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Abstract. This work introduces and investigates (small) Hankel operators Hb on the
Hilbert space of holomorphic, square integrable Wiener functionals. A regularity condition
on the symbol b, which guarantees the boundedness of Hb, is provided. The symbols b for
which Hb is of Hilbert-Schmidt type are characterized, and a representation of Hb by an inte-
gral operator is given. The proofs employ the hypercontractivity of the Ornstein-Uhlenbeck
semigroup, together with approximations by finitely many variables. These results extend
known results from a finite dimensional context.
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1. Introduction

Denote by γc the Gauss measure on d with Lebesgue density

pc(z) =
1

(2πc)d
e−

|z|2
2c , z ∈ d,

and by HLp( d, γc) the space of holomorphic functions on d which are p–times integrable
with respect to γc. The investigation of Hankel operators on HLp( d, γc) was initiated
in [JPR] and continued in e.g. [HR,JP,JPW,Pe1,Pe2,RR,St,Wa]. The authors of [JPR]
pointed out that some of their results are independent of the dimension d, and therefore
should remain valid in some infinite dimensional version. In [DG] the hypercontractivity of
the Ornstein–Uhlenbeck semigroup e−tN in HLp( d, γc) was used to investigate continuity
properties of Hankel operators. It turns out that essentially the same approach also works in
the infinite dimensional context of holomorphic Wiener functionals. This paper investigates
some details of such an approach. We will see that some results, known for HL2( d, γc),
naturally extend to infinite dimensions but others do not. For general background on
Hankel operators we refer to the discussion in [DG, Remark 1.1] and to the literature
given there.

Let us introduce some notation. The complex Wiener space (W ,B, µc) over the fixed
time interval [0, T ] consists of the following objects:

W := W ([0, T ]) := {ω ∈ C([0, T ], ) |ω(0) = 0}. (1.1)

∗ Supported in parts by the Alexander von Humboldt foundation.
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B is the Borel σ–algebra on W induced by the ‖ ·‖ ∞–topology on W .

Zt(ω) := Xt(ω) + iYt(ω) := ω(t), ω ∈ W , (1.2)

is the canonical process, and µc the Wiener measure with variance parameter c > 0. I.e.
µc is the unique probability measure on B which is such that

(Z1) X and Y defined in (1.2) are independent, real processes.
(Z2) X and Y have independent, centered Gaussian increments.
(Z3) E[(Xt − Xs)2] = E[(Yt − Ys)2] = c(t − s) for all 0 ≤ s < t ≤ T .

Remark. In the finite dimensional context of Gauss measure γc on d one has

Lp(γc̃) ⊂ Lp(γc) for all c̃ ≥ c. (1.3)

In the infinite dimensional context the measures µc and µc̃ with c '= c̃ are mutually singular,
µc ⊥ µc̃. In particular there is no natural relation such as (1.3) between the spaces Lp(µc)
and Lp(µc̃). This significant difference from the d–case requires some care when one
extends results for Hankel operators from finite to infinite dimensions. This is why we
will sometimes distinguish between an equivalence class of functions [f ]c ∈ L2(µc) and
corresponding pointwise defined representatives f ∈ [f ]c.

We denote by P(Z) the algebra of holomorphic polynomials generated by the complex
Gaussian variables Zt, t ∈ [0, T ]. Since the point evaluation Zt(ω) = ω(t) is a continuous
linear functional on the complex Banach space (W , ‖ ·‖ ∞) the space P(Z) consists of
holomorphic functions on (W , ‖·‖∞). For background on holomorphic functions in Banach
spaces see e.g. [HP].

One can uniquely identify Q ∈ P(Z) with its equivalence class [Q]c ∈ Lp(µc) because
[Q]c contains exactly one representative in P(Z). To see this assume Q1, Q2 ∈ P(Z) are in
[Q]c. Then R := Q1 − Q2 is a polynomial in variables Zt1 , . . . , Ztn , R = R(Zt1 , . . . , Ztn),
for suitable 0 < t1 < · · · < tn. The equality [R]c = [0]c gives

0 =
∫

W
|R(Zt1 , . . . , Ztn)|pdµc =

∫

n

|R(z1, . . . , zn)|pdγ(z)

where γ is the (regular) induced Gaussian measure γ = (Zt1 , . . . , Ztn)∗µc on n. This gives
R = 0. Subsequently we simply identify a polynomial Q with its class [Q]c, and thereby
P(Z) with a subspace in Lp(µc). Notice that this allows to identify the classes [Q]c and
[Q]c̃, which a priori are not comparable.

