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Abstract. – According to empirical observations, some pattern formation phenomena in
driven many-particle systems are more pronounced in the presence of a certain noise level. We
investigate this phenomenon of fluctuation-driven ordering with a cellular-automaton model
of interactive motion in space and find an optimal noise strength, while order breaks down
at high(er) fluctuation levels. Additionally, we discuss the phenomenon of noise- and drift-
induced self-organization in systems that would show disorder in the absence of fluctuations.
In the future, related studies may have applications to the control of many-particle systems
such as the efficient separation of particles. The rather general formulation of our model in the
spirit of game theory may allow to shed some light on several different kinds of noise-induced
ordering phenomena observed in physical, chemical, biological, and socio-economic systems
(e.g., attractive and repulsive agglomeration, or segregation).

Noise-related phenomena can be quite surprising and exciting. Therefore, they have at-
tracted the interest of many researchers. For example, we mention stochastic resonance [1],
structural (in)stability [2,3], noise-driven motion (“Brownian motors”) [4–6], and “freezing by
heating” [7]. The approach proposed in this contribution differs from these phenomena. More-
over, since both the initial conditions and the interaction strengths in our model are assumed
to be independent of the position in space, the fluctuation-induced self-organization discussed
later on should be distinguished from so-called “noise-induced transitions” in systems with
multiplicative noise as well, where we have a space-dependent diffusion coefficient which can
induce a transition [8]. Although our model is related with diffusive processes, it is also
different from reaction-diffusion systems that can show fluctuation-induced self-organization
phenomena known as Turing patterns [9–14].

The main goals of this contribution are i) to qualitatively understand the observed noise-
induced ordering phenomena in certain self-driven many-particle systems and ii) to derive and
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investigate a simplified mathematical model for them. Some of the properties of this model
appear reminiscent of driven (e.g. shared) heterogeneous granular systems. For example,
one finds stratification phenomena such as the segregation of different kinds of grains into
layers [15, 16]. This mechanism explains, for example, some of the geological formations and
ore concentrations in the earth. As it may be also used to separate different materials, it is
interesting to ask for the most efficient separation technique including the optimal noise level.
A similar segregation phenomenon of lane formation has been found in pedestrian counter-
streams [17]. This is based on a reduction of the interaction strength and related with an
increase in the efficiency or average speed of motion [18].

In the following, we will explore a cellular-automaton model which extends the one dis-
cussed in ref. [18] by the effects of fluctuations, drift, and asymmetric interactions. It may,
for example, reflect the interactive one-dimensional motion of some driven many-particle sys-
tems in a spatial direction perpendicular to the main flow direction(s) and to the boundaries.
For this purpose, let us imagine the example of pedestrian streams in a corridor with two
opposite flow directions a. We subdivide the one-dimensional space into cells i comparable
to the shoulder width (diameter) ∆x of the pedestrians (particles, entities). Speaking in
more general terms, we have A subpopulations a with Na entities α distributed over I cells
i ∈ {1, . . . , I}. We denote the number of entities in cell i belonging to subpopulation a by na

i .
Moreover, we represent the kind of interaction and the interaction strength between two enti-
ties of subpopulations a and b by a constant parameter value Pab. (Generalizations are easily
possible.) Finally, we update the locations of the entities α according to the following rules:

1st s t e p: Select the entity α randomly. If α is located in cell i and belongs to subpopu-
lation a, determine

Sα(j, t) =
∑

b

Pab nb
j(t) + ξα

j (t) (1)

for j = i and the nearest neighbors j = i ± 1, where ξα
j (t) are random fluctuations uniformly

distributed in the interval [−pa, pa], so that pa denotes the fluctuation strength.
2nd s t e p: Move to the neighboring cell i ± 1 with probability

Pα(i ± 1 | i; t) ∝ max
{
0, Sα(i ± 1, t)− Sα(i, t)

}
. (2)

3rd s t e p: Repeat steps 1 and 2 until the locations of N =
∑

a Na entities were updated.
4th s t e p: With probability V 0

a , move all entities α of subpopulation a by one cell into
the same direction.

