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1 Introduction

The intersections of Brownian motion paths have been investigated since the
Forties [20]. One can consider intersections of sample paths with themselves
or e.g. with other, independent Brownian motions [36], one can study simple
[5] or n-fold intersections [6] and one can ask all of these questions for linear,
planar, spatial or - in general - d-dimensional Brownian motion: evidently
self-intersections become increasingly scarce as the dimension d increases.

Intersection local times of Brownian motion were studied by many au-
thors, see e.g. [1], [3]-[11], [15], [18]-[38]. A more systematic review than we
can give here of the subject will be found e.g. in the recent reference [15].

An informal but rather suggestive definition of self intersection local time
of Brownian motion B is in terms of an integral over Dirac’s - or Donsker’s
- d-function

L= /dzt 6(B(t2) — B(th)),

intended to sum up the contributions from each pair of ”"times” t;,15 for
which the Brownian motion B is at the same point.
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In Edwards’ modeling of polymer molecules by Brownian motion paths, L
is used to model the ”"excluded volume” effect: different parts of the molecule
should not be located at the same point in space. As another application,
Symanzik introduced L as a tool for constructive quantum field theory in
[31].

A rigorous definition, such as e.g. through a sequence of Gaussians ap-
proximating the d-function or in terms of generalized Brownian functionals
[10] [30] [33], will lead to increasingly singular objects and will necessitate
various "renormalizations” as the dimension d increases. For d > 1 the ex-
pectation will diverge in the limit and must be subtracted [18] [32], clearly
L will then no more be positive. For d > 3,5,7, ... further subtractions have
been proposed [33] that will make L into a well defined generalized function
of Brownian motion.

For d = 3 another renormalization has been constructed by Westwater to
make the Gibbs factor 9% of the polymer model well-defined [35], for yet
another, recent approach see [1].

Yor, in [38], first suppresses the short time accumulation of self-intersections
by the regularization

5(B(ts) — B(h) = 8(B () — B(l) + 2)
and shows, again for d = 3, that a multiplicative renormalization
r(e) (Le — E(L:))

gives rise to another, independent Brownian motion as the weak limit of
regularized and subtracted approximations to L.

In the present note we study similar limits, for arbitrary d > 3, using a
Gaussian regularization of the d-function for which the chaos expansion of
the corresponding regularized L. is available [10]. For a suitably subtracted
and renormalized local time, each term in this expansion converges in law to
a Brownian motion.

We prepare and state these results in the following section 2, i n section
3 we give their proofs. In a companion paper [3] we extend these results to
the corresponding series.



2 Definitions and Main Results

2.1 White Noise Analysis and Local Times

We reproduce here some White Noise Analysis concepts as introduced in [10],
referring to [14] for a systematic presentation.

Brownian motions B;,7 = 1, ..., d, have version in terms of white noise w;
via
t
Bi(t) =< wi, 1o >= / wi(s)ds.
0
Hence we consider independent d-tuples of Gaussian white noise w = (wy, ..., wy)

and correspondingly, d-tuples of test functions f = (fi, ..., fa) € S(R, R?), and
introduce the following notation:

d
— —
n=(ni,...,nq), n—g n;, n:”

1

< Fﬁ,f@”_{ >= /dnt Fﬁ(tl,...,tn)

%
and similarly for <: w®" ;, ' > where for d-tuples of white noise the
Wick product : ... : [14] generalizes to

R
WO =

‘e

=1

The vector valued white noise w has the characteristic function

C(f) — E(€i<w,f>) :/ d/~L [w] €i<w,f> — €—2<ff> (2‘1)
S*(R,R%)

d
where < w,f > => <w,, fi>and f; € S(R, R).
=1
The Hilbert space
(1) = L*{dp)



is canonically isomorphic to the d—fold tensor product of Fock spaces of
symmetric square integrable functions:

(L2) ~(& SymIA(RF, kld"))® = 3, (2.2)

k=0

for the general element of (L?) this implies the chaos expansion

o(w) :Z<: WO Y (2.3)
7_1):0

with kernel functions £ in §.