Notation. For p ∈ (1,∞) define the space of holomorphic Lp–Wiener functionals to be

HLp(µc) := Lp(µc) − closure of P(Z). (1.4)

Remarks. 1. Holomorphic Lp–Wiener functionals can be introduced and characterized
in different ways, and they have been studied to some extent in the literature [Fa,FR1-2,
MT1,MT2,Shi,Su1-3,ST,Ta]. Our choice (1.4) requires the least amount of terminology.
2. There is almost no extra effort in replacing W ([0, T ]) by W ( +), but some minor
technicalities are easier to handle for W ([0, T ]). In fact the main results in this paper can
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be formulated and proved in the context of an abstract complex Wiener space, at the cost
of introducing more terminology. 3. An arbitrary class [f ]c ∈ HL2(µc) can in general not
be identified in a unique way with a pointwise defined representative f (as for polynomials).
In particular [f ]c need not contain a continuous representative f on (W , ‖ ·‖∞), see [Su4].
So in the strict sense HLp(µc) is not a space of holomorphic functions on (W , ‖ · ‖∞).
However, HLp(µc) is naturally isomorphic to a space of genuine holomorphic functions on
the complex Cameron-Martin subspace of W . For details see [GM,Su2]. In the present
work we do not use this identification in order to be as self-contained as possible.

Subsequently we study bilinear forms Γb on HL2(µc) which can be represented as

Γb(f, g) = 〈fg, b〉 =
∫

W
b̄fg dµc ∀f, g ∈ P(Z), (1.5)

with suitable symbol functions b ∈ HL2(µc). Notice that the integral in (1.5) is well–
defined for all f, g ∈ P(Z), but in general not for all f, g ∈ HL2(µc). The (by definition!)
dense inclusion P(Z) ⊂ HL2(µc) shows that Γb extends to a unique continuous bilinear
form on HL2(µc) if and only if an estimate of the following type holds:

|Γb(f, g)| ≤ const.‖f‖L2(µc)‖g‖L2(µc) ∀f, g ∈ P(Z). (1.6)

There is then associated a continuous, anti–linear operator Hb on HL2(µc) satisfying

Γb(f, g) = 〈g,Hbf〉 ∀f, g ∈ HL2(µc).

Γb and Hb are called Hankel form respectively Hankel operator with symbol b. The equality
〈b, fg〉 = 〈Hbf, g〉, which holds for all f, g ∈ P(Z), implies that

Hbf = P (bf̄ ) (1.7)

provided bf̄ ∈ L2(µc), and where P : L2(µc) → HL2(µc) is the orthogonal projection. So
if we denote by Mb the multiplication by b and the complex conjugation by C we obtain
Hb = P ◦ Mb ◦ C , a more conventional form for a Hankel operator.

Among the classical questions about Hankel operators are characterizations of prop-
erties of Hb in terms of properties of b. In this work we investigate the continuity and the
Hilbert–Schmidtness of Hb in terms of b ∈ HL2(W ,µc).

The content of this paper can be summarized as follows: Section 2 prepares some facts
about HL2(µc) and about the Ornstein–Uhlenbeck semigroup on that space. The main
results are Theorem 3.2 (on boundedness) and Theorem 4.2 (on Hilbert-Schmidtness).
Their proofs consist in a reduction to the finite dimensional case. We also extend the
integral representation for Hilbert-Schmidt Hankel operators (Theorem 4.5). In contrast
to HL2( d, γc) such a representation seems not possible for general continuous Hb. This
deviation from the finite dimensional context arises from the singularity of measures µc and
µ2c. Another (obvious) deviation is the absence of a reproducing kernel in HL2(W ,µc).
Because of it we cannot prove a general integral representation using the reproducing kernel
(as in finite dimensions). We use “finite variable approximations” instead.

Acknowledgment. I would like to thank Leonard Gross for very helpful discussions about
this work. The basic idea to combine finite variable projections with hypercontractivity
over n is essentially due to him.
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2. Preparations about holomorphic Wiener functionals

The finite dimensional background to be generalized subsequently reads as follows: Let
ϕ ∈ HL2( d, γc) be given by its Taylor series

ϕ(z) =
∑

α∈ d
0

aαzα, (2.1)

where α = (α1, . . . ,αd) and zα = zα1
1 · · · zαd

d . Then (2.1) is also an orthogonal series in
HL2(γc) having the norm

‖ϕ‖2
L2(γc) =

∑

α∈ d
0

(2c)|α|α! |aα|2, (2.2)

where |α| := α1 + · · ·+αd and α! := α1! · · ·αd!. The Ornstein–Uhlenbeck semigroup (OU)
e−tN on HL2( d, γc) can be defined by

e−tN
∑

α∈ d
0

aαzα =
∞∑

n=0

e−tn/c
( ∑

|α|=n

aαzα
)
. (2.3)