5th s t e p: Return to step 1.
Formula (1) calculates the expected effect of interactions with other entities. Sa(i, t)

is a potential function, see eq. (4). In the language of game theory, it can be called the
expected success, since, according to the proportional imitation rule (2), an entity α moves
to a neighboring cell i ± 1 only if it can increase the value of Sα. The values Pab may be
interpreted as payoffs in interactions between two entities of subpopulations a and b. Pab is
positive for attractive, cooperative, or profitable interactions, while it is negative for repulsive,
competitive, or loss-making interactions. The fourth step reflects a bias in the motion of the
particles of subpopulation a, i.e. a drift velocity.

We have carried out various simulations with random initial and periodic boundary con-
ditions, in order to have a translation-invariant system. Note that self-organized pattern
formation in such a system implies spontaneous symmetry-breaking and a pronounced history
dependence of the resulting state. The typical solutions are dependent on the specified payoffs
Pab, fluctuation strengths pa, and drift velocities V 0

a . Replacing the asynchronous (random se-
quential) update of steps 1 to 3 by a parallel update yields similar (but less random, i.e. “nicer
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looking”) results. Replacing the parallel update of the velocities in step 4 by an asynchronous
one induces such a high noise level that the system is often disordered.

To obtain a theoretical understanding of our simulation results, we have derived mean-
value equations for the densities ρa(x, t) = na

i (t)/∆x with x = i∆x. For this purpose, we have
derived a master equation and determined the drift- and fluctuation-coefficients in the usual
way. By second-order Taylor expansion, the resulting equations can then be approximately
cast into the form of Fokker-Planck equations [19]

∂ρa(x, t)
∂t

+
∂

∂x

[
ρa(x, t)Va(x, t)

]
= Da

∂2ρa(x, t)
∂x2

, (3)

where the diffusion coefficients Da increase with the fluctuation strength pa in a roughly
proportional way. Moreover, Da vanishes when pa vanishes and |∂Sa(x, t)/∂x| is small (as for
our homogeneous initial conditions). The exact relation for Da is rather complicated, but not
of interest, here. Finally, the drift coefficients are given by

Va(x, t) = V 0
a +

∂Sa(x, t)
∂x

with Sa(x, t) =
∑

b

Pab ρb(x, t). (4)

Accordingly, we are confronted with non-linearly coupled Burgers equations, which may show
a diffusion instability. In the following, we will check whether the above mean-value equations
yield qualitatively meaningful results, i.e. whether correlations can be neglected. For this
purpose, we will carry out a linear stability analysis and compare the theoretical phase diagram
with the numerically determined one. In the case of two subpopulations a ∈ {1, 2} and
V 0

1 = V 0
2 = 0, the homogeneous solution ρ0

a = na
i /∆x with na

i = Na/I should be unstable
with respect to fluctuations, if

ρ0
1P11 + ρ0

2P22 > D1 + D2 (5)

or
ρ0
1ρ

0
2P12P21 >

(
ρ0
1P11 − D1

)(
ρ0
2P22 − D2

)
. (6)

Let us first discuss the symmetric case with ρ0
1 = ρ0

2 = ρ, P11 = P22 = P , P12 = P21 = Q, and
vanishing diffusion D1 = D2 = 0. Then, condition (5) reduces to 2ρP > 0, and condition (6)
becomes Q2 > P 2. We can distinguish the following solutions (see fig. 1a; for representatives
see fig. 4 in ref. [18]): A) If P < 0 and Q2 < P 2 (i.e. P < 0 and P < Q < −P )), a
homogeneous distribution ρa(x, t) = ρ0

a over all sites in both subpopulations is stable with
respect to small perturbations (which corresponds to disorder). B) If P < 0 (self-repulsion)
and Q < 0 (repulsion between the subpopulations), but Q < P , we should find segregation
(with a tendency that all sites are equally occupied, but either by one subpopulation or by the
other). C) If Q < 0 (repulsion), but P > 0 (self-attraction), we expect repulsive agglomeration
(i.e. both subpopulations should cluster at different sites, with empty sites in between). D) If
Q > 0 (attraction) and Q > −P , we should have attractive agglomeration (clustering of both
subpopulations at the same sites, with empty sites in between). Consequently, on the line
Q = (P − 1)/2 (i.e. for P = 2Q + 1), we should cross the phase boundary between disorder
and segregation at P = −1, the one between segregation and repulsive agglomeration at
P = 0, and the one between repulsive and attractive agglomeration at P = +1. This is, in
fact, confirmed by our numerical simulations (see fig. 1b), so that we can trust the instability
analysis based on the mean-value equations. The reason for this is the local nature of the
interactions. To characterize the different states, we have used order parameters of the form

