In
that case we can simply replace h by a bounded function h0 which coincides with
h on [a, b]. Example 3 in Section 7 is of this type.

Comparison to Related Approaches. The filtering approach to parameter esti-
mation is a known concept: For linear filtering see [22, 36]. Nonlinear filtering
in discrete time based on a stochastic representation formula is discussed in [15]
(with regular diffusion matrix). In continuous time drift estimates are discussed in
[10, 20], and in [30] a parameter in the measurement equation is estimated. A stan-
dard estimation tool in the engineering literature is to combine state augmentation
with the extended Kalman filter. But only few theoretical results are available, and
practically this approach only works if the parameter values are known in advance
with some precision, otherwise the filter estimates usually diverge in time.

The paper is organized as follows: Section 2 recalls the required background
on nonlinear filtering theory and on a stochastic FK-formula. In Section 3 a robust
version of the FK-formula is given, and in the following section it is shown that this
formula defines a density for the conditional measure of our estimation problem. In
Section 5 the continuity results (1.6) and (1.7) are verified. Section 6 discusses the
numerical approximation of (1.5), and the final section provides simulation studies
for specific estimation problems: a linear problem, and two nonlinear ones.

2. Preparations and Notation

Throughout this paper all probability spaces (#, F , P ) are assumed to be com-
plete, and random variables are real-valued. We denote by PX the distribution of a
random variable X, that is PX(B) = P(X ∈ B), and by EP the expectation with
respect to P . In addition we let Ck(U) denote the space of k-times continuously
differentiable real-valued functions on U ⊂ Rn, we use Ck

c (U) to denote functions
in Ck(U) with compact support in U , and we let Ck

b(U) denote functions in Ck(U)
with bounded derivatives up to order k. Additional notation will be defined as
needed.

Let us first provide some background and notations from filtering theory. Let
(#1, F1, P1), (W(1), W (2)) and X0 be given as in Section 1, and assume that PX0

has Lebesgue density p0. Moreover, let X be a stochastic process in Rd satisfying

dXt = b(t, Xt) dt + σ(t, Xt) dW
(1)
t , (2.1)
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with initial condition X0, and with b and σ denoting vector and diffusion matrix,
respectively. Later we will impose conditions securing the existence and unique-
ness of strong solutions to (2.1). Let h ∈ Cb(Rd)m and assume that X is observed
through the stochastic process

Yt =
∫ t

0
h(Xs) ds + W

(2)
t , t ∈ [0, T ]. (2.2)

The nonlinear filtering problem for (2.1)–(2.2) is to find πt(f ) := EP1[f (Xt)|Yt ]
for all bounded measurable functions f , where Yt = σ(Ys, 0 " s " t). That is,
πt(f ) denotes the best, in mean square sense, estimate for f (Xt), given Yt . We
follow here the so-called reference measure approach to this problem, which leads
to the Zakai equation for the unnormalized conditional density [21, 26, 28, 31, 37,
43, 44]: Let Ft denote the filtration generated by (W(1), W (2)), and consider the
exponential martingale

)t := exp
{∫ t

0
h(Xs) dYs − 1

2

∫ t

0
h(Xs)

2 ds

}
, for t ∈ [0, T ].

By Girsanov’s Theorem (Yt )t∈[0,T ] is a Wiener process on (#1, F1, P 1), where
dP 1 = )T dP1. Note that the measures P1 and P 1 are equivalent, so P1-a.s. and
P 1-a.s. mean the same. For t ∈ [0, T ] and for each bounded measurable function
f on Rd define ρt(f ) := EP 1

[f (Xt))t |Yt ]. Then

ρt(f ) = ρt(1)πt (f ), (2.3)

and there is a stochastic process (ρt )0"t"T on (#1, F1, P1) with values in the space
of finite measures over Rd such that for every f ∈ C∞

c (Rd) and t ∈ [0, T ] we have

ρt(f )(ω1) =
∫

Rd

f (x)ρt (ω1, dx), P1-a.s.,

cf. [28]. Moreover, the following Zakai-equation holds under fairly general condi-
tions

ρt(f ) = ρ0(f ) +
∫ t

0
ρs(Asf ) ds +

∫ t

0
ρs(hf ) dYs, P1-a.s., (2.4)

cf. [26, 37, 43, 44]. Here ρ0 = PX0 , and As is the generator of X, given on C∞
c (Rd)

by

As = 1
2

∑
(σσ T)ij (s, x)

∂2

∂xi∂xj

+
∑

bi(s, x)
∂

∂xi

.

Remark 2.1. For (2.4) to hold one may (beside conditions on h and X0) only
assume that b and σ are Lipschitz continuous and of linear growth. It is not nec-
essary to assume that the matrix σσ T in As is nondegenerate. Condition 2.3 given
below is such that (2.4) holds for (2.1), (2.2).
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In general, the conditional probability P [Xt ∈ B|Yt ] does not have a Lebesgue
density, because σ in (2.1) may be degenerate. If one imposes conditions such as
uniform ellipticity, hypoellipticity, or conditions related to the Malliavin calculus
[5, 26, 34, 37], one proves that the conditional probability does possess a density
pt(x, ω1). In view of (2.3) ρt(ω1) then has the density

ut(x, ω1) := ρt(1)(ω1)pt (x, ω1). (2.5)

This relation gives pt(x, ω1) = ut(x, ω1)/
∫

Rd ut (y, ω1) dy, and explains the name
unnormalized conditional density for ut . Under the assumption of sufficient smooth-
ness of ut and of the data, partial integrations in (2.4) imply that ut satisfies

ut(x, ω1) = p0(x) +
∫ t

0
A∗

s us(x, ω1) ds +
∫ t

0
h(x)us(x, ω1) dYs(ω1), (2.6)

with A∗
s denoting the formal L2(Rd, dx)-adjoint of As . To distinguish the more

general equation (2.4) from (2.6) we call (2.4) the Zakai measure equation and
(2.6) the Zakai density equation.

Remark 2.2. The transition from (2.4) to (2.6) using partial integration is only
justified if one knows in advance that ρt is endowed with a density ut with specific
analytic properties, cf. [21, p. 275]. Nondegeneracy assumptions on the generator
As are often crucial to obtain such properties. In Section 4 we will replace this kind
of assumption by smoothness assumptions on coefficients and data, and still obtain
that (2.6) gives rise to the correct density of degenerate filtering problems.

We next present a stochastic Feynman–Kac (FK) formula for the solution
of (2.6). We first give a formal argument suggesting this formula and give condi-
tions securing that it defines a strong solution of (2.6). Details can be found in [2].
First, note that the adjoint operator A∗

t in (2.6) is of the general type A∗
t = Lt + ct

with differential operator

Lt = 1
2

d∑

i,j=1

(σσ T)ij (t, x)
∂2

∂xi∂xj

+
d∑

i=1

βi(t, x)
∂

∂xi

,

and multiplication operator ct , connected to the scalar potential c(t, x). In particu-
lar, we find

βi(t, x) =
d∑

j=1

∂

∂xj

(σσ T)ij (t, x) − bi(t, x),

(2.7)

c(t, x) = 1
2

d∑

i,j=1

∂2

∂xi∂xj

(σσ T)ij (t, x) −
d∑

i=1

∂

∂xi

bi(t, x).
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Using this notation, and expressing (2.6) in differential form, leads to the Itô equa-
tion

dut(x, ω1) = Ltut (x, ω1) dt + c(t, x)ut (x, ω1) dt + h(x)ut (x, ω1) dYt(ω1).

Formally, we may rewrite this equation using Stratonovic integrals, and for fixed ω1

apply the FK-formula [17] to the resulting (“nonstochastic”) equation. This means
that we have to consider a new probability space (#2, F2, P2), and express the
solution ut(x, ω1) as a particular expectation value w.r.t. P2. This procedure leads
to the following candidate for the solution:

ut(x, ω1) = EP2

[
p0(ξ

t,x
t ) exp

{∫ t

0
C(s, ξ t,x

t−s) ds +
∫ t

0
h(ξ t,x

t−s) dYs(ω1)

}]
. (2.8)

Here we abbreviated

C(s, ξ t,x
t−s) := c(s, ξ t,x

t−s) − 1
2
|h(ξ t,x

t−s)|2, (2.9)

and the Rd-valued process ξ t,x = (ξ t,x
s )0"s"t on (#2, F2, P2) solves the associated

reversed Itô equation

dξ t,x
s = β(t − s, ξ t,x

s ) ds + σ(t − s, ξ t,x
s ) dBs, ξ t,x

0 = x, s ∈ [0, t], (2.10)

with an Rd-valued Wiener process B := (Bs)s!0 on (#2, F2, P2). We now impose
conditions which guarantee that (2.8) in fact defines a strong solution to (2.6), if one
interprets all functions in (2.8) as random variables in (#1×#2, F1⊗F2, P 1⊗P2).
The space of functions f ∈ C1

b([0, T ]×Rd) having continuous and bounded space
derivatives up to the kth order is denoted C1,k

b ([0, T ] × Rd).

CONDITION 2.3. Assume that c, βi, σij ∈ C1,3
b ([0, T ] × Rd) for all i, j ∈

{1, . . . , d}, and that p0, hi ∈ C3
b(Rd) for all i ∈ {1, . . . , m}.

It follows from [2, Proposition 2.6 and Theorem 2.7] that, under Condition 2.3,
the stochastic FK-formula (2.8) is a strong solution to the Zakai density equa-
tion (2.6). We remark that condition (D) in Theorem 2.7 is satisfied because the
S-transformed equation (2.6) is solved by the classical (i.e., nonstochastic) FK-
formula. This follows with the technique of stochastic flows, as given, e.g., in [27],
but can also be checked using the calculus developed in Sections 3 and 4 in [2] (cf.
[2, Lemma 5.1]). We also mention that the differentiability assumptions in Condi-
tion 2.3 can be relaxed by one degree if one imposes a uniform Hölder condition
on the highest remaining derivatives [2, Theorem 2.7].

Remarks. (1) Formula (2.8) defines a strong solution also in the case of positive
semi-definite differential operators Lt . This is crucial in order to apply (2.8) to
parameter estimation.