This has the immediate consequences that e−tNϕ(z) = ϕ(e−t/cz) and

‖e−tNϕ‖L2(γc) = ‖ϕ‖L2(γ
ce−2t/c ). (2.4)

If ϕ ∈ D(etN ) then these two properties remain valid if one skips all minus signs in the
exponents. In particular ϕ ∈ D(etN ) is simply characterized by the growth requirement
ϕ ∈ HL2(γce2t/c), a fact which is false in the absence of holomorphy. The semigroup e−tN

has the following hypercontractivity property (see e.g. [G]): Let 0 < p ≤ q < ∞. Then

‖e−tN‖HLq(γc)→HLp(γc) ≤ 1, if t ≥ c

2
ln

p

q
. (2.5)

We now construct an orthogonal basis in HL2(W ,µc) which allows to represent
every ϕ ∈ HL2(µc) by a power series w.r.t. complex “variables” Z1, Z2, . . ., quite analo-
gous to (2.1). This has the advantage that one can restrict every such ϕ to finitely many
variables Z1, . . . , Zd and thereby to obtain a natural link to the spaces HL2( d, γc), as
explained in Lemma 2.2. The basic variables Zk are complex Gaussian random variables
constructed by the elementary Wiener integral as follows: Let f be a step function on
[0, T ], i.e. there are time points 0 = t0 < t1 < · · · < tn = T and constants fi ∈ such that
f =

∑n
i=1 fi1[ti−1,ti). Denote by S[0, T ] the vector space of such step functions. Then the

stochastic integral of f ∈ S[0, T ] w.r.t. complex Brownian motion is defined as

∫ T

0
f(t)dZt(ω) :=

n∑

i=1

fi(Zti(ω) − Zti−1(ω)), ∀ω ∈ Ω. (2.6)
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The properties (Z1,Z2,Z3) from Section 1 satisfied by the Brownian motion Z imply

‖
∫ T

0
f(t)dZt‖2

L2(µc) = 2c‖f‖2
L2(dx), (2.7)

so the linear map f /→
∫ T
0 f(t)dZt is isometric from (S[0, T ], ‖·‖L2(dx)) to L2(µc), up to the

normalization constant 2c. For general f ∈ L2([0, T ], dx) the Wiener integral
∫ T
0 f(t)dZt

is simply obtained by continuous extension of this map, and it defines a complex Gaussian
random variable. Clearly the Itô-isometry (2.7) remains valid under this extension, and by
definition (1.4) we have

∫ T
0 f(t)dZt ∈ HL2(µc).

The following fact is an immediate consequence of the Segal-Bargmann isomorphism
[GM] applied to the well–known Hermite–basis over the real Wiener space W ([0, T ]), and
it generalizes the standard orthogonal basis (OGB) in HL2( d, γc) in a natural way:

Theorem 2.1 Let {e1, e2, . . .} be an orthonormal basis in L2([0, T ], dx). Define

Zk :=
∫ T

0
ek(t)dZt, k = 1, 2, . . . . (2.8)

Put ∞
c := {(α1,α2, . . .)| only finitely many αi ∈ 0 are non-zero}, |α| := α1 + · · · + αd

and α! := α1! · · ·αd!, where d is the largest index such that αd '= 0. Define

Z0 := 1, Zα := Zα1
1 · · ·Zαd

d .

Then {Zα,α ∈ ∞
c } is an OGB in HL2(µc) with normalization ‖Zα‖2

L2(µc) = (2c)|α|α!.

By the previous theorem any ϕ ∈ HL2(µc) admits an orthogonal expansion

ϕ =
∞∑

n=0

ϕ(n) =
∞∑

n=0

∑

|α|=n

aαZα =
∑

α∈ ∞
c

aαZα, (2.9)

with
‖ϕ‖2

L2(µc) =
∑

α∈ ∞
c

(2c)|α|α! |aα|2 < ∞. (2.10)

This generalizes (2.1) and (2.2) in a most natural way. In particular observe that the
function Z̃k(z1, . . . , zd) := zk defines a complex Gaussian random variable on ( d, γc), so
(2.1) can also be viewed as a series of Gaussian random variables.

Remark. Although the functions Zk given in (2.8) depend on the choice of the orthonor-
mal basis {e1, e2, . . .}, the components ϕ(n) given in (2.9) do not. This follows from the
corresponding property of the Hermite decomposition over W ([0, T ]) together with the
Segal–Bargmann transformation. We call ϕ =

∑∞
n=0 ϕ

(n) the complex chaos decomposition
of ϕ, and ϕ(n) the chaos components of ϕ.