It is desirable to introduce regularizations for the intersection local time,
with a view towards the construction of well-defined, "renormalized” inter-
section local times in higher dimensions where the latter do not exist without
subtractions. A computationally simple regularization is, for ¢ > 0,

L= / i, / i 6 (B(L) - B(1))).

with
B(tp)=B(t1) |2

5. (B (ts) — B (1)) = (2me) 42 =T (2.4)

It has the following chaos expansion, which we quote here only for d > 3 :

Theorem 2.1 [10] For any e > 0, L. — E(L.) has kernel functions ' € §
given by

Sy -1
Fo(srensa) = (=) (s + 1)(2m)2 2% 31)
OOt —v) - (v—ute) ™+ ({t+e) " —(v+e) " —(t—u+e)™™)
(2.5)
if all n; are even, and zero otherwise, with v(sy,...,8,) = max(s1, ..., $,),
U(S1y ey Sp) = MIN(S1, ..y Sp), and 32 = (n+d) /2 — 2. O is the Heaviside
function.

Each kernel function is thus the sum of four terms. The first one gives
rise to



Definition 2.2

%
M,(d,7,e) = / d"s(v—u+e) %" (s): (2.6)
[0,2]"
d . .
= / dns(v—u—l—s)_”® wi(s)).wilsy,)
[0,¢]™ i=1
d g + Sin d
= ZZ/ dsjn/ d”_ls(v—u—l—as)_”® wz(si)wz(sgl) :
i=1 m=1"70 0 =1
= an/ dBZ(T)/ d"ls(r—ud )T W T E2(5)
P 0 0
d t
= Z/ dBy(v)my(v) (2.7)
k=10
d
= ) My, (2.8)
k=1

The others give
%
Ni(d, 7, ¢) = / d's((t+e) ™ —(vte) ™ —(t—ute)™) " (s):
[0,¢]"

All of the above processes are continuous.

Definition 2.3 We denote the n " order contribution to the reqularized local
time L. by

V|3

Ki(d, 7,¢) = (—1) (%(%—I—l)(Zw)d/QZ% %) (My(d, 7, 2) + Ni(d, 7))

Remark 2.4 Our key observation is that, as ¢ goes to zero, M is more
singular than N, and that it is a Brownian martingale.

2.2 The main theorems



Theorem 2.5 For d > 3, the renormalized M converge in distribution to
independent Brow nian motions [3;:

(PMii=1,...d) 5 <%kn@;i:1,...,d>

e—=+0
with
— 1)ifd =3
2 n(7? 1
k. ! { (Zj_dd__?)';'fd <3 (2.9)

B |ln€|_1/2
r(e) = { (d-3)/2

Theorem 2.6 For d > 3, the renormalized n th order contributions to the
reqularized local time L. converge in distribution to Brownian motions (3

. I
rK(d, 7, ¢) T e 4

with

SN\ -2
= (e pmpat )

3 Proofs

Proposition 3.1 M;; are orthogonal Brownian martingales

Proof: Orthogonality is obvious. For the martingale property see [13] and
[2], it is a consequence of the fact that the kernel functions of M; in (2.6) do
not depend on ¢ (except through the limit of integrations).l

Their limiting behavior, as ¢ — 40, is studied in the following lemma
(from now on we shall consider only the situations which require renormali-
sation, i.e., d > 3.)

Lemma 3.2 As e — 40,

|lne|ford = 3

Mo 12 = 2 g 1
|| Miel; n n(t+o(1)) {5—(d—3)f0rd> 3



Proof:

| M| = %W! (v = v+ )7 L2 o.m)

For d > 3
, t
— 2
(v —u+e) HL2([0¢]”) = /d s(v—u+e)”
= n—l/dv/ du————"—— (v—u)
v—u—l—s)Q"
_ 3—d
= n(n—1)e /dv/ d:z:x+1n+d4

- ()