(2) Stochastic representation formulas such as (2.8) have played an important
role since the beginning of nonlinear filtering theory [9, 23, 26, 33, 37]. The fact



286 THOMAS DECK AND THOMAS GORM THETING

that these formulas represent conditional measures or densities allows one to derive
properties, for example, about the moments of pt(ω, dx) or about the positivity of
ut(ω, dx) (in an almost sure sense). Note that (2.8) defines a strong solution to
(2.6) also for the case when Equation (2.6) is not induced by a filtering problem.
Therefore, some of the results in the following sections, such as Theorem 3.5 and
Lemma 4.1, also apply for SPDEs of the Zakai type when arguments based on
conditional densities are not at hand.

3. A Robust Feynman–Kac Representation for SPDEs

In this section we give a version of (2.8), which depends continuously on the
observation path Y . We first define the random variable ω1 (→ ut(x, ω1) for all
ω1 ∈ #1. By (2.8) ut(x) is well-defined modulo sets of P1-measure zero, but it
is not clear from (2.8) how to define ut(x, ω1) for all ω1 ∈ #1, because the term∫ t

0 h(ξ t,x
t−s) dYs is, a priori, only defined modulo sets of P 1 ⊗ P2-measure zero. A

partial integration in this term will solve this problem and simultaneously give us a
robust version. But notice that, since the reversed process ξ t,x

t−s is not adapted to the
(Y, B)-filtration, we cannot simply apply Itô calculus for this partial integration.
This technicality is solved as follows:

LEMMA 3.1. If Condition 2.3 holds, if 0 " t0 < t , x ∈ Rd , and if ξ t,x is defined
by (2.10), then the following identity holds P1 ⊗ P2-almost surely:

∫ t

t0

h(ξ t,x
t−s) dYs = h(x)Yt − h(ξ t,x

t−t0
)Yt0 +

∫ t−t0

0
Yt−s dh(ξ t,x

s ). (3.1)

Proof. Define the Wiener process Ỹs := Yt − Yt−s for s ∈ [0, t]. Let us first
verify that

∫ t

t0

h(ξt−s) dYs =
∫ t−t0

0
h(ξu) dỸu, P 1 ⊗ P2-a.s., (3.2)

where ξu abbreviates ξ t,x
u . Choose partitions t0 = sn

0 < sn
1 < · · · < sn

Nn
= t whose

mesh goes to zero. Since the paths s (→ h(ξt−s) are continuous the Riemann sums

In :=
Nn−1∑

k=0

h(ξt−sn
k
)(Ysn

k+1
− Ysn

k
)

converge to the left side in (3.2) in probability. For convenience we suppress n from
the notation. Setting uk := t−sk and writing h(ξuk

) = h(ξuk+1)+[h(ξuk
)−h(ξuk+1)],

it follows that

In =
Nn−1∑

k=0

h(ξuk+1)(Ỹuk
− Ỹuk+1) +

Nn−1∑

k=0

[h(ξuk
) − h(ξuk+1)](Ỹuk

− Ỹuk+1).



ROBUST PARAMETER ESTIMATION FOR STOCHASTIC DIFFERENTIAL EQUATIONS 287

By independence the second term vanishes as n → ∞, so In converges in proba-
bility to the right side in (3.2), i.e. (3.2) holds. Next, for h ∈ Cb(Rd)m ∩ C2(Rd)m

the right side in (3.2) can be computed by Itô calculus with respect to the Wiener
process (Ỹ , B) := (Ỹs, Bs)0"s"t−t0 :

∫ t−t0

0
h(ξs) dỸs = h(ξt−t0)Ỹt−t0 − h(ξ0)Ỹ0 −

∫ t−t0

0
Ỹs dh(ξs).

Using ξ0 = x, Ỹt−t0 = Yt − Yt0 , Ỹ0 = 0 and Ỹs = Yt − Yt−s we obtain (3.1). !

As a consequence of Lemma 3.1 we may replace the stochastic integral in (2.8)
by the right side in (3.1) (with t0 = 0) without changing ut(x) except on a set of
P1-measure zero. This gives

ut(x, ω1) = eh(x)Yt (ω1)Ut (x, ω1), P1-a.s., (3.3)

where the random variable Ut(x) is defined (P1-a.s.) by

Ut(x) := EP2

[
p0(ξ

t,x
t ) exp

{∫ t

0
(C(s, ξ t,x

t−s) ds +
∫ t

0
Yt−s dh(ξ t,x

s )

}]
. (3.4)

Remark 3.2. The decomposition of u into the two factors given in (3.3) is well–
known in nonlinear filtering theory, see for example [12]. Through this splitting one
usually defines a function U and one shows that this function satisfies the so-called
robust Zakai-equation, provided u satisfies the Zakai density equation (2.6). This
fits together with our approach.

Observe that
∫ t

0 Yt−s dh(ξ t,x
s ) in (3.4) is defined modulo sets of P 1⊗P2-measure

zero. Thus Ut(x) is – similar to ut(x) – only defined modulo sets of P1-measure
zero. But Ut(x) has an ω1-wise defined version, obtained as follows. We start
with choosing a version of the Wiener process Y with continuous sample paths
for all ω1 ∈ #1. We fix such a version for the rest of this paper. Because t (→
Yt(ω1) is continuous we can define

∫ t

0 Yt−s(ω1) dh(ξs) as a P2-a.s. defined limit
for each fixed ω1, separately. We distinguish the two possible definitions by writ-
ing

∫ t

0 Yt−s(ω1) dh(ξs)(ω2), for ω1 fixed, and
∫ t

0 Yt−s dh(ξs)(ω1, ω2), for the
P 1 ⊗ P2-a.s. definition. If the random variable

F(t, x, Y )(ω2) := p0(ξ
t,x
t (ω2)) exp

{∫ t

0
C(s, ξ t,x

t−s(ω2)) ds +

+
∫ t

0
Yt−s dh(ξ t,x

s )(ω2)

}
, (3.5)

is in L1(P2) for every function Y ∈ C([0, T ])m, we expect that the random variable

Ũt (x, ω1) := EP2[F(t, x, Y·(ω1))] (3.6)

coincides P1-a.s. with Ut(x, ω1), given by (3.4). If this holds then anω1-wise every-
where defined version of ut(x, ω1) follows from (3.3). The next lemma establishes
the required equality.
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LEMMA 3.3. Assume Condition 2.3 holds and let (t, x) ∈ [0, T ] × Rd be fixed.
Then the random variables defined in (3.4) and (3.6) satisfy Ut(x) = Ũt (x), P1-a.s.
In particular, the FK-representation (2.8) for the solution to (2.6) can be expressed
as

ut(x, ω1) = eh(x)Yt (ω1)EP2[F(t, x, Y·(ω1))], P1-a.s. (3.7)

Proof. We show that there exists A ⊂ #1 with P1(A) = 1, such that for all
ω1 ∈ A

∫ t

0
Yt−s(ω1) dh(ξs)(ω2) =

∫ t

0
Yt−s dh(ξs)(ω1, ω2), P2-a.s., (3.8)

for suitable, pointwise everywhere defined versions of the integrals. Fubini’s theo-
rem then implies EP1[|Ut(x)−Ũt (x)|] = 0, so the claim will follow. To prove (3.8)
choose a continuous version of the process (ξ t,x

s )0"s"t , and let 0 = sn
0 < · · · <

sn
Nn

= t be partitions whose mesh goes to zero.
Then the Riemann-approximations to the right side in (3.8),

In(ω1, ω2) :=
Nn−1∑

k=0

Yt−sn
k
(ω1)

[
h(ξsn

k+1
(ω2)) − h(ξsn

k
(ω2))

]
(3.9)

are well defined for all (ω1, ω2), and jointly measurable. A suitable subsequence of
(In)n∈N converges P 1 ⊗ P2-a.s. to the right side in (3.8). Denote by N ⊂ #1 ×#2

the exceptional set, and put I (ω1, ω2) = 0 on N , in order to obtain a definition of
the right side in (3.8) for all (ω1, ω2).

Next, consider the left side in (3.8). By Fubini’s theorem ω1 (→ g(ω1) :=∫
1N(ω1, ω2) dP2(ω2) is F1-measurable and satisfies g = 0 P 1-a.s. Thus A :=

g−1({0}) ∈ F1 and P 1(A) = 1. We now fix ω1 ∈ A, and notice, again by Fubini,
that Nω1 := {ω2 ∈ #2 : (ω1, ω2) ∈ N} ∈ F2, and P2(Nω1) = 0. By the definition of
N the sub-sequence from (3.9) converges to the right side in (3.8) for all ω2 ∈ Nc

ω1
.

Thus the limit defines (P2-a.s.) a version of the left side in (3.8), and this establishes
(3.8). The lemma now follows from (3.4) and Fubini’s theorem. !