From now on we fix an arbitrary ONB {e1, e2, . . .} in L2([0, T ], dx) and thereby the corre-
sponding Zk given in (2.8). Non of the results in this paper depends on the choice of such
a basis. The OU–semigroup (2.3) now generalizes in the obvious (and basis independent)
way to HL2(µc) as follows.
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Notation: For ϕ =
∑∞

n=0 ϕ
(n) ∈ HL2(µc) we denote by

e−tN
∞∑

n=0

ϕ(n) :=
∞∑

n=0

e−tn/cϕ(n).

the Ornstein–Uhlenbeck semigroup e−tN on HL2(W ,µc). To distinguish the finite dimen-
sional case we will write e−tÑ for the OU–semigroup on HL2( d, γc).

We now investigate how e−tN relates to the “finite variable restriction” of ϕ ∈ HL2(µc).
So let ϕ be given by the expansion (2.9), put Fd := P(Z1, . . . , Zd) (the closure in L2(µc)),
and let πd : HL2(µc) → Fd be the orthogonal projection. We claim that this projection is
given by

πdϕ =
∑

α∈ d
0

aαZα, (2.11)

which justifies the name “finite variable restriction” for πdϕ. To verify (2.11) note that

P(Z1, . . . , Zd) = {ϕ ∈ HL2(µc) |ϕ =
∑

α∈ d
0

aαZα}. (2.12)

Since the inclusion “⊃” in (2.12) is clear choose ϕ ∈ P(Z1, . . . , Zd) and expand ϕ as in
(2.9). For indices α '= (α1, . . . ,αd, 0, 0, . . .) we have Zα ⊥ P(Z1, . . . , Zd) by Theorem 2.1.
Thus Zα ⊥ P(Z1, . . . , Zd) i.e. the coefficient aα in (2.9) vanishes. So “⊂” in (2.12) follows.
Since the set {Zα|α = (α1, . . . ,αd, 0, 0, . . .)} is an OGB in Fd we see that (2.11) holds.

The following result can be viewed as a ”holomorphic factorization lemma”. It is basic
for our transition from finite to infinite dimensions given in Sections 3 and 4.

Lemma 2.2 To f ∈ Fd there exists a unique f̃ ∈ HL2( d, γc) such that

f = f̃(Z1, . . . , Zd) µc − a.s. (2.13)

The map J : f /→ f̃ is isometric from (Fd, ‖ ·‖ L2(µc)) onto HL2( d, γc). Moreover

J ◦ e−tN ◦ J−1 = e−tÑ , (2.14)

i.e. we have e−tNf = (e−tÑ f̃)(Z1, . . . , Zd) µc − a.s.

Proof: Represent f as in (2.12). Then ‖f‖2
L2(µc) =

∑
α∈ d

0
(2c)|α||aα|2α! < ∞. The com-

pleteness of HL2( d, γc) thus implies that

Jf(z1, . . . , zd) :=
∑

α∈ d
0

aαzα (2.15)

defines a function f̃ ∈ HL2( d, γc) and the series (2.15) converges for every z ∈ d. This
implies that the series for f does not only converge in HL2(µc), but also µc–a.s. Thus
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(2.13) follows for every choice of pointwise defined representatives Z1, . . . , Zd. To verify
that J : f /→ f̃ is isometric (and thus injective) note that

∫

W
|f |2 dµc =

∫

W
|f̃(Z1, . . . , Zd)|2 dµc =

∫

d

|f̃(z)|2 dγc(z) (2.16)

because Z1, . . . , Zd are complex Gaussian random variables with 〈Zk, Zl〉L2(µc) = 2cδkl,
i.e. (Z1, . . . , Zd)∗µc = γc. Clearly (2.16) implies that there is only one f̃ ∈ HL2( d, γc)
such that (2.13) holds. Now given f̃ ∈ HL2( d, γc) define f := f̃(Z1, . . . , Zd). By (2.16)
f ∈ HL2(W ,µc) and by definition (2.15) Jf = f̃ . Thus J maps onto HL2( d, γc). Finally
we verify (2.14):

e−tNf(ω) =
∞∑

n=0

e−tn/c
∑

α1+···+αd=n

aαZα(ω) (for µc − a.e. ω)

=
∑

α∈ d
0

aα(e−t/cZ(ω))α

= f̃(e−t/cZ1(ω), . . . , e−t/cZd(ω))

= (e−tÑ f̃)(Z1(ω), . . . , Zd(ω)).