Θ(y) =
1
I

I∑

i=1

(yi − yi)2 with yi =
1
I

I∑

i=1

yi (7)
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Fig. 1 – (a) Theoretical phase diagram of the four qualitatively different patterns resulting for the
symmetric model without diffusion: A = disordered phase, B = segregation, C = repulsive agglom-
eration, D = attractive agglomeration. (b) Order parameters along the line Q = (P − 1)/2 (see solid
line in (a), averaged over 20 runs after a time period of 20000(N1 + N2) update steps with I = 200
cells and N1 = N2 = 2000 entities in each of two subpopulations. The theoretically predicted phase
transitions at P = −1, P = 0, and P = 1 (see black triangles in (a) are clearly visible.

to measure the variances of i) yi = (n1
i /n1

i +n2
i /n2

i ) (i.e. the deviation from a homogeneous oc-
cupation of all sites), or ii) yi = (n1

i /n1
i −n2

i /n2
i ) (i.e. the difference in the degree of occupation

by different subpopulations). Θ(n1 + n2) is sensitive to (attractive or repulsive) agglomera-
tion (i.e. to clustering with empty sites in between), and Θ(n1 +n1) recognizes when the two
subpopulations tend to use different sites (as for segregation or repulsive agglomeration).

Let us now focus on the general case with arbitrary payoffs and diffusion. While D1,D2 > 0
increases the threshold for pattern formation in eq. (5), in eq. (6) it can reduce the threshold for
moderate diffusion, while the threshold will be higher for large diffusion. We are not surprised
that sufficiently large diffusion will always give rise to disorder and suppress pattern formation.
It is interesting though that a medium level of diffusion may cause pattern formation where the
system would otherwise be disordered. Let us focus on the example with P11 = −2, P12 = 2,
P21 = −2, and P22 = 1, where subpopulation 2 is repelled from subpopulation 1 and where
the self-interaction within subpopulation 1 is repulsive as well, while the other interactions
are attractive. According to conditions (5) and (6), we expect disorder for small fluctuation
strengths p1, p2. While increasing values of p2 should be counterproductive, increasing p1

should be able to produce pattern formation for medium values of p1. This fluctuation-
induced self-organization is, in fact, observed (see fig. 2a). The entities in subpopulation
2 can agglomerate at sites where the fluctuations have temporarily reduced the density in
subpopulation 1 due to disturbances of its homogeneous distribution. Later on, subpopulation
1 develops a slightly higher concentration at sites where subpopulation 2 clusters. In a similar
way, we can have drift-induced self-organization for V 0

1 = V > 0 and V 0
2 = 0 (see fig. 2b). For

D1 = D2 = 0, the instability condition (6) is then replaced by

ρ0
1ρ

0
2

(
P12P21 − P11P22

)
k2

(
ρ0
1P11 + ρ0

2P22

)2
> ρ0

1ρ
0
2P11P22

(
V 0

1 − V 0
2

)2
, (8)

where k represents the wave number. (Note that the wavelength, which is inversely propor-
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Fig. 2 – Order parameter for the degree of agglomeration as a function of (a) the fluctuation strength
p2 = 0.001p1 (with V 0

1 = V 0
2 = 0) and (b) the drift velocity V = V 0

1 (with V 0
2 = 0 = p1 = p2) for an

example with asymmetric interactions. The curves are averages over 20 runs after a time period of
20000(N1 + N2) update steps for I = 20 cells and N1 = N2 = 200 entities in each subpopulation.

tional to the respective wave number, is restricted to the values λ = i∆x in our cellular-
automaton simulations.)

For symmetric cases with P11 = P22 = P �= 0, P12 = P21 = Q, and ρ0
1 = ρ0

2 = ρ �= 0, we
find Q2 − P 2 > (V 0

1 − V 0
2 )

2/(2kρ)2, i.e. a finite drift will usually increase the threshold for
pattern formation. This is different from the effect of diffusion. For the symmetric case with
V 0

1 = V 0
2 = 0 and D1 = D2 = D, the instability condition (6) reads ρ2Q2 > (ρP −D)2. That

is, we expect a “maximum degree of self-organization” for D = max(ρP, 0), and a more or less
symmetric behavior around this point. What does this actually mean? Figure 3 suggests that
this statement applies to the order in the system. That is, for increasing fluctuations strength
we find noise-induced ordering up to D = max(ρP, 0), while we have disorder at significantly
higher fluctuations strengths.