Remark 3.4. Equality (3.7) appears obvious at first sight. It would follow im-
mediately from

∫ t

0
Yt−s(ω1) dh(ξs)(ω2) =

∫ t

0
Yt−s dh(ξs)(ω1, ω2), P 1 ⊗ P2-a.s., (3.10)

but there is a technical problem to prove this equation. The point is that for fixed
ω1 the map ω2 (→

∫ t

0 Yt−s(ω1) dh(ξs)(ω2) on the left side in (3.10) is only well-
defined modulo P2-zero sets, i.e. one has to choose for every ω1 a representative
to get a function on #1 × #2. These choices may result in a map (ω1, ω2) (→∫ t

0 Yt−s(ω1) dh(ξs)(ω2) which is not jointly measurable. In the proof of Lemma 3.3
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we avoided this problem by establishing (3.8) instead of (3.10). After this construc-
tion we can now define, for every ω1 ∈ A, a representative of

∫ t

0 Yt−s(ω1) dh(ξs)
by the right side of (3.8). For ω1 ,∈ A one simply picks any representative. With
this choice the map (ω1, ω2) (→

∫ t

0 Yt−s(ω1) dh(ξs)(ω2) is jointly measurable, and
(3.10) holds.

Observe that the right side in (3.7) gives an ω1-wise defined representation of
the random field (t, x) (→ ut(x). This representation is robust in the sense that
ut(x) depends on ω1 only through the observation path Y·(ω1), and considered as a
function of Y it is in fact continuous. This is the main result of the present section:

THEOREM 3.5. Assume Condition 2.3 holds and fix (t, x) ∈ [0, T ] × Rd . Then
F(t, x, Y ) defined by (3.5) is in L1(P2), for all Y ∈ B[0, T ]m. Moreover, the map

Y (→ eh(x)Yt EP2[F(t, x, Y )]

is a continuous functional on (B[0, T ]m, ‖·‖∞).
Proof. We abbreviate ξ t,x

s by ξs , and let Z = (Z1, . . . , Zm) ∈ B[0, T ]m. Then,
using Itô’s rule and the summation convention over repeated indices, we find

∫ t

0
Zs dh(ξs) =

∫ t

0
Zk

s dhk(ξs)

=
∫ t

0
Zk

s {γk(s, ξs) ds + gkj (s, ξs) dBj
s }, (3.11)

where we have used the following abbreviations:

γk(s, ξs) := ∂hk

∂xi

(ξs)βi(s, ξs) + 1
2
∂2hk

∂xi∂xj

(ξs)(σσ
T)ij (s, ξs),

(3.12)
gkj (s, ξs) := ∂hk

∂xi

(ξs)σij (s, ξs).

Notice that γk and gkj are bounded. For bounded functions g(s, x) = (g1(s, x), . . . ,
gd(s, x)) we put gs := g(s, ξs) and estimate, using the exponential martingale

EP2

[
exp

(∫ t

0
gs dBs

)]

" EP2

[
exp

(∫ t

0
gs dBs − 1

2

∫ t

0
g2

s ds

)]
et‖g2‖∞/2 = et‖g‖2

∞/2. (3.13)

With this and (3.11), applied to gj (s, x) = gkj (s, x) for fixed k, we find

EP2

[
exp

{∫ t

0
Zs dh(ξs)

}]
" exp{c1‖Z‖∞} exp{c2‖Z‖2

∞}, (3.14)
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where c1, c2 denote suitable constants. This implies F(t, x, Y ) ∈ L1(P2), for all
Y ∈ B[0, T ]m, because the terms in (3.5), beside the stochastic integral, are uni-
formly bounded. To prove continuity we use |ea − eb| " (ea + eb)|a − b| which
holds for all a, b ∈ R. For Y, Ȳ ∈ B[0, t]m

∣∣EP2[F(t, x, Y )] − EP2[F(t, x, Ȳ )]
∣∣2

" c3EP2

[∣∣e
∫ t

0 Yt−s dh(ξs ) − e
∫ t

0 Ȳt−s dh(ξs )
∣∣]2

" 2c3EP2

[
e2

∫ t
0 Yt−s dh(ξs ) + e2

∫ t
0 Ȳt−s dh(ξs )

]
EP2

[∣∣∣∣

∫ t

0
'Ys dh(ξs)

∣∣∣∣
2]

, (3.15)

where 'Ys := Yt−s − Ȳt−s . The first factor is bounded as in (3.14). To estimate
the second factor in (3.15) we use (3.11) with Zs := 'Ys , the Itô isometry, and the
boundedness of γk, gkj :

EP2

[∣∣∣∣

∫ t

0
'Ys dh(ξs)

∣∣∣∣
2]

" 2EP2

[∣∣∣∣

∫ t

0
'Yk

s γk(ξs) ds

∣∣∣∣
2]

+

+ 2EP2

[∣∣∣∣

∫ t

0
'Yk

s gkj (s, ξs) dBj
s

∣∣∣∣
2]

" c4‖'Y‖2
∞ + c5‖'Y‖2

∞.

This and (3.14) allows to derive the following estimate from (3.15):

EP2[|F(t, x, Y ) − F(t, x, Ȳ )|]
" c6e2c1(‖Y‖∞+‖Ȳ‖∞)+2c2(‖Y‖2

∞+‖Ȳ‖2
∞)‖Y − Ȳ‖∞. (3.16)

This clearly implies the asserted (local Lipschitz) continuity. !

4. The Conditional Measure for Degenerate Filtering Problems

In this section we study degenerate filtering problems. We prove that the FK-
formula (3.7) defines a density ut(x) of the unnormalized conditional measure
given by (2.3). Our proof does not presuppose assumptions on the analytic prop-
erties of ut(x) besides those implied by (3.7) and Condition 2.3 (cf. Remark 2.2).
We finally refine the general results for parameter estimation.

Our approach is based on a result by Kurtz and Ocone [28]. The idea goes as
follows: The FK-solution (3.7) to Equation (2.6) defines a measure ρt via

ρt(ω1, dx) := ut(x, ω1) dx. (4.1)

In view of [28, Theorem 4.2] it suffices to verify that this measure is finite, and
it satisfies (2.4) for all f ∈ C∞

c (Rd) and for f = 1, to conclude that ρ coincides
with the measure (2.3). (Related uniqueness results are given in [3, 37].) The finite-
ness of the measure ρt follows immediately from the next result which is also of
independent interest.
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LEMMA 4.1. Suppose Condition 2.3 holds, but only assume that p0 is measurable
and has compact support in Rd . Let u be the robust functional (3.7). Then there is
a constant c > 0 such that for each ω1 ∈ #1 and a suitable constant M(ω1) the
following estimate holds:

|ut(x, ω1)| " M(ω1)e−x2/2c, ∀(t, x) ∈ [0, T ] × Rd . (4.2)

Proof. Fix ω1 and put Yt = Yt(ω1). The same estimation as in the proof of
Theorem 3.5 yields

|ut(x, ω1)|2 " e2h(x)Yt EP2[p0(ξ
t,x
t )2]EP2[e2(···)] " M1(ω1)EP2[f (ξ t,x

t )]. (4.3)

Here f := p2
0, and the term e2(···) denotes the squared exponential term in (3.5),

whose expectation is bounded as the proof of the previous theorem shows. By
Condition 2.3 there exist positive constants a, b < ∞ such that β and σ from
(2.10) satisfy |β(t, x)| := (

∑
i |βi(t, x)|2)1/2 < b and

∑
ij |σij (t, x)|2 " a2 for all

(t, x) ∈ [0, T ] × Rd . From [41, Lemma 4.7] we get the uniform estimate

P
(
|ξ t,x

t − x| ! R
)

" 2de−(R−
√

dbT )2/(2a2dT ), ∀(t, x) ∈ [0, T ] × Rd, (4.4)

which holds for all R >
√

dbT . Now let r > 0 be such that p0(x) = 0 for all
|x| ! r , then for |x| − r >

√
dbT we get the estimate

EP2

[
f (ξ t,x

t )
]

=
∫

Rd

f (y) dPξt,x
t

(y) " ‖f ‖∞P(|ξ t,x
t | < r)

" ‖f ‖∞P(|ξ t,x
t − x| ! |x| − r)

" ‖f ‖∞2de−(|x|−r−
√

dbT )2/(2a2T ).

Together with (4.3) this implies (4.2) for a suitable choice of M(ω1) and c. !

THEOREM 4.2. Suppose Condition 2.3 holds with p0 ∈ C3
c (Rd). Let ξ t,x

s be the
solution to (2.10), and let the solution u to (2.6) be given in the robust form (3.7).
Then the random measure ρt defined by (4.1) solves the filtering problem (2.3).

Proof. From [2, Theorem 2.7] we know that u given in (2.8) is a strong solution
to (2.6). In particular, this implies that u(·, ·, ω1) is (P1-a.s.) continuous on [0, T ]×
Rd , and C2 in the space variables. Now multiply (2.6) by f (x), with f ∈ C∞

c (Rd),
and integrate over Rd . This gives (with obvious abbreviations)

∫

Rd

f (x)ut (x, ω1) dx =
∫

Rd

f (x)p0(x) dx + I1 + I2. (4.5)

Since A∗
· u(·, ·, ω1) ∈ C([0, T ] × Rd) and f ∈ C∞

c (Rd) we can first apply Fubini’s
Theorem to I1 and then do partial integrations. This gives

I1 =
∫ t

0

[∫

Rd

(Asf (x))us(x, ω1) dx

]
ds. (4.6)
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The second term I2 requires a stochastic version of Fubini’s Theorem, that is, we
want to have

I2 =
∫

Rd

f (x)

[∫ t

0
h(x)us(x, ω1) dYs(ω1)

]
dx

=
∫ t

0

[∫

Rd

f (x)h(x)us(x, ω1) dx

]
dYs(ω1). (4.7)

In view of [24, Lemma 3.2] this is in fact justified because of the uniform Lp-
estimate

EP 1

[
|ut(x)|p

]

" ‖p0‖p
∞ exp

{
pt

(
‖c‖∞ + 1

2
(p − 1)‖h‖2

∞

)}
, ∀p ! 1, (4.8)

which follows easily from (3.13). These arguments show that (4.5) can be written
as (2.4). Finally, let fn ∈ C∞

c (Rd) be such that fn(x) = 1 for all |x| " n, and fn,
together with all derivatives ∂ifn, ∂i∂jfn are uniformly bounded for all n ∈ N, and
all |x| > n. Writing the Zakai measure equation (2.4) for fn and letting n go to
infinity, yields

ρt(1) = 1 +
∫ t

0
ρs(h) dYs, (4.9)

where we have used the estimate (4.2). With (2.4) and (4.9) we have verified the
conditions for [28, Theorem 4.2], thus ρt is the unnormalized conditional measure
of the filtering problem. !

Remark 4.3. The uniqueness theorem [28, Theorem 4.2] only states the asser-
tion for diffusion processes, i.e., for time independent b, σ . On page 90 the authors
write: “However, there is no loss of generality because the time dependent case can
always be recast into the autonomous form by the standard trick of including time
as a component of ξ . Hence, all results that follow may be interpreted for the time
dependent case.” It is this case that we adopt for our Theorem 4.2.