3. Bounded Hankel operators

In this section we continue the notation Fd = P(Z1, . . . , Zd), and we let πd : HL2(µc) → Fd

be the orthogonal projection. The following key lemma holds:

Lemma 3.1 Let b ∈ HL2(µc) and Hb be a continuous Hankel operator on HL2(µc). Then

Hπdb = πd ◦ Hb ◦ πd. (3.1)

Let J : f /→ f̃ be the isometry defined in Lemma 2.2, and put bd := πdb. Then

HJ(bd) = J ◦ Hbd ◦ J−1. (3.2)

Proof: The Hankel form Γπdb evaluated at f, g ∈ P(Zn, n ∈ ) reads

Γπdb(f, g) = 〈fg,πdb〉 = 〈πd(fg), b〉
= 〈πdfπdg, b〉 = 〈πdg,Hb(πdf)〉
= 〈g, (πd ◦ Hb ◦ πd)f〉.

Since the right side of this equation defines a continuous bilinear form on HL2(µc), and
P(Zn, n ∈ ) is dense in HL2(µc) (Theorem 2.1) we obtain (3.1).

Now let f, g ∈ P(Z1, . . . , Zd). Then

〈g,Hπdbf〉 =
∫

W
(πdb)fg dµc =

∫

d

b̃df̃ g̃ dγc = 〈g̃, Hb̃d
f̃〉. (3.3)
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Since Hπdbf ∈ Fd and g ∈ Fd the left side of these equations can also be written as

〈g,Hbdf〉 = 〈Jg, J(Hbdf)〉 = 〈g̃, (J ◦ Hbd ◦ J−1)f̃〉. (3.4)

Since (3.3) and (3.4) hold for all f̃ , g̃ ∈ P(z1, . . . , zd) we conclude Hb̃d
= J ◦ Hbd ◦ J−1.

Remark. Equation (3.1) shows that the “finite variable restriction” πd ◦ Hb ◦ πd of Hb

to the subspace Fd is again a Hankel operator, Hbd . (This statement is false for general
orthogonal projections in HL2(µc).) Moreover (3.2) shows that Hbd is unitary equivalent
to the Hankel operator Hb̃d

on the space HL2( d, γc). These two properties provide a tight
relation between Hankel operators on HL2(W ,µc) and Hankel operators on HL2( d, γc).

We now give a condition on the symbol b that guarantees the continuity of Hb. In its
proof we do not directly use the hypercontractivity of the semigroup e−tN on HL2(µc), we
only use the hypercontractivity (2.5) on HL2( d, γc).

Theorem 3.2 Let e−tN be the OU–semigroup on HL2(µc) and let ϕ ∈ HLp(µc) with
p ≥ 2. Put

b := e−tNϕ, with t ≥ tJ :=
c

2
ln p′, (3.5)

where p′ denotes the conjugate index to p, and define Γb(f, g) :=
∫

W b̄fg dµc on P(Z).
Then Γb extends by continuity to HL2(µc):

|
∫

W
b̄fg dµc| ≤ ‖ϕ‖Lp(µc)‖f‖L2(µc)‖g‖L2(µc) ∀f, g ∈ P(Zn, n ∈ ). (3.6)

Remarks. 1. (3.6) implies the continuity of Γb because P(Zn, n ∈ ) is dense in HL2(µc).
2. One may interpret (3.5) as a regularization of ϕ. Notice that p → ∞ implies p′ → 1 and
therefore tJ → 0. So the larger p is the less ϕ needs to be regularized.

Proof of Theorem 3.2: Let f, g ∈ P(Zn, n ∈ ), so f, g ∈ P(Z1, . . . , Zd) =: Fd for a suitable
d. As before let πd : HL2(µc) → Fd be the orthogonal projection. Since e−tN is a diagonal
operator on the basis {Zα,α ∈ ∞

c } the formula (2.11) implies

e−tN ◦ πd = πd ◦ e−tN .

In view of this and the symmetry of the projection πd we have

Γe−tN ϕ(f, g) =
∫

W
e−tNϕπd(fg)dµc

=
∫

W
e−tN (πdϕ)fg dµc.

=
∫

d

e−tÑ ϕ̃df̃ g̃ dγc (by Lemma 2.2),

where ϕ̃d = J(πdϕ), f̃ = J(f) and g̃ = J(g). We can now apply the finite–dimensional
estimate from Theorem 4.5 in [DG] to the previous integral on the right side to obtain

|Γe−tN ϕ(f, g)| ≤ ‖ϕ̃d‖Lp(γc)‖f̃‖L2(γc)‖g̃‖L2(γc)

≤ ‖ϕ‖Lp(µc)‖f‖L2(µc)‖g‖L2(µc).
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Remark. Assume that Γb is continuous and abbreviate bd := πdb. Equation (3.2) implies
‖Hbd‖ = ‖Hb̃d

‖, and (3.1) gives ‖Hbd‖ ≤ ‖Hb‖. In [DG, Remark 6.11] the following estimate
we derived for the symbol b̃ of a Hankel operator on HL2( d, γc): (u

s )d‖b̃‖2
L2(γc+u) ≤ ‖Hb̃‖2

for all s ∈ (0,∞), with u−1 := c−1 + s−1. In view of (2.4) and with b̃ = b̃d this converts to

(
u

s
)d‖e c

2 ln (1+ u
s )Ñ b̃d‖2

L2(γc)
≤ ‖Hb̃d

‖2.