(0 = a4 2) 7| ey = P00 = Dt [Inel (1 +o(1))

while for d = 3

[

To show convergence of these martingales by Theorem VIIL.3.11 of [16]
we must show convergence of characteristics. Since the processes M are
continuous this reduces to showing convergence in probability of (rM;, rMy),

as € — +0. This will be taken care of by proposition 3.7 which we prepare
now:

¢
(rM;,rMy), = r25ik/ dv (mz(v))2
0

and we need to estimate
¢
dv (m;(v — ,G(Z_)>
Jteon? =TT o

Let us note that

E((rMiorMy)) = B (P MMy) = 85200 | (0 =€) .00

E((rM;,rMy),) = m 12 (t + o1))



Next we intend to show that the rhs gives indeed that the rest of (rM;, rMy),
goes to zero. The kernel of the highest order is

: t
G(;%_Z?i(sl, S5y Sty Sh_y) = /0 drO (1 —v V') (T—ute) *(t—u'+e)™”
(3.1)
v and u) are the largest and the smallest of the 55/), and <72> =R
k
(For n = 2: u) = vl = s,
Remark 3.3 The integral (3.1) can be caleulated in closed form (using e.g.

[12] nos. 2.15 and 2.263.4), but one gets a useful approximation by intro-
ducing the following auxiliary functions:

! !
Hopo(81y ey St} 1y ooy S5 63 d)

= (vVu' —uVvu 4+ 5)_(”+d)/2+3(v Vol —uAu -+ 5)—(n+d)/2+2

where v = max(s;),u = min(s;) and v' = max(s)),u’ = min(s)). These
functions majorize the kernel functions

Lemma 3.4 Forn > 2, and » > 1

0 < ¥ 81,805, 1S 1,5 3.2
= 27—2?1‘( 1y 21 1595 1) ( )
1
= HHZn—Z(Slv"'7571—1;8/17"'7821—1;5;d)
Proof:
t
0 < /dT@(T—v\/v')(T—u—l—e)_”(r—u'—l—e)_”
o
g/ dr(t—uVu 4+e) vV —uAu +e)”
vVl
1
< (U\/v'—uVu’—l—e)_”H(U\/v’—u/\u'—l—e)_”

w—1

This estimate suffices to show
Lemma 3.5 For 27 — 2_622 #0

r2GY — = 0 LA (")
2N -2 0 ;

as € goes to +10.



Proof: Consider first n > 3. By the above estimate it is sufficient to
show that

1_1}307“ [ Hanz |72 0 2n—2) = 0-

HHgn_QHiz)(RQH_2) = /d”_ls/d”_lsl(v\/v’—u\/u’—l—e)z_z”(v\/v’—u/\u’—l—e)_M

1 v v v!
:cn/dv/dv’/du/du'
0 0 0 0
v u)n—S(U/ _ u/)n—S

(Vo' —uVu +e) =5 Vo —uAu +e)rti

t/e y y Y
cnes_zd/ dy/ dy’/ d:z;/ dx’'
0 0 0 0
1

(y—aVa' + 1) 3 (y—a Az’ + 1)1

IA

and then decompose the x-integration into the following two domains

<z and < 2

In the first case

1
[ - “v‘%/d/d/d
Y “'y—x+1>d3<y—x+1>
1
— g8 dt/d / d ‘/d
/y Y wy—x+1> Ty —at )

We first estimate the last integral

Y | y—a'if d=3
de < In(y—a’'+1)ifd=4
d— =~
L’@_x+m i 1 d >

and one finds

,_fowifd=3
"1 0E M) ifd >3

Hence, in both cases, r* I vanishes as ¢ — 0.