With these preparations we now investigate the estimation problem for the pa-
rameterized equation (1.1). Let us first discuss (path-wise) smooth parametric de-
pendence of the solution Xθ to (1.1). This can be derived from smooth dependence
on initial data (see, e.g., [26, 27]) as the proof of the following lemma shows.
Subsequently$ ⊂ Rd is an open set, and open balls in Rk with radius r and center
x are denoted Br(x). Depending on the context we will view θ ∈ $ as a fixed
parameter or as a variable, and for convenience, we adopt the notation σθ(t, x),
σ(t, x, θ) and so forth, when emphasizing the parameter and variable dependency,
respectively.
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LEMMA 4.4. Let m ∈ N, and assume that the coefficients b and σ in (1.1) satisfy
bi, σij ∈ C1,m+1

b ([0, T ] × Rd × B) for all i, j , and all bounded open sets B ⊂ $.
Then there is a jointly measurable mapping X: [0, T ] × Rd ×$×#1 → Rd such
that:

(α) For fixed (x, θ) the process Xx,θ
t (ω1) := X(t, x, θ, ω1) solves (1.1) with

Xx,θ
0 (ω1) = x.

(β) For fixed ω1 the function (t, x, θ) (→ Xx,θ
t (ω1) is continuous.

(γ ) For fixed (t, ω1) the function (x, θ) (→ Xx,θ
t (ω1) is in Cm(Rd ×$).

Proof. Choose (θn, rn)n∈N such that Brn(θn) ⊂ $, and $n := Brn/3(θn) satisfies
$ = ⋃

n∈N$n. Let ψn ∈ C∞(Rk) be such that ψn(θ) = 1 for θ ∈ $n and
ψn(θ) = 0 for θ ,∈ Brn/2(θn). Define

bn(t, x, θ) :=
{
ψn(θ)b(t, x, θ) for θ ∈ Brn(θn),
0 for θ ∈ Rk\Brn(θn),

and correspondingly define σn. Clearly bn, σn are in C1,m+1
b ([0, T ] × Rd × Rk),

which implies that the (extended) SDE

dXt = bn(t, Xt , θt ) dt + σn(t, Xt , θt ) dWt (4.10)

dθt = 0, (X0, θ0) = (x, θ) ∈ Rd × Rk, (4.11)

has a unique solution, denoted Xx,θ
n,t . Moreover, from [27, Theorem II.3.3] it fol-

lows that the map Xn: (t, x, θ, ω1) (→ Xx,θ
n,t (ω1) has a modification which satisfies

(α), (β), (γ ), with b, σ replaced by bn, σn. For θ in$n the solution θt = θ inserted
in (4.10) shows that Xx,θ

n,t solves (1.1). Thus, Xn satisfies (α), (β), (γ ) for each
θ ∈ $n. By uniqueness and continuity, two functions Xn(·, ω1) and Xm(·, ω1)
coincide (P1-a.s.) on [0, T ] × Rd × ($n ∩ $m). Thus the map X̂(t, x, θ, ω1) :=
Xn(t, x, θ, ω1) (with n chosen such that θ ∈ $n) is well-defined P1-a.s., and it sat-
isfies (α), β), (γ ) P1-a.s. Thus, with a suitable P1-zero set N the map X := X̂ ·1Nc

satisfies (α), (β), (γ ). !

Remark 4.5. The localization procedure in the previous proof is not needed if
one assumes conditions uniformly with respect to θ ∈ $. But this assumption is
usually not satisfied since θ often appears in an analytic expression in bθ(t, x),
σθ(t, x) and has unbounded domain $.

We are now prepared for the parameter estimation of (1.1) based on the ob-
servations (1.2). We follow the idea described in Section 1. It is no loss of gen-
erality to assume α = 1 because the case α > 0 follows by a simple rescaling,
see (5.1) below. Consider once more the extended system (1.1), (1.3) subject to
initial conditions (X(0), θ(0)) = (X0, θ0), with X0 and θ0 independent of the
(W(1), W (2))-filtration. We impose the following conditions on (1.1), (1.3), and on
the measurements (2.2):
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CONDITION 4.6. For every bounded open B ⊂ $ it holds that bi ∈ C1,4
b ([0, T ]×

Rd ×B), σij ∈ C1,5
b ([0, T ]×Rd ×B), and hi ∈ C3

b(Rd) for all i, j . X0 has density
p0 ∈ C3

c (Rd), and θ0 has a distribution µ := Pθ0 with compact support in $.

Observe that this condition implies that the associated reversed equation (cf.
(2.10))

dξs = βθ(t − s, ξs) ds + σθ(t − s, ξs) dBs, s ∈ [0, t], (4.12)

with initial condition ξ0 = x has a solution ξ t,x,θ for which Lemma 4.4 applies
(here t is fixed and s plays the role of t in Lemma 4.4). This follows since by Con-
dition 4.6 the coefficients βi(t, x, θ) and σij (t, x, θ) are in C1,3

b ([0, T ] × Rd × B),
for every bounded open B ⊂ $. Notice also that the differential operator At ,
associated to the system (1.1) and (1.3), is given by

Atf (x, θ) = 1
2

d∑

i,j=1

(σσ T)ij (t, x, θ)
∂2

∂xi∂xj

f (x, θ) +

+
d∑

i=1

bi(t, x, θ)
∂

∂xi

f (x, θ).

It thus essentially coincides with the family of operators Aθ
t , associated to equations

(1.1) indexed by θ ∈ $. We can now extend Theorem 4.2 to the state and parameter
filtering problem defined by (1.1), (1.3), and by the measurement equation (2.2).

THEOREM 4.7. Suppose Condition 4.6 holds and define ut(x, θ, ω1) by the right-
hand side of (3.7), but with ξ t,x

s replaced by ξ t,x,θ
s . Define the random measure ρt

on Rd ×$ by

dρt(x, θ, ω1) := ut(x, θ, ω1) dµ(θ) dx. (4.13)

Then ρt is an unnormalized conditional distribution of (Xt , θ0) based on observa-
tions (2.2).

Proof. As in the proof of Theorem 4.2 it suffices to show that

ρtf = ρ0f +
∫ t

0
ρs(Asf ) ds +

∫ t

0
ρs(hf ) dYs, P1-a.s., (4.14)

holds for all f ∈ C∞
c (Rd ×$) and for f = 1. For fixed θ ∈ $ and f ∈ C∞

c (Rd ×
$) we have f θ := f (·, θ) ∈ C∞

c (Rd). With ρθt f θ (ω1) :=
∫

Rd ut (x, θ, ω1)f
θ (x) dx

Theorem 4.2 gives

ρθt f θ = ρθ0 f θ +
∫ t

0
ρθs (Aθ

s f
θ ) ds +

∫ t

0
ρθs (hf θ) dYs, P1-a.s. (4.15)

Since (t, x, θ) (→ ut(x, θ, ·) is a well-defined random field the random variable

I θ := ρθt f θ − ρθ0 f θ −
∫ t

0
ρθs (Aθ

s f
θ ) ds (4.16)
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is well-defined for all ω1 ∈ #1. A version of the stochastic integral in (4.15) is thus
defined by I θ , and with this version (4.15) holds for all ω1. (So we got rid of the
θ -dependent P1-zero set in (4.15).) Moreover, since f ∈ C∞

c each term in (4.16) is
continuous in θ . So we can integrate (4.15) term by term over dµ(θ). This gives

∫

$

∫

Rd

ut (x, θ, ω1)f (x, θ) dx dµ(θ)

=
∫

$

∫

Rd

p0(x)f (x, θ) dx dµ(θ) +

+
∫

$

∫ t

0

∫

Rd

us(x, θ, ω1)Asf (x, θ) dx ds dµ(θ) +

+
∫

$

∫ t

0

∫

Rd

us(x, θ, ω1)h(x)f (x, θ) dxdYs dµ(θ). (4.17)

Since (x, θ) (→ ut(x, θ, ω1) and x (→ p0(x) are continuous, and f ∈ C∞
c , the

first two terms in (4.17) coincide with the ones in (4.14). In view of the Lp-bound
(4.8) for ut(x, θ, ·), which is uniform in (x, θ), we can apply [24, Lemma 3.2]
to interchange the integrals in the third term in (4.17). This gives the third term
in (4.14). Applying again the uniform Lp-bound together with Itô’s isometry to
the stochastic integral in (4.15) shows that the integrability conditions of [24,
Lemma 3.3] are satisfied. This allows to interchange the order of integration in
the last term of (4.17), which finally gives the last term in (4.14). The assertion
(4.14) for f = 1 follows by a limit argument similar to the one in the proof of
Theorem 4.2. !

Remarks. (1) In general ρt does not have a Lebesgue density, but a density with
respect to dµ(θ) dx. For numerical purposes it is convenient that dµ(θ) only needs
to have compact support: One can choose for dµ, e.g., a discrete, uniform measure
on a sufficiently fine grid in a bounded subset of $. The resulting integrals over
dµ(θ) are then finite sums, so there is no numerical error due to an approximation
of dµ-integrals.

(2) Theorem 4.7 in fact gives the solution to the problem of combined state
and parameter estimation. This problem has been considered for discrete time
processes with regular diffusion matrices σ depending only on θ in [15]. In that
work a discrete version of the Bayes formula (2.3) and a discrete time Zakai equa-
tion has been exploited.

5. Robust Parameter Estimation

In this section we construct an estimator for the parameter θ in (1.1), based on
the robust FK-formula (3.7). Moreover, we establish continuity of the resulting
estimator with respect to observations Y and with respect to the size of the error in
the measurement model.
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Let α > 0 be fixed. We scale the observation Yt =
∫ t

0 h(Xs) ds + αW
(2)
t as

follows: Yα
t := Yt/α. Since σ(Y α

s , 0 " s " t) = σ(Ys, 0 " s " t) = Yα
t , we

can determine E[θ0|Yα
t ] by applying Theorem 4.7 with respect to the measurement

process

Yα
t :=

∫ t

0
hα(Xs) ds + W

(2)
t , (5.1)

with hα := h/α. In particular, instead of (3.4) we obtain

Uα
t (x, θ, Y ) := EP2

[
p0(ξ

x,θ
t ) exp

(∫ t

0
Cα(s, ξ

x,θ
t−s) ds +

+ 1
α2

∫ t

0
Yt−s dh(ξx,θ

s )

)]
, (5.2)

with ξx,θ
u := ξ t,x,θ

u and Cα(s, x) := c(s, x) − 1
2α2 h(x)2. Observe that Yt (not Yα

t )
appears in (5.2). Recall from (3.11) that dhk(ξs) = γk(s, ξs) ds + gkj (s, ξs) dB

j
s .