With Lemma 2.2 and ‖Hb̃d
‖ ≤ ‖Hb‖ this yields

(
u

s
)d‖e c

2 ln (1+ u
s )Nbd‖2

L2(µc)
≤ ‖Hb‖2, ∀s ∈ (0,∞).

Since u
s < 1 we cannot derive the boundedness of ‖e c

2 ln (1+ u
s )Nb‖L2(µc) in the limit d → ∞.

Therefore the necessary regularity condition which holds in the d-dimensional case does
not carry over to infinite dimensions by letting d go to infinity.

4. Hilbert Schmidtness and Integral representation

In this section we investigate the Hilbert Schmidt (HS) property of Hb. Let us first recall
the finite dimensional situation, as discussed in [JPR, Theorem 10.1] and [DG, Example
6.9]: Assume b ∈ HL2( d, γc). Then

Hb is HS on HL2( d, γc) ⇐⇒ b ∈ HL2( d, γ2c). (4.1)

Moreover,
‖Hb‖HS(γc) = ‖b‖L2(γ2c). (4.2)

Subsequently we generalize (4.1) and (4.2) to the Wiener space context. Since µc ⊥ µ2c the
spaces L2(µc) and L2(µ2c) contain fundamentally different function classes. So (4.2) does
not make sense if we replace γ by µ. However, Theorem 2.1 has the important consequence
that for c ≤ c̃ we can naturally identify HL2(µc̃) with a subspace in HL2(µc):

Lemma 4.1 Let c̃ ≥ c > 0. Then the identity map I : P(Z) → P(Z) extends by continuity
to a continuous, injective map Ĩ : HL2(µc̃) → HL2(µc). Moreover, the classes [f ]c̃ ∈
HL2(µc̃) and Ĩ[f ]c̃ ∈ HL2(µc) have a common representative g.

Proof: The step functions S[0, T ] are dense in L2([0, T ], dx). So we can choose an ONB
{e1, e2, . . .} in L2([0, T ], dx) with elements en ∈ S[0, T ]. The ω–wise well–defined integrals
given in (2.8) generate a subspace of polynomials P(Zn, n ∈ ) ⊂ P(Z) which is dense in
HL2(µc) by Theorem 2.1, for every c > 0. For Q ∈ P(Zn, n ∈ ) we obtain with (2.10)
the estimate

‖Q‖L2(µc) ≤ ‖Q‖L2(µc̃), ∀c ≤ c̃. (4.3)

So the identity I : (P(Zn, n ∈ ), ‖·‖L2(µc̃)) → (P(Zn, n ∈ ), ‖·‖L2(µc)) is continuous and
thus has a unique continuous extension Ĩ. Write [f ]c̃ ∈ HL2(µc̃) as [f ]c̃ =

∑
α∈ ∞

c
aαZα
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and define the polynomial approximation fm(ω) :=
∑m

n=0

∑
α1+···+αm=n aαZα(ω). By

(4.3) fm converges both in HL2(µc̃) and in HL2(µc). So Ĩ is given by

Ĩ :
∑

α∈ ∞
c

aαZα /→
∑

α∈ ∞
c

aαZα. (4.4)

(Notice that the left side is considered as an orthogonal series in HL2(µc̃), while the
right side is an orthogonal series in HL2(µc).) This implies that Ĩ is injective, and it is
straightforward to verify that the restriction Ĩ|P(Z) is the identity on P(Z). A suitable
subsequence of (fm), denoted (fm′ ), converges both µc̃–a.s. and µc–a.s.. Thus the set
of divergence points ω of (fm′ ) is contained in N := Nc ∩ Nc̃, where µc(Nc) = 0 and
µc̃(Nc̃) = 0. We conclude that the ω–wise limit g := limm→∞(fm′1Nc) is in [f ]c ∩ [f ]c̃.

