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Abstract

The Universe is a well developed structure on the scale of galaxies
and smaller formations. This requires that at the beginning of the expan-
sion of the Universe there should have existed fluctuations which leaded
to the formation of such structures. Inflation, a successful cosmological
paradigm, allows us to consider the quantum origin of the fluctuations.
Within this paradigm, we can explain not only all the inhomogeneities we
see today but also the formation of Primordial Black Holes (PBHs). We
conducted a review of the production of PBHs in a radiation dominated
Universe from where we calculated the fraction of the Universe going into
PBHs at a given epoch 3. We have considered four known different mod-
els for the spectrum of the primordial fluctuations: i) scale—free power law
spectrum; ii) scale—free power law spectrum, with a pure step; iii) broken
scale invariance spectrum; iv) a running-tilt power law spectrum. Our
results gives 8 = 0 to 8 ~ 1077, and imply a non-negligible fraction of
PBHs (at leat within some models).

1PhD Supervisor
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Preface

Black Holes are objects predicted by the laws of Physics. So far, black holes (or
black hole candidates) have been detected only by indirect means. On this PhD
thesis we plan to investigate the possibility of direct detection of a black hole.
We have started with primordial black holes (i.e., black holes formed in the
early universe) because, as far as we know, those are the only ones that could
have formed with substellar masses which makes them potential candidates for
the nearest detectable black hole. In this report we present the PhD work done
during the first year (full time).

Sections 1 to 4 are devoted to literature revision although they have also some
original work. In Section 1 we make a brief review of the primordial Universe
and in Section 2 we explore the conditions and mechanisms of Primordial Black
Hole formation from primordial density fluctuations in a radiation dominated
Universe. In Section 3 we introduce the main formulae needed to determine the
fraction of the Universe going into Primordial Black Holes (3) and in Section 4
we introduce different alternative models for the primordial fluctuations spec-
trum: i) scale—free power law spectrum; ii) scale—free power law spectrum with
a pure step; iii) broken scale invariance spectrum; iv) running-tilt power law
spectrum.

In Section 5 we present our results. So far, we have determined £ for all of the
primordial fluctuations spectra considered in Section 4. The basic observational
input needed in the calculations comes from the cosmic microwave background
radiation. Model i) above gives 8 &~ 0. For the remaining models we have to
give values to two additional parameters. We have explored the set of values
leading to higher values for 8 (up to ~ 1077).

In Section 6 we present our future work plan. In the near future we want
to improve the calculus of 8 (e.g., including the Initial Mass Function). In the
not so near future we want to determine the Primordial Black Hole distribution
function in the universe and, consequently, determine the mean distance to the
nearest black hole and the probability of its detection.

José Laurindo de Gois Nébrega Sobrinho
Universidade da Madeira
March 2007
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1 Introduction

The Universe is a well developed structure on the scale of galaxies and smaller
formations. This requires that at the beginning of the expansion of the Uni-
verse there should have existed fluctuations which leaded to the formation of
such structures. It is natural to assume that the amplitude of fluctuations was
even larger at smaller scales (e.g. Novikov et al., 1979). Some regions might
have got so compressed that they underwent gravitational collapse to produce
primordial black holes (PBHs). The first person to realize that was Hawking
(1971). Zeldovich & Novikov (1967) also discussed the inhnomogenities in the
early Universe but they were considering ”retarded cores” rather than BHs (e.g.
Carr, 2003).

There must have been many such volumes for which the gravitational energy
considerably exceeded the kinectic energy of expansion. These regions would not
have continued to expand with the rest of the Universe but would have collapsed
again (Hawking, 1971). One would expect therefore at least a few regions to
become sufficiently compressed for gravitational attraction to overcome pressure
forces and the velocity of expansion and cause collapse to a PBH (Carr &
Hawking, 1974). This is the only way to produce BHs with mass smaller than
about 3M,, except possibly by the production of BHs in accelerators such as
the Large Hadron Collider (LHC) in the speculative framework of branes (e.g.
Cavaglia et al., 2003) or even when cosmic-rays collide with the upper layers of
the atmosphere (e.g. Anchordoqui et al., 2002).