This gives

Uα
t (x, θ, Y ) = EP2

[
p0(ξ

x,θ
t ) exp

(∫ t

0
Cα(s, ξ

x,θ
t−s) ds +

+
∫ t

0
Yt−s γ

α(ξx,θ
s ) ds +

∫ t

0
Yt−s gα(ξx,θ

s ) dBs

)]
, (5.3)

with vector γ α := (γ αk ) = (γk/α
2) and matrix gα := (gαkj ) = (gkj /α

2). From
(3.7) it is clear that the unnormalized conditional dµ(θ) dx-density for the system
(Xt , θt ) reads

uαt (x, θ, Y ) := eh(x)Yt /α
2
Uα

t (x, θ, Y ). (5.4)

This yields the normalized joint dµ(θ) dx-density

pαt (x, θ, Y ) = uαt (x, θ, Y )∫
uαt (x, θ, Y ) dµ(θ) dx

, (5.5)

provided 0 <
∫

uαt (x, θ, Y ) dµ(θ) dx < ∞. From this the dµ(θ)-density of θ̂ αt
follows:

pαt (θ, Y ) =
∫

Rd

pαt (x, θ, Y ) dx. (5.6)

Remark 5.1. In view of pαt (x, θ, Y (ω1))= EP1[)t |Yt ]uαt (x, θ, Y (ω1)) and∫
pαt (x, θ, Y (ω1)) dx dµ(θ) = 1 (P1-a.s.) we see that

∫
uαt (x, θ, Y (ω1)) dx dµ(θ)

> 0 P1-a.s. But since we have chosen a specific version of uαt it may happen that
the denominator in (5.5) vanishes for certain values of Y . In fact this is not the case,
as the following main theorem of this section shows.
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THEOREM 5.2. Assume Condition 4.6 is satisfied, define uαt by (5.4), and let
Y ∈ B[0, T ]m. Then

0 <

∫
uαt (x, θ, Y ) dµ(θ) dx < ∞, (5.7)

and a version of the conditional expectation θ̂ αt (ω1) = E[θ0|Yα
t ](ω1) is defined by

Sαt (Y (ω1)) with

Sαt (Y ) =
∫

$

θpαt (θ, Y ) dµ(θ) =
∫
θuαt (x, θ, Y ) dx dµ(θ)∫
uαt (x, θ, Y ) dx dµ(θ)

. (5.8)

Moreover, the map (α, Y ) (→ Sαt (Y ) is continuous on (0, ∞) × B[0, T ]m.

As an immediate conclusion note that E[θ0|Yα
t ] = Sαt (Y (·)) P1-a.s., and more-

over α → α0 implies Sαt (Y (ω1)) → S
α0
t (Y (ω1)), for all ω1 ∈ #1. Since the

family {E[θ0|Yα
t ], α > 0} is uniformly integrable Vitali’s characterization of L1-

convergence implies:

COROLLARY 5.3. Suppose α converges to α0 > 0. Then E[θ0|Yα
t ] converges to

E[θ0|Yα0
t ] in L1(P ).

Remarks. (1) Theorem 5.2 makes no statement about the (singular) case α0 = 0,
which is of interest in state estimation. This case has been investigated in a number
of works, see for example [6, 39], and references given there.

(2) Corollary 5.3 is a continuity statement for conditional expectations E[θ |Y]
with respect to “variable” Y. Besides martingale convergence it seems that only
few results are known for this kind of continuity, see [8, 16, 35].

Before we prove Theorem 5.2 we give two preparations:

LEMMA 5.4 (Robustness of the conditional density). Assume Condition 4.6 holds,
define uαt by (5.4), and fix t > 0. Then the map

(α, x, θ, Y ) (→ uαt (x, θ, Y )

is continuous on (0, ∞) × Rd ×$× B[0, T ]m. (5.9)

Proof. In view of (5.4) it suffices to check the continuity of (α, x, θ, Y ) (→
Uα

t (x, θ, Y ). We first show that for fixed Y the map

(α, x, θ) (→ Uα
t (x, θ, Y ) is continuous at (ᾱ, θ̄ , x̄). (5.10)

By Lemma 4.4, for fixed ω2 ∈ #2, the map (x, θ) (→ ξx,θ
t (ω2) is in C2(Rd ×$).

Therefore the terms p0(ξ
x,θ
t (ω2)),

∫ t

0 Cα(s, ξ
x,θ
t−s) ds and

∫ t

0 Yt−sγ
α(ξx,θ

s ) ds in (5.3)
are continuous. We check that a suitable version of

∫ t

0 Yt−sg
α(ξx,θ

s ) dBs is continu-
ous in (x, θ). Define

Zu(x, θ) :=
∫ u

0
Yt−sg

α(ξx,θ
s ) dBs, u ∈ [0, t].
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Choose δ > 0 such that the closed ball Bδ[x̄, θ̄] is contained in Rd ×$. Then the
process f : s (→ Yt−sg

α(Xx,θ
s ) takes values fs(ω2) ∈ C1

b(Bδ[x̄, θ̄]). The continuity
of (s, x, θ) (→ fs(ω2)(x, θ) on [0, t] × Bδ[x̄, θ̄] implies that also

s (→ ‖fs(ω2)‖∞,1 :=
1∑

k=0

sup{|Dkfs(ω2)(x, θ)|, (x, θ) ∈ Bδ[x̄, θ̄]}

is continuous. In particular
∫ u

0 ‖fs(ω2)‖p
∞,1 ds < ∞, for all ω2 ∈ #2, p ! 2. So

the conditions of [27, Theorem 7.6, p.180] are satisfied and (u, x, θ) (→ Zu(x, θ)
has a continuous modification. In particular (x, θ) (→ Zt(x, θ) has a continuous
modification. So we conclude that the integrand in (5.3) has a modification which
is continuous in (α, x, θ). To infer (5.10) we first note that the integrand in (5.3)
is L2-bounded, uniformly on a small ball Br(ᾱ, x̄, θ̄ ). Up to simple modifications
this is verified by the same estimation as given in the proof of Theorem 3.5. This
uniform L2-boundedness implies uniform integrability, and thus the (parametric)
continuity of the integrand in (5.3) turns over to the continuity of the integral, by
Vitali’s theorem. Thus (5.10) holds. To infer (5.9) fix (ᾱ, x̄, θ̄ , Ȳ ) and proceed as
follows:

|Uα
t (x, θ, Y ) − Uᾱ

t (x̄, θ̄ , Ȳ )| " |Uα
t (x, θ, Y ) − Uα

t (x, θ, Ȳ )| +
+ |Uα

t (x, θ, Ȳ ) − Uᾱ
t (x̄, θ̄ , Ȳ )|. (5.11)

A simple modification of the estimate (3.16) shows that the first term on the right
side of (5.11) is dominated by ‖Y − Ȳ‖∞g(α, ‖Y‖∞, ‖Ȳ‖∞) (uniformly in x, θ )
where g denotes a continuous function. Thus the first term in (5.11) goes to 0 as
Y → Ȳ . In view of (5.10) also the second term goes to zero as (α, x, θ) goes to
(ᾱ, x̄, θ̄ ). So (5.11) yields (5.9). !

LEMMA 5.5. Assume Condition 4.6 holds, and define uαt by (5.4). Then

0 <

∫

Rd

uαt (x, θ, Y ) dx < ∞ (5.12)

holds for all (t, α, θ, Y ) ∈ [0, T ] × (0, ∞) × $ × B[0, T ]m. Moreover, for fixed
t ∈ [0, T ] the map

(α, θ, Y ) (→ uαt (θ, Y ) :=
∫

Rd

uαt (x, θ, Y ) dx is continuous. (5.13)

Proof. Fix (α, t, θ, Y ) and put u(x) := uαt (x, θ, Y ). Then u :=
∫

Rd u(x) dx <
∞ by (4.2). This is the upper bound in (5.12). To verify the lower bound assume
there exists (t, α, θ, Y ) such that

∫
Rd uαt (x, θ, Y ) dx = 0. By continuity and since

uαt ! 0 it follows that uαt (x, θ, Y ) = 0 for all x ∈ Rd , so EP2[p0(ξ
x,θ
t )e···] = 0 for

all x. Thus EP2[p0(ξ
x,θ
t )] = 0 for all x. Integration over dx and Fubini’s Theorem

yield EP2[
∫

Rd p0(ξ
x,θ
t ) dx] = 0, that is

∫

Rd

p0(ξ
x,θ
t ) dx = 0 P2-a.s. (5.14)
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In the theory of stochastic flows one shows (see, for example [26]) that x (→
ξx,θ
t (ω2) is a homeomorphism of Rd for all ω2 ∈ A, with P2(A) = 1. In particular,

to ω2 ∈ A and y ∈ Rd satisfying p0(y) > 0 there is an x ∈ Rd such that
y = ξx,θ

t (ω2). By continuity of x (→ p0(ξ
x,θ
t )(ω2) and since p0 ! 0, it follows

that
∫

Rd p0(ξ
x,θ
t )(ω2) dx > 0 for all ω2 ∈ A. This contradicts (5.14), so the lower

bound in (5.12) must in fact hold for all (t, α, θ, Y ).
Next, fix (t, ᾱ, θ̄ , Ȳ ) and choose ε > 0. Let (αn, θn, Yn) converge to (ᾱ, θ̄ , Ȳ ).