The second case is

t/e !
[ =82 d yd:z; ! yd [ da’ ! (3.3)
o Tl Cy—er LY Yy

Estimating the la st integrand by 1 we find

/dy/ = gc+1)di’>§(y_2x)2

Substitution of these estimates into the integrals over o and y gives for

d>3

) O(l)ifd=3
[ < const.e®% dy d:z; y=2) =< O(etne)ifd =4
_x_|_1)d 1
(v O™ if d > 4

so in that r* I vanishes as ¢ — 0. For n = 2 it is sufficient to use the estimate

t
0 < Gy= / drO (1 —u VvV u') (1 — u+ )"V r — /4 o)t 742
0

t
< / dr(t —u Vv —I—as)l d/z(u\/u—u/\u —I—as)l /2 = Hy(u,u’)
uvVau!
and to verify that
. 2
llm T4 HH2HL2([O,t]2) — 0

e—40

[

With this lemma we have established that the highest order term of the
(renormalized) quadratic variation goes to zero in quadratic mean for any
t > 0. The kernels G of the other terms are obtained by integrating over
pairs of s, such as e.g. in

t
Sm/ dsGY 8,882, 805,38 1,5 1),
Y ; 2(7_?1)( 2,52 1 1)

these new functions are in fact also bounded by an expression like (3.1), and
hence by (3.2), so that for all € > 0,
|G| < const. ||Hy||

With this goal we show
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Lemma 3.6 Letn > 2 and m > 1 , and let F, ,, be a function symmetric
in the variables s and in the variables s', with

0 < Fom(S1yeeeySnm1y8n, 81,0y 8_1,5) (3.4)
¢
< c/ drO (T— maze (s, 3')) (r— m<m (s;)+¢e) " (r— m<m (sh)+e)™™
0 1<n 1<n 1<n

Then dc,, < oo such that

¢
0 < /dSme(Sl,...,Sn_l,S,Sll,...,S;_l,S) (3.5)
0

t
< Cm/ drO (T_ max (s, 5/)> (1— min (s;) 4 &) "V (r— min (s}) 4 &)™ H/2
0 1<n 1 <n i<n
Proof: Under the assumption of the lemma

t

! !
/dsme (31,...,3n_1,3,31,...,Sn_1,3> <

c/ds/dTG) (T— max (5¢,3;,3)> (T— min (52',3)—|—5> (T— min (5;,3)—|—5> :
0<i<n—1 0<i<n—1 0<i<n—1

0 0
Using
v= min s , v = min s
0<i<n—1 0<i<n—1
v= max s , v = max s,
0<i<n—1 0<i<n—1

(For n = 2: ul) = o) = 5(1/)). Assuming without loss of generality that
u < u’ we can decompose the s-integration of our estimate as follows

c]ds ] dr0 (7 — max (v,v',s)) (r — min (u,s) + &)™ (7 — min (u', s) + )"

t U ! vVv! t
= c/dT /—I—/—I— / + / ds
0 0 U u! V!
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-0 (7 — max (v,v',8)) (1 —min (u,s) + &) (7 — min (v, 5) + )"

t U !

= c/dT /dS(T—S+€)_2m—|—/d8(T—u—|—€)_m(T—S—|—€)_m
vl 0 m
vV T
+ / ds(t—u+e) " (r—u +e) " + / ds(t—u+e) " (r—u +e)™"
u! vVu!

We now show that each of the four terms obeys the postulated estimate (3.5)

£ U £
—2m 1 —2m+41
/dT/dS(T s+e) Zm—l/dT(T ute)

V! 0

V!

t

. /dTG) (r—oVo)(t—u+ 5)_m+% (1 —u' + 5)_m+%

0

1

- 2m —

since u < v’ and m > 1/2.
The second term

V!

€ u!
/dr/ds(r—u—l—e)_m(r—s—l—e)_m
¢

1 -m
< m_l/dT(T—u—I-aS)_m(T—ul—l-aS) i
vVl
t
1 1 4l
< 1/dT@(T—v\/v’)(r—u—l—e)_m+5(r—u'—|—5) mta
m_

0

using again u < u’. The third term
t vV
/ dr / ds(r—u+e)" (r—u' +e) "
vv! u!
¢

= /dT(T—u—l—e)_m(T—u'—l—s)_m(v\/v’—u’)

V!