Hawking (1974) has shown that, when quantum effects are taken into ac-
count, BHs radiate like a blackbody. This process pratically does not affect
stellar mass BHs, but it could be very significative in the case of smaller mass
PBHs. In fact PBHs with initial masses bellow 10'°g should have been com-
pletely evaporated by now and PBHs with initial masses of order 10'°g are
supposed to be exploding by the present time contributing to the y-ray back-
ground (e.g. Page & Hawking, 1976). The Hawking radiation emitted by a BH
on the final stage of evaporation could be detected at X-rays or y-rays from
~ 108m (Earth-Moon distance) up to ~ 20pc depending on the stage of the
evaporation process (Sobrinho, 2003).

PBHs are interesting for several reasons: PBHs are the only BHs small
enough for quantum emission effects to be important (e.g. MacGibbon & Carr,
1991) and thus they would play a key role in studying quantum gravitational
effects, PBHs with any mass could be an excellent indicator of the conditions
in the early universe, PBHs could (in principle) contribute with a major part
to dark matter, PBHs are unique since they alone could be expected to survive
the dissipative effects which erase all other imprints of conditions in the first
second of the Universe (Carr, 1975), and PBHs probe scales which are many
orders of magnitude smaller than the scales probed by Large Scale Structure
(LSS) surveys and Cosmic Microwave Background (CMB) angular anisotropy
observations giving the possibility to probe a very distinct part of the inflaton
potential (Polarski, 2001).

It has been proposed that PBHs can explain certain observational anom-
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alies such as: the unexpectedly high fraction of antiprotons in cosmic ray, the
positron background spectrum and the annihilation line radiation coming from
the galactic center (e.g. MacGibbon & Carr, 1991).

A definite observation of y—rays from a PBH would be a tremendous vindi-
cation of general relativity and quantum theory and would give us important
information about the early universe and strong interactions at high energies.
On the other hand, negative observations which placed a strong upper limit on
the density of PBHs would also give us valuable information because they would
indicate that the early Universe was probably nearly homogeneous and isotropic
with a hard equation of state (Page & Hawking, 1976). Even if PBHs never
formed, their nonexistence provides useful cosmological information (MacGib-
bon & Carr, 1991).

1.1 The primordial universe

According to observation we live in a flat, homegeneous and isotropic expanding
universe (e.g. Jones & Lambourne, 2004). Such a universe can be described by
the Friedmann—Robertson—-Walker (FRW) metric (e.g. d’Inverno, 1993)

dr?
1—kr

ds® = dt* — R*(t) s + 17 (d6” + sin®0d¢”) (1)
where R(t) is a scale function which describes the time dependence of the geom-
etry and k is a constant which fixes the sign of the spatial curvature (k = 0 for
Euclidean space, k = +1 for a closed elliptical space of finite volume and Kk = —1
for an open hyperbolic space). Besides the metric (1) we need an equation of
state to describe the universe. In general we may write (e.g. Carr, 2003)

p=0p )

where p is the pressure, p the density and 6 the adiabatic index (0 < 6 < 1).
The primordial universe was radiation dominated (i.e., it was opaque to light),
described by the equation of state (e.g. Carr, 2003)

p="t 3)

The radiation and matter densities in the universe decrease as the expansion
dilutes the numbers of atoms and photons. Radiation is also diminished due to
the cosmological redshift, so its density falls faster than that of matter. When
the age of the universe was ~ 10°® years it becomed matter dominated (8 = 0).
During the radiation dominated era € will usually be 1/3 (equation 3). However
if the universe experiences a dust-like phase, during a phase transition, one may
have # = 0 (Carr et. al., 1994).

In order to explain problems such as the flatness problem and the horizon
problem, the present paradigm makes use of an inflationary stage of expansion
in the very early Universe. During inflation the scale factor R(t) has grown up
exponentially from an intial value R;, corresponding to the instant #; ~ 10~%%s
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when the electroweak and strong forces separate (e.g. Narlikar & Padmanabhan,
1991, cf. Table 1) to a value R, according to (e.g. d’Inverno, 1993)

%j — eN(t) (4)
where
N(t.) = Ht, (5)

gives the number of e—folds that elapsed during inflation. For example, the
value N = 70 means that during inflation the scale factor have grown up by a
factor of €™ (~ 103%). Although the exact value of N (t.) is unknown, suggested
values are in the range 50 < N(¢.) < 70 (e.g. Narlikar & Padmanabhan, 1991).