Abbreviate un(x) := u
αn
t (x, θn, Yn) and un :=

∫
Rd un(x) dx. Then

|un − u| "
∫

|x|"N

|un(x) − u(x)| dx +

+
∫

|x|>N

|un(x) − u(x)| dx, ∀n, N ∈ N. (5.15)

The proof of Lemma 4.1 shows that the estimate (4.2) holds uniformly in a small
neighborhood of (ᾱ, θ̄ , Ȳ ). Thus, for sufficiently big N the last term in (5.15) is less
that ε/2, for all n ! n0. For this N the first term, Tn, on the right side of (5.15) is
estimated by

Tn "
∫

|x|"N

|uαn
t (x, θn, Yn) − u

αn
t (x, θn, Y )| dx +

+
∫

|x|"N

|uαn
t (x, θn, Y ) − uαt (x, θ, Y )| dx

" c · ‖Yn − Y‖∞g(αn, ‖Yn‖∞, ‖Y‖∞) +
+

∫

|x|"N

|uαn
t (x, θn, Y ) − uαt (x, θ, Y )| dx, (5.16)

where c = (2N)d and g denotes a continuous function (cf. (3.16)). Clearly the
first term goes to zero but also the second term does because, with Lemma 5.4, the
map (α, x, θ) (→ uαt (x, θ, Y ) is uniformly continuous on the compact Br [(ᾱ, θ̄ )]×
[−N, N ]d (with suitable r > 0). Thus, the first term in (5.15) is less than ε/2, for
all n ! n1. This proves (5.13). !

Proof of Theorem 5.2. The bounds (5.7) follow from (5.12), from the continuity
of the function θ (→ uαt (θ, Y ) :=

∫
Rd uαt (x, θ, Y ) dx, and because µ has compact

support. In particular (5.5), (5.6) and (5.8) are well-defined. From Theorem 4.7 we
know that uαt (x, θ, Y (ω1)) is a version of the unnormalized conditional density and
therefore (5.5) and (5.6) define versions of the corresponding conditional densities.
This implies the second assertion in Theorem 5.2. Finally, to prove the last assertion
it suffices to show that for any continuous function f the map

(α, Y ) (→
∫

$

f (θ)uαt (θ, Y ) dµ(θ) (5.17)
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is continuous (choose f (θ) = θ respectively f (θ) = 1 in (5.8)). So let (αn, Yn)
converge to (α, Y ). Since the support C of µ is compact the continuity of (5.17)
follows if supθ∈C |uαn

t (θ, Yn) − uαt (θ, Y )| → 0 as n → ∞. But this can be in-
ferred from a slight modification in the proof of Lemma 5.5 as follows: First put
θn = θ in that proof. Then observe that the second term on the right side of (5.15)
can be estimated by ε/2, uniformly in θ , as follows from (4.2) together with the
compactness of C. The first term in (5.15) is estimated as in (5.16). Now the first
term in (5.16) does not depend on θ while the second term converges uniformly
for θ ∈ C because (α, θ) (→ uαt (θ, Y ) is uniformly continuous on the compact
[α − r, α + r] × C (with a fixed r ∈ (0, α)). !

6. An Algorithm for the Estimation

In this section we study the practical implementation of the estimator (5.8). We first
express the unnormalized density uαt (x, θ, Y ) from (5.4) in a recursive form which
is more suitable for numerical computations. We then combine this with a Monte-
Carlo approach, to construct a numerical approximation of the estimator Sαt (Y ) in
(5.8). Finally we present the resulting estimation procedure in algorithmic form,
and discuss some of its general properties.

LEMMA 6.1 (Recursive formulations of FK). Suppose Condition 2.3 holds, and
let 0 " t0 < t . Then ut(x, ω1), given in (2.8), can be written as

ut(x, ω1) = EP2

[
ut0(ξ

t,x
t−t0

, ω1) exp
{∫ t

t0

C(s, ξ t,x
t−s) ds +

+
∫ t

t0

h(ξ t,x
t−s) dYs(ω1)

}]
(6.1)

= EP2

[
ut0(ξ

t,x
t−t0

, ω1) exp{(∗)}
]
, P1-a.s., (6.2)

where the exponent (∗) is given by

(∗) = h(x)Yt − h(ξ t,x
t−t0

)Yt0 +
∫ t

t0

C(s, ξ t,x
t−s) ds +

∫ t−t0

0
Yt−s dh(ξ t,x

s ).

Proof. A decomposition of
∫ t

0 into
∫ t0

0 +
∫ t

t0
in the Zakai density equation (2.6)

leads to

ut(x, ω1) = ut0(x, ω1) +
∫ t

t0

(Ls + c(s, x))us(x, ω1) ds +

+
∫ t

t0

h(x)us(x, ω1) dYs(ω1), (6.3)
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where ut0(x, ω1) is given in (2.8). Now we do a time substitution s (→ s + t0, write
ũt := ut+t0 , Ỹs := Ys+t0 − Yt0 , and replace c by c̃(u, x) := c(u + t0, x) (similarly
for σ, β in L). Then (6.3) gives

ũt ′(x, ω1) = ũ0(x, ω1) +
∫ t ′

0
(L̃s + c̃(s, x))ũs(x, ω1) ds +

+
∫ t ′

0
h(x)ũs(x, ω1) dỸs(ω1), (6.4)

with t ′ := t − t0. This is again the Zakai density equation (2.6) with the given
substitutions. The FK-formula therefore applies, where now we have to use the
(transformed) reverse equation

dξ̃ t ′,x
s = β̃(t ′ − s, ξ̃ t ′,x

s ) ds + σ̃ (t ′ − s, ξ̃ t ′,x
s ) dBs

= β(t − s, ξ̃ t ′,x
s ) ds + σ(t − s, ξ̃ t ′,x

s ) dBs, ξ t ′,x
0 = 0.

Since this is identical with the original reversed equation we have ξ̃ t ′,x
s = ξ t,x

s . The
reverse time substitution, s (→ s− t0 performed in the resulting FK-formula, finally
gives (6.1). (6.2) is now a direct consequence of Lemma 3.1 and the discussion
leading to the robust formulation (3.7). !

Remark 6.2. Formula (6.1) is useful for two reasons. When estimates are to be
updated as new observations become available, the form (6.1) allows to base the
next estimate on the previously calculated ut0(x, ω1) and the values of Y on [t0, t].
(This is why we call (6.1) “recursive”.) Moreover, for computations the formulas
for ut(x, ω1) in (2.8), (3.7) and (5.4), have a serious drawback: The exponent in
these formulas can easely become so big that it leads to representation problems
(i.e., floating point overflow) in the computer. This problem is avoided if we nor-
malize the calculated ut(x, ω1) at suitable time-intervals, and restart our calculation
using (6.1).

Numerical Estimation. By applying the same argument as in Section 5, we find
that the unnormalized conditional density for (Xt , θt ) in (4.10), (4.11) can be writ-
ten as

uα(t, x, θ, Y ) = EP2

[
uα(t0, ξ

x,θ
t−t0

, θ, Y ) exp{(∗)α}
]
, (6.5)

where the exponent (∗)α is given by

(∗)α = 1
α2

(h(x)Yt − h(ξx,θ
t−t0

)Yt0) +
∫ t

t0

Cα(s, ξ
x,θ
t−s) ds +

+ 1
α2

∫ t−t0

0
Yt−s dh(ξx,θ

s ),
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with Cα introduced in (5.2). Using (6.5) we construct a numerical approximation
for the estimator Sαt (Y ) as follows. We assume the measurements are given at
times 0 = t0 < t1 < · · · < tNT

= T , and we choose a set of grid-points
{(xi, θj ) : i = 1, . . . , MX, j = 1, . . . , Mθ } in Rd × $. Then we approximate
uα(tn, ·, ·, Y ) on this grid using a Monte-Carlo based approach, that is, in each
(xi, θj ) we estimate uα(tn, xi, θj , Y ) by averaging over a number of simulations of
the associated reversed process ξ given in (4.12), which starts in (xi, θj ). Once we
have estimated uα(tn, xi, θj , Y ), we approximate Sαtn(Y ) using numerical integra-
tion in (5.8). In order to stabilize the method, we normalize and reset the estimate
ûα(tn, ·, ·, Y ) using (6.5) at suitable time-intervals.

The numerical details are as follows: Consider the nth time step in the above
described procedure. Let tn̂ denote the last time-instant when we normalized ûα,
and assume that we have constructed R independent paths of ξ solving (4.12) on
the time-grid sk := tn−tn−k (k = 0, . . . , n−n̂). Then we approximate the exponent
in (6.5) using the scheme

(∗)
(r)
α,n̂,n

=
n−n̂−1∑

k=0

Cα

(
tn − sk, ξ

(r)
k

)
'sk +

+ 1
α2

n−n̂∑

k=1

(
h

(r)
k 'Yn−k −'Yn−k'h

(r)
k−1

)
. (6.6)

Here ξ (r)
k denotes the rth simulation of ξ tn,xi ,θj evaluated in sk, and we abbreviated

h
(r)
k = h(ξ

(r)
k ), 'h

(r)
k = h

(r)
k+1 − h

(r)
k , 'Yk = Ytk+1 − Ytk , and 'sk = sk+1 − sk.

The expectation value in (6.5) can now be approximated by averaging over the
simulated paths

ûα(tn, xi, θj , Y ) := 1
R

R∑

r=1

uα(tn̂, ξ
(r)
tn−tn̂

, θj , Y ) exp{(∗)
(r)
α,n̂,n

}. (6.7)

Our numerical estimator is finally given by the following discrete version of (5.8):

Ŝαtn(Y ) =
∑Mθ

j

∑MX

i θj û
α(tn, xi, θj , Y )

∑Mθ

j

∑MX
i ûα(tn, xi, θj , Y )

. (6.8)

Remarks. (1) The scheme in (6.6) is the result of approximating the integrals in
(6.5) using piece-wise approximations of the form

ηs(ω1) =
N−1∑

k=0

ηsk (ω1)1(sk,sk+1](s)

for η = ξ and η = Y . Note that this approximation of the exponent differs from the
corresponding one for the exponent of the FK-formula (2.8) by the ‘discrete joint
quadratic variation terms’

∑n−n̂
k=1 'Yn−k'hk−1/α

2.
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(2) Formula (6.8) assumes a uniform density for θ0, which holds in all our
examples. If θ0 is not uniformly distributed one has to modify this formula ac-
cordingly.