One may think that this fluctuation-induced ordering is due to noise-induced transitions
from a metastable state (local optimum) to a more stable state of higher order (possibly the
global optimum). We check this hypothesis for the case of repulsive agglomeration, where
a coarse-graining appears particularly difficult because of the repulsion effect. Our observa-
tions are as follows: i) At moderate, but sufficiently large fluctuation strengths, we sometimes
observe a “step-wise” fusion of agglomerations, which is associated with exponential-like re-
laxation processes of the time-dependent order parameter to a higher level. ii) However, the
main mechanism seems to be that, from the very beginning, fluctuations further the formation
of larger agglomerations (i.e. suppress the development of small ones), which slows down the
ordering process in the early stage. (Sometimes the system stays disordered for more than
500000(N1 + N2) iterations and, suddenly, the order increases rapidly to a high level). iii) A
careful choice of the noise strength can speed up the time-dependent increase of the order
very much. iv) After a given, large enough time period, the system has reached a typical
level of order, which depends significantly on the fluctuation strength. In conclusion, one may
influence the typical length scale in the system by variation of the noise level.

A variation of the “applied” drift velocity (if possible) or of the fluctuation strength to-
gether with a proper choice of the “treatment times” would allow one to control pattern
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Fig. 3 – As fig. 2, but for V 0
1 = V 0

2 = 0 and symmetric interactions (see the black circles in fig. 1a
for the location in the parameter space). (a) In cases of segregation, the order stays about constant
for small noise amplitudes, but it drops significantly for large ones. In cases of (b) repulsive or (c)
attractive agglomeration, a suitable noise amplitude p1 = p2 can increase the order in the system by
more than a factor of 15. The maximum order is reached at p1 = p2 ≈ max(3P, 0), corresponding
to D1 = D2 = max(ρP, 0). Close to this maximum, the curves are roughly symmetric, but for
less than twice this value, the order breaks down completely. (d) The time-dependence of the order
parameter visualizes the increase of the order in the system. The plot shows 20 runs for each displayed
fluctuation strength, which significantly influences the dynamics of the ordering process. After large
enough times, we find a typical, noise-dependent length scale and level of order in the system.

formation in several respects: i) the speed of ordering, ii) the typical length scale in the
system, and iii) the level of ordering. A time-dependent variation of the control parameters
should even facilitate to switch between supporting and suppressing structure formation, e.g.
between demixing and homogenization. In the future, these points may, for example, be rel-
evant for the production, properties, handling, and transport of heterogeneous materials, for
flow control [20], and efficient separation techniques for different kinds of particles. Due to the
general, game-theoretical formulation of the above cellular-automaton model, its properties
are reminiscent of phenomena in physical, biological and socio-economic systems. For exam-
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ple, we mention phenomena such as the formation of pedestrian lanes (segregation) [17,18], of
ghettos in cities (repulsive agglomeration), or of settlements (attractive agglomeration) [21].

∗ ∗ ∗

The authors are grateful for financial support by the ALTANA-Quandt foundation and
useful comments by L. Schimansky-Geier. DH thanks L. Streit for his invitation and the
warm hospitality at the CCM, F. Schweitzer for inspiring discussions, and T. Grigat for
preparing illustration 1a. TP was partially supported by KPN Grant 5 P03A 02520.

REFERENCES

[1] Gammaitoni L., Hänggi P., Jung P. and Marchesoni F., Rev. Mod. Phys., 70 (1998) 223.
[2] Nicolis G. and Prigogine I., Self-Organization in Nonequilibrium Systems. From Dissipative

Structures to Order through Fluctuations (Wiley, New York) 1977.
[3] Prigogine I., Order through Fluctuation: Self-organization and Social System, Evolution and

Consciousness. Human Systems in Transition, edited by Jantsch E. and Waddington C. H.

(Addison-Wesley, Reading, Mass.) 1976, pp. 93-130.
[4] �Luczka J., Bartussek R. and Hänggi P., Europhys. Lett., 31 (1995) 431.
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