Inflation gives a possible solution to the crucial problem of where the pri-
mordial fluctuations leading to the observed LSS come from. In fact, they have
their origin in the ubiquitous vacuum fluctuations. The seed of the LSS has
been observed in the form of tiny fluctuations imprinted on the CMB at the
time of decoupling. Each inflationary model makes precise predictions about
the spectrum of its primordial fluctuations and this is how these models can be
constrained by observations (e.g. Bringmann et al., 2002).

Solving the field equations of General Relativity we find that R(t) ~ t'/2
in a radiation dominated universe and that R(t) ~ t*/ in a matter dominated
universe (e.g. d’Inverno, 1993). It is convenient to set the present value of the
scale factor equal to unity

Ro = R(to) =1 (6)

so that at any time the scale factor is related to the redshift z simply by (e.g.
Liddle & Lyth, 1993)

1
= 7
142 @
We may write for the matter dominated stage
2/3
Rt = (L), ta<t<to 8)

and for the radiation dominated stage

R = (1) (1£)" i<, (9)

where ¢y is the present time (i.e. the age of the universe), t., is the age of
the universe at the last scattering surface (corresponding to the instant when
photons decoupled from matter) and ¢, is the age of the universe at the end of
inflation. The Hubble parameter H is defined as (e.g. d’Inverno, 1993)

H(t) = 2 (10)
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Thus, with the help of equations (8) and (9) it turns out that
leg <t < to (11)
and

H(t) = 55, te <t <te (12)

The present value of the Hubble parameter Hy (also known as the Hubble con-
stant) is, according to the most recent WMAP observations (Spergel et al.,
2006)

Hy = 73.4kms ™" Mpc™ (13)

The value of ¢g can be determined inserting Hy into equation (11). It turns out
that

to ~ 2.8 x 10'7s (14)

The value of t., can be obtained with the help of equations (7) and (8) consid-
ering that z ~ 1100 for the last scatering surface (e.g. Padmanabhan, 2001)

teg ~ 7.7 x 10'%s (15)

During inflation the Hubble parameter H remained constant (e.g. Narlikar &
Padmanabhan, 1991). Considering ¢; = 10~3%s in equation (12) we find out the
constant value of the Hubble parameter during inflation, and then inserting it
into equation (5) we obtain

te ~ 107335 (16)

valid for both N(t.) = 50 and N(¢.) = 70.

The horizon mass, My, at a given epoch, defined as the mass inside one
Hubble radius at that epoch, is given approximately by the expression (e.g.
Carr, 2005)

Mu(t) ~ S 10 17
w0~ G 2100 (10 ) )
where c is the speed of light in vacuum and G is the Gravitational constant. It is
natural to assume that the mass of a PBH when it forms is of the order of My at
that epoch (e.g. Carr, 2005). The horizon mass at matter-radiation equality is
of order 1018 M. If there where BHs with such large masses we should fall down
into the gravitational field of the nearest one, see the anisotropy in the CMB
radiation and the distortion in the local velocity field of galaxies (e.g. Eardley
& Press, 1973; Novikov et al., 1979). In conclusion we may say that it is secure
to assume that PBH formation occurs well within the radiation dominated era.

In Table 1 we present a timeline of the universe according to the inflationary
big bang model.
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Table 1: The universe timeline according to the inflationary Big Bang model
(data was taken from Unsold & Baschek (2002) and Jones & Lambourne (2004)).

Era t(s) T(K) T(GeV) Comments
Planck - - - Quantum Gravity rules
GUT 1043 1032 1019 Gravity separates
Quark 1073% 1027 1014 Strong-electroweak

phase transition
Inflation begins

~ 10733 10%7 10 Inflation ends

3x 1071 180 Top quark threshold
10~10 1015 100 Electroweak phase transition
108 4.25 Bottom quark threshold
10-7 1.78 Lepton 7 threshold