Remarks. 1. We will identify HL2(µc̃) with its image in HL2(µc) under the map Ĩ
whenever c̃ ≥ c. (4.4) shows that this identification is most natural. 2. For the full space
L2(µc) the identity map on polynomials P(Xt, Yt, t ∈ [0, T ]) is not continuous. The proof
of Lemma 4.1 breaks down in that case, because Hermite–polynomials (replacing the Zα)
with respect to variance c̃ are not mutual orthogonal in L2(µc) if c̃ '= c. 3. We derived (4.4)
for the special (ω–wise everywhere defined) basis elements Zα based on step functions en.
Clearly Ĩ is also given by (4.4) for any choice of orthogonal vectors (2.8).

Theorem 4.2 Let b ∈ HL2(µc). Then

Hb is HS in HL2(µc) ⇐⇒ b ∈ HL2(µ2c). (4.5)

Moreover, in case Hb is HS we have

‖Hb‖2
HS(µc)

= ‖b‖2
L2(µ2c). (4.6)

Proof: “⇒”: Let Hb be HS. Define bn := πnb, where πn projects on Fn = P(Z1, . . . , Zn)
(closure in HL2(µc)). Then Hbn = πn ◦Hb ◦πn by Lemma 3.1. Thus Hbn is HS on HL2(µc)
and thus on Fn. By (3.2) also Hb̃n

: HL2(γc) → HL2(γc) is HS. In view of (4.2) this implies

‖Hbn‖HS(µc) = ‖bn‖L2(µ2c). (4.7)

In this derivation we may replace b by b − bm. For n ≥ m we have πn(b − bm) = bn − bm

and Hbn−bm = Hbn − Hbm . So instead of (4.7) we arrive at

‖Hbn − Hbm‖HS(µc) = ‖bn − bm‖L2(µ2c). (4.8)

It is simple to check that Hbn (= πn ◦ Hb ◦ πn) converges to Hb in HS(µc)–norm. So
(4.8) shows that the sequence (bn), which converges to b in HL2(µc), in fact converges in
HL2(µ2c). Clearly its HL2(µ2c)–limit is again b, so “⇒” in (4.5) holds. Taking n to infinity
in (4.7) yields (4.6).
“⇐”: Let b ∈ HL2(µ2c) ⊂ HL2(µc) and f, g ∈ P(Zk, k ∈ ). As before define bn := πnb,
fn := πnf and gn := πng. Then bn ∈ HL2(µ2c), bn → b in HL2(µ2c), and

〈bn, fg〉 = 〈bn, fngn〉 = 〈b̃n, f̃ng̃n〉. (4.9)
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Since b̃n ∈ HL2(γ2c) we know that Γb̃n
is a HS bilinear form on HL2(γc). From (4.9) we

conclude that Γbn is HS on HL2(µc) and has the same HS–norm as Γb̃n
. Thus

‖Hbn − Hbm‖HS = ‖Hbn−bm‖HS

= ‖Hb̃n−b̃m
‖HS

= ‖b̃n − b̃m‖L2(γ2c) → 0 as n,m → ∞.

Thus Hbn is a Cauchy sequence of HS–operators. Denote by H the HS–limit. It remains
to verify H = Hb. For f, g ∈ P(Zk, k ∈ ) we have

〈g,Hf〉 = lim
n→∞

〈g,Hbnf〉 = lim
n→∞

〈fg, bn〉 = 〈fg, b〉

= Γb(f, g).

Since the l.h.s. of this equation defines a continuous bilinear form on the whole space
HL2(µc) we conclude H = Hb.

Remark. In Theorem 4.2 we cannot just write ‖Hb‖2
HS(µc)

= ‖b‖2
L2(µ2c)

for all b ∈ HL2(µc)
because if b '∈ HL2(µ2c) we have no canonical identification of b with a function modulo
µ2c–zero sets.

We next generalize the integral representation known for HL2(γc), i.e. the assertion
that every continuous Hankel operator Hb on HL2(γc) with b ∈ HL2(γc) is given by

Hbf(z) =
∫

d

b(z + w)f(w) dγc(w), ∀z ∈ d, ∀f ∈ HL2(γc). (4.10)

In contrast to (4.10) it makes no sense to choose b ∈ [b]c ∈ HL2(µc) and to consider b(ω+ ·)
with fixed ω because this function depends significantly on the choice of representative b
(see Lemma 4.5). So in general the integral kernel b(ω + ω′) corresponding to the one in
(4.10) is not well–defined in the Wiener space context. However, if b ∈ HL2(µ2c) ⊂ HL2(µc)
the following exception holds:

Lemma 4.3 Let [b]2c ∈ HL2(µ2c). Then b̂(ω,ω′) := b(ω+ω′) is well–defined as an element
in L2(µc ⊗ µc). In particular, b̂ does not depend on the specific representative b ∈ [b]2c.