Our approach can be summarized as follows:

ALGORITHM 6.3.

(1) Fix a normalization time δ > 0 and set n̂ = 0.
(2) For each time-step tn

(2.1) For each grid-point (xi, θj )

(2.1.1) Simulate R independent paths ξ tn,xi ,θj ,(r) (r = 1, . . . , R).
(2.1.2) Form the sum in (6.7) to find ûα(tn, xi, θj , Y ).

(2.2) Approximate Sαtn(Y ) in (5.8) by the numerical estimator (6.8).
(2.3) If tn − tn̂ > δ

(2.3.1) Approximate the L1(Rd ×$, dx dµ)-norm of ûα(tn, ·, ·, Y ).
(2.3.2) Set n̂ = n and

ûα(tn, xi, θj , Y ) := ûα(tn, xi, θj , Y )/‖ûα(tn, ·, ·, Y )‖1.
(3) Plot and visualize the results.

Comments on the algorithm. The accuracy of the numerical estimator clearly
depends on the choice of grid and the number R of simulations for ξ in each grid
point. If the grid is too coarse, the accuracy in the numerical integration in Step
2.2 might suffer, and if R is too small, the estimate for u in each grid-point has
less accuracy. On the other hand, each time-step requires MXMθR simulations of
the associated reversed system (4.12), so choosing too fine grid or high R can
make the estimator impractical. The time interval δ for normalization should be
chosen with some care. If it is too short (causing normalization at each time-step)
the computational effort increases unnecessarily. If it is too long we risk numerical
instabilities in the estimator. An adaptive approach could be considered here. The
most computational parts of the algorithm are Step 2.1.1 and Step 2.1.2. In our
implementations we simulated ξ from (4.12) using a strongly convergent scheme
(most of the examples can actually be solved exactly). It would suffice for the
evaluation of (6.7) to use a weak approximation of ξ , which is faster to generate
(see, e.g., [25]). Note the inherit parallelism in the algorithm, in the sense that for
a given time-step tn, the value of u on a grid-point (xi, θj ) can be approximated
independently of the value of u on the other grid-points. Also note that the sim-
ulations of ξ may be precomputed (‘off-line’) and stored, to be readily available.
Thus, there is the potential for a considerable gain in speed if implementing the
algorithm on a parallel computer, in particular for higher-dimensional problems.
Finally, in our examples, we have assumed a rectangular grid combined with the
midpoint method for the numerical integration in Step 2.2 and Step 2.3.1. Such
an integration is not optimal with regards to numerical error, but is suitable for
the purpose of illustrating Algorithm 6.3. For higher-dimensional problems, other
griding techniques could be considered.
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7. Simulation Examples

In this section we study three specific estimation problems for simulated system
processes X, based on simulated measurement data Y . In all examples X is a one-
dimensional process, and θ is a single real parameter. For convenience we picked
the system processes (1.1) such that they can be represented as explicit functions
of Brownian motion. We plot and discuss some of our simulation results together
with (sample) statistical properties for each example.

Let us first describe the common features of the three numerical experiments.
In each example we fix one or two values θreal for the parameter to be estimated,
together with the finishing time T > 0. We assume observations are given by (5.1)
with α = 1. There are then two different types of simulations to be done. The first
type is the simulation of M observation paths Y (1), . . . , Y (M). [With real world data
we would typically have only one observation path to estimate θreal. But here we use
M simulations in order to make an empirical statistical analysis to see how good
our estimator performs.] In view of (5.1) the kth simulation Y (k) first requires a sim-
ulation of a sample path of (Xt)t∈[0,T ] (for which we use its explicit representation
by BM W

(1)
t ), a simulation of a sample path of (W

(2)
t )t∈[0,T ], and finally a numerical

integration in (5.1). The second type of simulation is due to an application of Al-
gorithm 6.3: For each measurement Y (k) we apply this algorithm to estimate θreal,
which requires for each grid point (xi, θj ) a simulation of the reversed process ξ ,
defined by (4.12). We estimate u(tn, xi, θj , Y ) using (6.7), and our approximated
estimator is given by (6.8). The result of this procedure are time dependent θ -
estimates Ŝ1

tn
(Y (1)), . . . , Ŝ1

tn
(Y (M)) for n = 1, . . . , NT , with NT depending on the

example. We investigate how Algorithm 6.3 performs, by varying numerical pa-
rameters: The Monte-Carlo parameter R (i.e. the number of simulations for the
reversed process ξ per grid point), the grid parameters (xi, θj ) ∈ [A, B] × [C, D],
and different values for A, B, C, D. We assume that observations are made at times
tn = n't (n = 0, . . . , NT ), with time-steps 't = T/NT . For each experiment
we present a table which gives the sample mean and standard deviation of the
independent estimates Ŝ1

T (Y (1)), . . . , Ŝ1
T (Y (M)), for different choices of numerical

parameters. This table shows how good the estimator performed in the underlying
experiment, and also indicates a potential bias. Besides this statistical analysis we
plot the time development of some typical samples (Ŝ1

tn
(Y (k)))n=1,...,NT

for each
experiment, together with the corresponding state estimates. As a rule we observe
that the estimates stabilize after a certain time, and afterwards exhibits only small
fluctuations. We also plot a typical time development of the numerical estimator for
the conditional θ̂t -density, i.e. for four times tn we plot the following approximation
of (5.6):

p̂(tn, θj , Y ) =
∑MX

i=1 û(tn, xi, θj , Y )
∑MX

i=1

∑Mθ

k=1 û(tn, xi, θk, Y )
, j = 1, . . . , Mθ . (7.1)

This conditional density in all examples develops a peak close to θreal. (Notice
that the mean of this peak depends on the sample, and the statistical properties of



ROBUST PARAMETER ESTIMATION FOR STOCHASTIC DIFFERENTIAL EQUATIONS 305

this mean are given in the corresponding table.) After each experiment we discuss
the results and give some additional details. At the end we give some additional
remarks. We start with a simple linear example, and proceed to more difficult
nonlinear ones.

EXAMPLE 1. We consider the process Xt = X0 + θt + W
(1)
t which satisfies the

linear Itô equation

dXt = θ dt + dW
(1)
t , t ∈ [0, T ], (7.2)

with initial condition X0 independent of W . We assume that h in (5.1) is smooth,
bounded, and satisfies h(x) = x for |x| " C with the constant C chosen big
enough (cf. the following remark). The potential c(t, x, θ) in (2.7) vanishes, and
the associated reversed system (4.12) becomes

dξ t,x,θ
s = −θ ds + dBs, ξ t,x,θ

0 = x, s ∈ [0, t], x, θ ∈ R. (7.3)

Remarks. (1) The constant C used in the definition of h should be so big that
most realizations of X and ξ remain inside the region {x ∈ R : |x| " C}. We
assume C to be roughly 1038. The choice of C is important in the following sense:
Since h(ξ t,x,θ

s ) and Y appear in the exponent in (6.5) it is possible that very rare
events (very big values of ξ t,x,θ

s or X) can significantly affect the estimator.
(2) This filtering problem is not exactly linear, and we do not assume a Gaussian

initial distribution for θ0. Therefore the well-known Kalman–Bucy filter does not
apply to compute θ̂t .

EXPERIMENT 7.1. We investigate two cases, θreal = 0 and θreal = 0.5. We simu-
late M = 50 independent sample paths of (X, Y ), to obtain estimates Ŝ1

T (Y (1)), . . . ,

Ŝ1
T (Y (50)) of θreal, using different choices for the Monte-Carlo parameter R, as given

in Table I. We assume observation time-steps 't = T/NT , with T = 100, and
NT = 4096. The parameters (xi, θj ), are chosen on the following rectangular grid:

xi := A + (i − 1/2)'x, 'x := (B − A)/MX, i = 1, . . . , MX,

θj := C + (j − 1/2)'θ, 'θ := (D − C)/Mθ, j = 1, . . . , Mθ .
(7.4)

We make different choices for A, B, C, D, MX, Mθ , as given in Table I. Moreover,
we use the normalization interval δ = 2't and assume that the initial joint density
is given by u(0, x, θ) = p0(x)µ0(θ), where p0 denotes a centered Gaussian density
with variance 0.25 restricted to [A, B] and normalized to get a probability measure,
and where µ0 represents a uniform distribution on [C, D]. The simulations of the
associated system (7.3) are performed using the exact solution

ξ
tn−tn̂,xi ,θj
s = xi − θj s + Bs, for s ∈ [0, tn − tn̂].
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Results of Experiment 7.1. They are given in Table I (statistics) and Figures 1–2
(sample paths and densities). Table I shows that an increased number R of ξ -
simulations and a finer grid improves the estimate and reduces the variance. The
data indicate convergence in our approximation procedure. The choice of grid af-
fects the θ -estimate: A too coarse grid leads, in this example, to an overestimation
of θreal. We find that the spatial grid should be fine enough to capture the movement
in the state variable. If not, the estimates for θreal suffer inaccuracies. Figure 1
shows satisfying estimates for Xt and θreal. The irregular density plot in Figure 2
is due to the variance in the Monte-Carlo approximation of û(tn, xi, θj , Y ), which
is proportional to 1/R. When we increase R and the number of evaluation points
(tn, xi, θj ), we observe a smoothing of the estimated density, as expected. Note,
however, that the estimated values in Table I seem quite good even for small R. We

Table I. Example 1: The (sample) mean and standard deviation of the estimator Ŝ1
T for the linear

case (7.2). (e−n denotes 10−n).