1.5 Charm quark threshold
1.6 —1 Hyperons threshold

Hadron 106 1013 1 Formation of neutrons
and protons
4 %1078 0.50 Kaons threshold
5x 1075 0.14 Pions threshold
1074 0.106 Muons threshold
Lepton 10—4 0.05 0.06 Strange quark threshold
and last pions decay
0.02 0.01 Down quark threshold
0.06 0.005 Up quark threshold
1 Decoupling of v,
2 Neutron production stops
Photon 3 5x10° 5x10~* Electron threshold
180 10? Nucleosynthesis of 2H stable
10° Nucleosynthesis stops
Matter 1013 Decoupling of photons
1015 Reionization

1017 2.725 Present
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2 Primordial Black hole formation

2.1 Fluctuations

It was realized already some time ago that a spectrum of primordial fluctuations
can lead to the formation of PBHs (e.g. Carr & Hawking, 1974; Carr, 1975;
Novikov et al., 1979). What was considered initially was a spectrum of classical
fluctuations instead of a spectrum of quantum fluctuations. Now we have in
cosmology a successful paradigm based on the existence of an inflationary stage
which allow us to consider the quantum origin of the fluctuations. During
inflation fluctuations of quantum origin of the inflaton (i.e. the scalar field
driving inflation) are produced. These fluctuations are then stretched to scales
much larger than the Hubble radius at the time when they were produced. As
the expansion of the universe goes on each fluctuation will reenter at some stage
inside the Hubble radius, depending on its wavelength. With this mechanism we
can explain all the inhomogeneities we see today even on the largest cosmological
scales as well as the production of PBHs (Polarski, 2001).

However the inhomogeneities that we observe today do not display any prop-
erty typical of their quantum origin. On the large cosmological scales probed
by the observations the fluctuations appear to us as random classical quantities.
This means that there was at some time in the past a quantum—to—classical
transition (Polarski, 2001).

Each field mode can be splited into two linearly independent solutions: the
growing mode and the decaying mode. At reentrance inside the Hubble radius,
during the radiation dominated or the matter dominated stage, the decaying
mode is usually vanishingly small, and can therefore be safely neglected. As
a result the field mode behaves like a stochastic classical quantity (for more
details see Polarski (2001) and Polarski & Starobinsky (1996)).

The classical behaviour of the inflationary fluctuations is very accurate for
the discription of the CMB temperature anisotropy and LSS formation. In the
context, of PBH formation this is not always the case. The smallest PBHs can
be produced as soon as the fluctuations reenter the Hubble radius right after
inflation. However at this stage the decaying mode still had no time to disappear
completely and, as a consequence, one cannot speak about classical fluctuations
(Polarski, 2001).

The degree to which the effective quantum-to—classical transition will occur
is given by the ratio (Polarski, 2001)

Dy = Db (18)
¢k7dec
of the growing mode (gr) to the decaying mode (dec) of the peculiar gravitational
potential ¢(k). Very large values of Dy, will correspond to an effective quantum—
to—classical transition. Equation (18) can be written as a function of the PBH
mass (Polarski, 2001)

D(M) = 4AGH,§% (19)
p
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where A is the growth factor of ¢(k) between the inflationary stage and the
radiation dominated stage, Hy, is the Hubble parameter at Hubble radius cross-
ing during the inflationary stage and M), is the Planck mass. The ratio D(M)
will grow with increasing PBH masses M, due essentially to the last term in
expression (19). Clearly there is a range of scales where D will not be large and
the quantum nature of the fluctuations is important (Polarski, 2001).

PBHs with masses less than M, ~ 10'® g will have either completely evap-
orated or, in any case, be in the latest stage of their evaporation. Expression
(19) evaluated at this natural cut—off for PBH masses gives D(M,) ~ 10%
which means that one can safely use the effective classicality of the fluctua-
tions for PBHs with initial masses M > M,, i.e., all the non—evaporated PBHs.
Hence, for all PBHs produced after approximately 10723 s (cf. equation 17), the
quantum-to—classical transition is already extremely effective. This means that
quantum interference for these PBHs is essentially suppressed and one can re-
ally work to tremendously high accuracy with classical probability distributions
(Polarski, 2001).