12



1

< drO (1t —v V') (T—u—l—e)_m—l_% (T—u'—l—e)_m+5.
0
Finally
t T
/ dr / ds(t—u+e) " (r—u' +e)"
vvu! vvu!
t
= /dT(T—u—l—e)_m(r—u’—l—e)_m(T—UVU’)
vv!
t
< /dT(T—u+€)_m(T—ul+€)_m(T—U/)
vv!
t
< /dTG) (r—oVo')(r—u+ 5)_m+% (r—u' + 5)_m+15
0
|

Combining this Lemma with the previous one we conclude that for all
kernel functions G, with k£ > 2 arguments

lim r*||SymGy||* < lim +*||GR||* < lim +* || Hi||* = 0
e—+0 e—+40 e—+0

i.e. we have shown

Proposition 3.7

ms — lim (rM;,rMy), = 5ik%k2t

e——40 n

Proof of Theorem 2.5: The above limit is clearly (up to constants) the
quadratic variation of a Brownian motion. Theorem 2.5 is then a consequence
of e.g. Theorem VIIL.3.11 in [16], which

in the present case of continuous martingales requires convergence in
probability of quadratic variations for a dense set of t.
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To control the remaining terms Ny(d, 7,¢;) in the chaos expansion we
observe that

— — —||2
HNt(daWﬁ)H?p) = W+ —(vte) = (t—u+te) HL2([0,t]")

< R+ + o+l 4l —u+ o))

The first of these three norms is equal to t"(t + ¢)~**, i.e. O(1). The
second one is

, t o1 e t/e i’
dn kiad = d e — - d -
/[O,t]" s(v+e) n/o U(U 4 g)ntd—d ne /0 x(x + 1)ntd—t

O(1) ford=3
= O(lne) for d =4
0(54_d) for d > 4

which are suppressed by the renormalization

-1
2, v [llne|”" ford=3
" (5)_{ cl=3 ford >3

A similar estimate holds for the third term of N, so that we have shown

Lemma 3.8

St T e) =
ms EgTor(s)Nt(d,n,e) 0.

In fact the convergence is uniform in any finite t-interval. Next we show

Lemma 3.9 The processes {r(c)N.(d, W ;) : ¢ > 0}, {r(e)M.(d, @, ;) : ¢ > 0}
and their linear combinations are tight.

Proof: A criterion for tightness of M (following [17], p.64) is

sup E [rM, — rM,|* < Cp (t —s)'17, (3.6)

e>0

VT'>0and 0 <s <t <T and for some positive constants «, 3 and C7.
As a first step we show

sup E |rM,; — 7“]\45|2 <Cr(t—s) (3.7)

e>0

14



by direct calculation:
t v
E|M, — M,|* = W'n/ dv/ s —u+e) ¥
5 0

The second integral may be estimated as follows

/Ovd”_ls(v—u—l-e)_h — (n—l)/ovdu( (”_“);:d_4

v—u-4e¢

v/e 1
< (n—1 53_d/ do————
— ( ) o ((E + 1)d—2

(n—1) In(v+4¢e)—Ineford=3
-\ O(34) for d >3

Renormalization of this estimate by the factor r* makes it bounded on
[0,77], and the integral over v gives the desired estimate (3.7), i.e.

||r My — TMng <er(t—s) (3.8)

Note that the kernel functions of A are all dominated by those of M. Hence
we have also, possibly with a larger constant ¢7, the estimate

|lr K: — T[(5H§ <ep(t—s) (3.9)

By the hypercontractivity of the Ornstein-Uhlenbeck semigroup (see e.g.[14],
p.235), one has for n'” order white noise monomials » € (L?), and any a > 2

el < cnallells
For p = r Ky — rK; ,and using the above estimate for the 2-norm, we get
E|rK, —rK,|" < Cp(t —s)**

as required to ensure tightness. The estimates for r N etc. are of the same
kind.H
Proof of Theorem 2.6: We need to consider

rK=rM+4+rN

knowing that, as ¢ — +0, the r K are tight by Lemma 3.9, the r M converge
in law, and the rN; go to zero in mean square. The latter two facts are suffi-
cient, via the Cramér-Wold device (see e.g. [17] p.61), for finite dimensional
convergence of rK’; tightness then implies convergence in law.
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