θreal Mean Std.dev. [A, B] × [C, D] MX Mθ R

0.0 -8.21e-2 4.51e-1 [-30,30]×[-4,4] 60 60 5

-1.60e-2 8.77e-2 120 100 50

-1.35e-2 8.44e-2 120 100 100

0.5 6.99e-1 1.61e-1 [-10,80]×[-2,2] 180 30 10

7.03e-1 1.50e-1 180 100 15

7.10e-1 1.48e-1 180 100 50

5.67e-1 1.47e-1 250 60 25

Figure 1. Example 1: The plots show two typical sample paths for the estimator of
the system (X) and the parameter (θ). The first row is for the case θreal = 0 with
(MX, Mθ , R) = (120, 100, 100), and the second row for the case θreal = 0.5 with
(MX, Mθ , R) = (180, 100, 100).
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Figure 2. Example 1, case A: The approximated density p̂(tn, θj , Y ) given in (7.1) is plotted
as a function of θj at four different times, with two different choices of R. This plot is based
on a simulation for the case θreal = 0 with MX = 120 and Mθ = 200.

believe the reason for this is the smoothing effect the integration in (6.8) has on the
resulting estimator, making the local variations in the density less important for the
estimate.

EXAMPLE 2. We consider geometric BM Xt = X0 exp{(ν − θ2/2)t + θW
(1)
t }

which satisfies

dXt = νXt dt + θXtdW
(1)
t , t ∈ [0, T ], (7.5)

with X0 independent of W . We investigate two cases. In Case A we assume ν is
unknown but equal to θ2/2. In Case B we assume ν is known in advance. In both
cases we estimate θ on the basis of (5.1), where h is smooth, bounded and satisfies
h(x) = x for |x| " C with the constant C chosen big enough. From (2.7) we
find the potential c(t, x, θ, ν) = θ2 − ν, and the associated reversed system (4.12)
becomes

dξs = (2θ2 − ν)ξs ds + θξs dBs,

ξ0 = x, s ∈ [0, t], x ∈ R, θ > 0. (7.6)

Note that in Case A we have a combined drift and diffusion estimation problem,
and in Case B a pure diffusion estimation problem. We would expect that the
estimator performs somewhat better for Case B since in this case we have more
knowledge of the process.
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EXPERIMENT 7.2. For both cases we fix θreal = 0.25 and simulate M = 10
paths of (X, Y ). We apply Algorithm 6.3 to estimate θreal, using different choices
for the grid and for the Monte-Carlo parameter R, as given in Table II. For Case
B we set ν = θ2

real/2 = 0.03125. Thus, when applying Algorithm 6.3 the value of
ν remains fixed in this case. Our choice of ν allows to use the same simulations
of Y in both cases, and we can more clearly observe the effect these assumptions
have on the estimator. Observations are given with time-steps 't = T/NT , with
T = 100, and NT = 4096. Moreover, we assume [A, B]×[C, D] = [0, 60]×[0, 2]
and the parameters (xi, θj ) are chosen as in (7.4). We use the normalization interval
δ = 10't , and suppose the initial joint distribution is constructed as in Example 1,
with normal distribution N(1, 1/4) for the construction of p0. For the simulations
of (7.3) we use the exact solution given by

ξ
tn−tn̂,xi ,θj
s = xi exp{bs + θBs}, where b =

{
θ2
j , for Case A,

3θ2
j /2 − ν, for Case B.

Results of Experiment 7.2. They are displayed in Table II and Figures 3–4. The
numbers in Table II show that the estimates in Case B are quite close to θreal, and
in Case A we see a slight underestimation of θreal. Also the variances in Case A are
a bit larger than in Case B, but they are still of the same order. So the knowledge of
the value of ν does not improve the estimation of θreal drastically. We interpret this
result as follows: The information about the diffusion coefficient θreal is completely
encoded in the short time behavior of the paths of X, i.e. the quadratic variation

〈X〉t = lim
n→∞

2n∑

j=1

(Xjt2−n − X(j−1)t2−n)2 = θ2
real

∫ t

0
X2

s ds (7.7)

allows to determine θreal ! 0 uniquely from a single exact observation. The drift
ν is irrelevant for 〈X〉t . From this point of view we expect that a knowledge of

Table II. Example 2: The (sample) mean and standard deviation for the estimator
Ŝ1
T for the diffusion estimation (7.5). Here θreal = 0.25, and ν = θ2

real/2. The drift ν
is unknown in Case A and known in Case B.

Mean Std.dev. MX Mθ R

Case A 2,05e-1 1,30e-1 60 40 15

2,04e-1 1,38e-1 90 60 15

1,97e-1 1,27e-1 90 60 50

1,94e-1 1,20e-1 120 90 50

Case B 2,69e-1 1,19e-1 60 40 15

2,46e-1 1,03e-1 90 60 15

2,42e-1 9,66e-2 90 60 50

2,41e-1 9,91e-2 120 90 50
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Figure 3. Example 2: The plots show two typical sample paths for the estimator of the system
(X) and the parameter (θ). The first row corresponds to Case A and the second to Case B. In
these plots we used MX = 120, Mθ = 90 and R = 50.

Figure 4. Example 2, Case A: These plots display the approximated density p̂(tn, θj , Y ) given
in (7.1) as a function of θj , at four different times. In each plot we use two different choices
of R. These plots are based on a simulation for the case θreal = 0.25 with MX = 80 and
Mθ = 200.
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the drift ν adds only little information about the diffusion coefficient θ , if the
measurement errors are sufficiently small.

EXAMPLE 3. We consider the process Xt = X0 + sin(θW
(1)
t ) which satisfies the

nonlinear equation

dXt = −1
2
θ2Xt dt + θ

√
1 − X2

t dW
(1)
t , t ∈ [0, T ], (7.8)

with X0 uniformly distributed in [−1, 1], and independent of W . This process
remains in the bounded region [−2, 2] for all t ! 0. We investigate two different
choices for h in (5.1), denoted Case A and Case B. In both cases we assume h
smooth and bounded, and we set h(x) = x in Case A, and h(x) = 10x in Case B,
with x ∈ [−2, 2]. Using (2.7) we obtain the potential c(t, x, θ) = −θ2/2, and the
associated reversed system (4.12) becomes

dξs = −3
2
θ2ξs ds + θ

√
1 − ξ 2

s dBs, s ∈ [0, t]. (7.9)

This example is more difficult than Examples 1 and 2: We have to solve (7.9)
numerically, and since X takes values only in [−2, 2], the noise remains relatively
big compared to h(Xs), in particular for Case A. Thus, we do not expect to be able
to estimate θ as good as in the two previous examples. Moreover, we expect that
the estimator performs better in Case B, since for this case, the signal/noise ratio is
better.

EXPERIMENT 7.3. For θreal = 0.25 and for Cases A and B, we simulate M =
10 independent sample paths of (X, Y ), using Xt = X0 + sin(θW

(1)
t ). For each

simulation Y (k) we apply Algorithm 6.3 to estimate θreal using different choices
for the grid and for the Monte-Carlo parameter R, as given in Table III. We assume
observation time-steps't = T/NT , with T = 200, and NT = 8192. Moreover, we
choose [A, B] × [C, D] = [−2, 2] × [0, 1] and the parameters (xi, θj ) are chosen
from the rectangular grid in (7.4). We use the normalization interval δ = 2't ,
and choose the initial joint distribution to be uniform on [−1, 1] × [0, 1]. For the
simulation of (7.9) we apply the Milstein scheme [25]:

yk+1 = yk − 3
2
θ2
j yk'sk + θj

√
1 − y2

k'Bk − 1
2
θ2
j yk('B2

k −'sk),

where yk approximates ξ
tn−tn̂,xi ,θj
sk , 'sk := sk+1 − sk, and where 'Bk is the incre-

ment of a Wiener process on [sk, sk+1].

Results of Experiment 7.3. They are presented in Table III and Figures 5–6.
From Table III we see that Case B performs better than Case A, as expected. We
also see that the method seems to under-estimate the actual value of θreal in both
cases, and this can hardly by explained by the sample variances of the estimator,
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Table III. Example 3: The (sample) mean and standard deviation for the estimator
Ŝ1
T for the nonlinear case (7.8). Here θreal = 0.25, h(x) = x in Case A, and

h(x) = 10x in Case B.

Mean Std.dev. MX Mθ R

Case A 1,53e-1 2,55e-2 30 30 10

1,41e-1 1,80e-2 50 50 10

1,38e-1 1,81e-2 50 50 50

1,30e-1 1,69e-2 90 90 50

Case B 1,95e-1 1,92e-2 30 30 10

1,97e-1 1,26e-2 50 50 10

1,99e-1 7,52e-3 50 50 50

2,03e-1 1,00e-2 90 90 50

Figure 5. Example 3: The plot shows two typical sample paths for the estimator of the system
(X) and the parameter (θ). The first row corresponds to Case B and the second to Case A. In
all plots we used MX = 50, Mθ = 50 and R = 50.

which are relatively small. A typical time development of Ŝ1
tn

is displayed together
with the state estimator in Figure 5. Note that also the state estimator performs
better in Case B compared to Case A. This is no surprise, since h(x) = 10x
(Case B) allows to “see” changes in X much easier than h(x) = x (Case A).

Final remarks. (1) When θreal is outside [C, D] we observed that the θ̂t -density
systematically accumulates on the boundary next to θreal. So an erroneous choice
for [C, D] can easily be detected from the density plot.
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Figure 6. Example 3, case A: The approximated density p̂(tn, θj , Y ) given in (7.1) is plotted
as a function of θj at four different times, with two different choices of R. This plot is based
on a simulation for the case θreal = 0.25 with MX = 50 and Mθ = 200.

(2) In each of our density plots we observe that θreal is inside the density peaks,
even in Example 3 where we observed some bias in the numerical estimator. In
other words, the density plot gives in each case a reliable range for θreal.

(3) As a conclusion from Examples 1 and 3 we can say that the estimates are
close to θreal, as long as the state estimates are close to the state. In other words,
whenever the measurement noise is small we obtain good estimates, both for drift
and for diffusion parameters.

(4) Example 3 shows that the estimator not always works as desired. More work
has to be done to elaborate, under what conditions the Bayesian estimator gives
satisfying results. From the mathematical viewpoint the basic statistical properties
of an estimator (such as consistency, cf. [13]) have to be investigated. From the
numerical viewpoint the algorithm has to be tested further and it needs to be im-
proved, in particular for higher-dimensional parameter estimation problems. This
is left for future research.
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