Proof: Choose b ∈ [b]2c. By convolution µc ∗ µc = µ2c we obtain
∫

|b̂(ω,ω′)|2d(µc ⊗ µc)(ω,ω′) =
∫

|b(ω + ω′)|2d(µc ⊗ µc)(ω,ω′)

=
∫

|b(u)|2dµ2c(u) < ∞. (4.11)

Now choose b1, b2 ∈ [b]2c. If we replace in the previous calculation b by b1 − b2 we obtain
∫

|b̂1(ω,ω′) − b̂2(ω,ω′)|2d(µc ⊗ µc)(ω,ω′) =
∫

|b1(u) − b2(u)|2dµ2c(u) = 0. (4.12)

(4.11) and (4.12) yield the assertion.
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Theorem 4.4 Let b ∈ HL2(µ2c). Then Hbf is given by

Hbf(ω) =
∫

W
b(ω + ω′)f(ω′) dµc(ω′) µc − a.s. (4.13)

Proof: We continue with the notation in the proof of Theorem 4.2. Let f ∈ P(Z1, . . . , Zn).
In view of [DG, Remark 6.8] we have b̃n(z + ·) ∈ HL2(γc) for every z ∈ n, and

Hb̃n
f̃(z) =

∫

n

b̃n(z + u)f̃(u) dγc(u).

With Z = (Z1, . . . , Zn) this representation and (3.2) imply

Hbnf(w) = Hb̃n
f̃(Z(w)) µc − a.s.

=
∫

n

b̃n(Z(w) + u)f̃(u)dγc(u)

=
∫

W
b̃n(Z(w) + Z(w′))f̃(Z(w′)) dµc(w′)

=
∫

W
bn(w + w′)f(w′) dµc(w′).

This holds for all f ∈ P(Z1, . . . , Zn). For general f ∈ HL2(µc) (3.1) gives

Hbnf(w) = Hbnπnf(w) =
∫

W
bn(w + w′)πnf(w′) dµc(w′) µc − a.s.

=
∫

W
bn(w + w′)f(w′) dµc(w′). (4.14)

The functions b̂n(ω,ω′) := bn(ω + ω′) and b̂(ω,ω′) := b(ω + ω′) are in L2(µc ⊗ µc) by
Lemma 4.3. Since Hbn → Hb in HS(µc)–norm the isometry (4.8) and ‖b̂n‖µc⊗µc = ‖bn‖µ2c

imply that b̂n → b̂ in HL2(µc ⊗ µc). Thus the r.h.s. in (4.14) converges in L2(µc) to∫
W b(w + w′)f(w′) dµc(w′). On the other hand Hbn → Hb in HS–norm implies Hbnf →

Hbf in HL2(µc). These two arguments show that we can pass to the limit in (4.14) which
yields (4.13).

Remark. (4.1) and (4.2) are simple consequences of the integral representation for Hankel
operators over HL2( d, γc) because this integral representation holds for all continuous
Hb on HL2( d, γc) (see the proof in [DG]). In the Wiener space context that proof does
not generalize, which is why we used the finite variable approximation.

We finally discuss the integral kernel b(ω+ω′) if b is not in HL2(µ2c). This illustrates
one of the problems arising from µc ⊥ µ2c.

Lemma 4.5 Let [b]c ∈ HL2(µc) and b1 ∈ [b]c. Then there is a b2 ∈ [b]c and a µc zero set
N such that

∫

W
|b1(ω + ω′) − b2(ω + ω′)|2 dµc(ω′) '= 0, ∀ω ∈ Nc. (4.15)
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Proof: (4.15) is equivalent to the assertion that there exists b0 ∈ [0]c such that
∫

W
|b0(ω + ω′)|2dµc(ω′) '= 0, ∀ω ∈ Nc. (4.16)

Since µc ⊥ µ2c there is a µc zero set N0 such that µ2c(N0) = 1. Put b0 = 1N0, so b0 ∈ [0]c.
With µc ∗ µc = µ2c we have

∫
|b0(ω + ω′)|2 d(µc ⊗ µc)(ω,ω′) =

∫

W
|1N0(u)|2 dµ2c(u) = 1.

So Fubini applied to the left side gives
∫ (∫

|1N0(ω + ·)|2dµc

)
dµc(ω) = 1. (4.17)

Since the term in brackets is between 0 and 1 it must in fact equal 1 µc–a.s. in order to
satisfy (4.17). But this implies the assertion.

Notice that Lemma 4.5 does not contradict Lemma 4.3: b(ω + ω′) is not well–defined for
representatives b ∈ [b]c but it is well–defined for representatives b ∈ [b]2c.
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