During the rest of the text we will consider only classical fluctuations. The
simplest way of describing a classical fluctuation is in terms of an overdensity
or density contrast (e.g. Carr, 1975)
_Am

5(m) (20)

m
where m is the average mass of the perturbed region and Am is the excess of
mass associated with the perturbation. If we want to treat the evolution of the
spectrum of fluctuations we must consider instead §(7) which can be defined as
(e.g. Musco et al., 2005)

G(Fa t) — €p
€p

6(F) = (21)
where ¢(7,t) represents the density evolution inside a region of radius r and
€p represents the background density. Each perturbation 4(7) can be written
as a Fourier series defined in a comoving box much bigger than the observable

universe (e.g. Liddle & Lyth, 1993)

57 =S et T (22)
k

where k represents the wavenumber. Each physical scale A(¢) is defined by some
wavenumber k and evolves with time according to (Blais et al., 2003; Bringmann
et al., 2002)
R(t
A(t) = 2w# (23)
where R(t) is the scale factor. The term scale is appropriate because features
with size r are dominated by wavenumbers of order k ~ r~! (e.g. Liddle & Lyth,
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1993). For a given physical scale the horizon crossing time ¢, is conventionally
defined by (e.g. Blais et al., 2003; Bringmann et al., 2002)

ck = R(t)H (ty,) (24)

where H is the Hubble parameter. This corresponds to the time when that scale
reenters the Hubble radius which will inevitably happen after inflation for scales
that are larger than the Hubble radius at the end of inflation. It is at that time
tr that a PBH might form (e.g. Blais et al., 2003; Bringmann et al., 2002).

For a perturbation of a fixed size, it cannot begin to collapse until it passes
within the cosmological horizon. The size of a PBH when it forms, therefore, is
related to the horizon size, or equivalently to the horizon mass My (equation
17) when the collapsing perturbation enters the horizon.

In Table 2 we have for several epochs of interest the values of the wavenumber
k (equation 24) corresponding to the fluctuations crossing the horizon at that
times as well as the corresponding horizon mass My (equation 17). The selected
epochs are: t, ~ 10733s (end of inflation), ¢, ~ 10723s (corresponding to the
production of PBHs that are exploding by the present time, (e.g. Green &
Liddle, 1997), t = 10~ 1% (electroweak phase transition, (e.g. Unséld & Baschek,
2002)), t = 107% (quark-hadron phase transition, (e.g. Unsdld & Baschek,
2002)), t = 6 x 10~°s (corresponding to the minimum mass at which a stellar
BH could form, (e.g. Padmanabhan, 2001)), ¢ = 20s (corresponding to the
maximum mass allowed for PBH in the Cosmic Dark Matter (CDM) context,
(Afshordi et al., 2003)), t = 2 x 10°s (corresponding to the mass of the biggest
Supermassive Black hole (SMBH) known candidates, (e.g. Kormendy, 2004),
teq = 7.7 x 10'%s (matter-radiation equality) and ¢, = 2.8 x 10'7s (present
time).

2.2 The condition for PBH formation

The collapse of an overdense region, forming a BH, is possible only if the roat
mean square of the primordial fluctuations, averaged over a Hubble volume, is
larger than a threshold &,,;,. There is also an upper bound d,,,4, corresponding
to the case for which a separate universe will form. Thus a PBH will form when
the density contrast § averaged over a volume of the linear size of the Hubble
radius satisfies (Carr, 1975)

6min S 0 S 6maw (25)

The lower and upper bounds of 4 can be determined following analytic argu-
ments. Consider for simplicity a spherically-symmetric region with radius R
and density p = p. + dp embedded in a flat Universe with the critical density
pe. For spherical symmetry the inner region is not affected by matter in the
surrounding part of the Universe. The expansion of this region will come to an
halt at some stage, followed by a collapse. In order to reach a complete collapse,
the potential energy, V, at the time of maximal expansion (e.g. Kiefer, 2003)

GM?

V o~ ~ Gp*R® (26)




The fraction of the universe going into PBHs 12

Table 2: The wavenumber & (equation 24) of the fluctuation crossing the horizon
at different epochs #; and the corresponding horizon mass My (equation 17).

tr(s) k(m~t) My (g) My (M)
te 1033 1.7 x 102 10° 5.0 x 10729
. 10-23 1.7x10~7 1015 5.0 x 10719

1010 5.5 x 1071 10%8 5.0 x 1076

10-¢ 5.5 x 10716 10%2 5.0 x 1072

6x107° 7.1x107'" 6.0x 1033 3
20 1.2x 107  2x10% 108
2x10° 1.2x10721  2x10% 1010

teg T7Tx1012 26x1072° 7.7x10°° 3.9 x 107

to 28x10'7 7.9x107%7 28x10% 1.4 x 10%
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has to exceed the inner energy, U, given by the pressure (e.g. Kiefer, 2003)
U~ pR? (27)

In the radiation dominated era (which is the era of interest for PBH formation)
the equation of state is given by (3) yelding (e.g. Kiefer, 2003)

1
RZH@ (28)

In order to prevent the formation of a separate universe we must ensure that
the radius of the collapsing region, R, is smaller than the curvature radius of
the overdense region at the moment of collapse (e.g. Kiefer, 2003)

1

R< Nier (29)

One then has the condition

1>R2\/§ (30)

evaluated at the time of collapse, for the formation of the PBH. In particular,
when the fluctuation enters the horizon in a radiation dominated Universe one
gets (e.g. Carr, 1975; Kiefer, 2003)

1

where the lower bound comes from condition (28) and the upper bound comes
from condition (29). The extreme §,,,, corresponds to the situation for which
a separate Universe forms and d,,;, corresponds to the threshold of PBH for-
mation. If § < 0,4, the fluctuation dissipates and there is no PBH formation
(Section 2.4.3).

The correct value of d,,, has been (and continues to be) a matter of discus-
sion (see Table 3). We have already seen that analytic arguments suggest the
value i, = 1/3. However, numerical simulations considering critical phenom-
ena in the PBH formation (Section 2.4.1) reveale an higher value of 0,,:, ~ 0.7
which is almost twice the old value. Another study using peaks theory (Green et
al., 2004) lead to dpmin & 0.3 — 0.5 which is in good agreement with the analytic
approach d,,;, = 1/3. Taking into account that the threshold ¢,,;, arises from
critical behaviour we will refer to d,,;, in the rest of the text as d,.

2.3 The Initial Mass Function for PBHs

It was belived for a long time that the PBH mass, at the time of formation, was
aproximately equal to the mass of the collapsing region and thus to the horizon
mass My (equation 17) at the epoch of formation (Niemeyer & Jedamzik, 1998).

A particularly interesting development has been the application of critical
phenomena to PBH formation. Studies of the collapse of various types of spheri-
cally symmetric matter fields have shown that there is always a critical solution
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which separates those configurations which form a BH from those which dis-
perse to an asymptotically flat state. The configurations are described by some
index ¢ and, as the critical index ¢, is approached, the BH mass is found to
scale as (6 — d.)7 for some exponent . This effect was first dicovered for scalar
fields (Choptuik, 1993). The index 4. defines the threshold for PBH formation.
It was demonstrated that scaling and self-similarity occurs in the gravitational
collapse of a massless scalar field near the threshold of PBH formation.

Scale—invariant, or self-similar, solutions arise in fluid dynamics problems
(without gravity) when there are two very different scales in the initial prob-
lem (for example an explosion with high initial density into a thin surrounding
fluid), and that such solutions play the role of an intermediate asymptotic in
the intermediate density regime (Gundlach, 1998). Roughly speaking, the ki-
netic energy of the massless field wants to disperse the field to infinity, whereas
the gravitational potential energy, if suficiently dominant during the collapse,
will result in the trapping of some amount of the mass—energy of the system in
a BH. The key point is that the dynamical competition can be controlled by
tuning the parameter ¢ in the initial conditions. It is possible to set up families
of initial data such that if § < §. the scalar field completely disperses, while if
§ > 8. a BH forms (Choptuik, 1993).

Choptuik (1993) demonstrated that on the case of a massless scalar field the
BH masses are well-fit by a scaling law with an exponent v & 0.37 which is fam-
ily independent. Similar results were subsequently demonstrated for radiation
(Evans & Coleman, 1994) and then more general fluids (Koike et al., 1999; Mai-
son, 1996). Evans & Coleman (1994) studied the spherically symmetric collapse
of a perfect fluid with the equation of state (3) obtaining a self-similar solution.
They argued that the phase transition in the case of radiation fluid collapse
should be characterized by continuous self-similarity. Once more, convincing
evidence for mass-scaling in the super-critical regime, with v ~ 0.36, was found.
Koike et al. (1995) obtained for a collapsing radiation fluid v = 0.3558019.

In all of these studies (e.g. Choptuik, 1993; Evans & Coleman, 1994; Koike et
al., 1999) spacetime was assumed to be asymptotically flat. However, Niemeyer
& Jedamzik (1998) have applied the same idea to study BH formation under
the context of an expanding universe (asymptotically Friedmann model) and
have found similar results. Based on the scaling relation it was possible to
derive a universal two parameter initial mass function (IMF) applicable to PBH
formation during one particular epoch. It was then possible to show that when
the perturbation overdensity is sufficiently close to the critical overdensity for
PBH formation, J., the final mass of the resulting PBH may be an arbitrarily
small fraction of the horizon mass given as function of the distance from the
threshold, § — d, (Niemeyer & Jedamzik, 1998)

Mgy = KMy (6 —6.)" (32)

where K and v are demensionless quantities to be determined according to the
perturbation characteristics and My is the cosmological horizon mass at the
horizon—crossing time (equation 17).
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Entering the scaling regime requires a degree of fine-tuning of the initial
data which was believed to be unnatural for any astrophysical application. How-
ever, it was noted that this fine-tuning occurs naturally in the case of PBHs
forming from a steeply declining distribution of primordial density fluctuations
(Niemeyer & Jedamzik, 1998).

Since M — 0 as § — dc, this suggests that PBHs may be much smaller than
the particle horizon at the epoch of formation (Green & Liddle, 1999; Kribs et
al., 1999; Yokoyama, 1998). The cosmological constraints, based on evaporating
PBHs are slightly modified as a consequence of the production of not only
horizon—size PBHs, as previously assumed, but also smaller, sub—horizon mass
PBHs at each epoch (Niemeyer & Jedamzik, 1999a).

An important problem is to determine if whether the scaling law for PBH
masses, given by equation (32) is likely to continue down to vanishingly small
massses (Type II critical collapse) or if it stops at some finite value (Type I
critical collapse) (Choptuik, 1998). This is a very challenging problem from the
numerical calculation point of view because when § — §. we have the appearance
of strong shocks and deep voids outside the region where the PBH is forming
(Musco et al., 2005). Hawke & Stewart (2002) addressed this problem using
a purpose-built code. They claim that the formation of shocks prevents BHs
forming on scales below 10~%Mp but this has been disputed (see Miller, 2005).
In their work Hawke & Stewart (2002) had considered centred and non—centred
Gaussian pressure perturbations (see Section 2.4.1).

For supercritical evolutions leading to moderately large BHs (M/Mpyg >
1073), there is evidence for the scaling law with v ~ 0.35 for the centred
Gaussian profile and v ~ 0.36 for the offset Gaussian pressure profile (see the
right-hand graphs in Figures 1 and 2). This is consistent with the results re-
ported by Niemeyer & Jedamzik (1999a). However, for lower BH masses the
scaling law appears not to hold (see the left-hand graphs in Figures 1 and 2).
There is evidence of a minimum BH mass M/My ~ 10~* (Hawke & Stewart,
2002).

In Figure 3 we have represented the allowed masses for PBHs as a functuion
of time assuming that 107*My < Mppy < Myg. PBHs with intial masses
of ~ 10'%g are supposed to be exploding by now. Ligther PBHs should have
already completely evaporated.

In Table 3 it is shown the values for 7, K, and 4. according to various
authors. Notice that the value of 7 does not depend very significantly of the
type of perturbation considered. The some does not apply to K. Notice that
the critical value d. is not consensual.

2.4 The mechanism of PBH formation

The dynamics of collapsing density perturbations in the early Universe are fully
described by the general relativistic hydrodynamical equations of a perfect fluid,
the field equations, the first law of Thermodynamics, and a suitable equation
of state (e.g. Niemeyer & Jedamzik, 1999a). We shall restrict our attention to
spherical collapse because the assumption of spherical symmetry is well justified
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Figure 1: The BH mass as a function of the parameter C' (which governs the
strength of the density perturbation) for supercritical evolutions of initially cen-
tred Gaussian pressure profiles. The left figure shows the raw data. The right

figure shows the line of best fit for that subset of the data which is consistent
with the scaling law (equation 32) (Hawke & Stewart, 2002).

for large fluctuations in a Gaussian distribution (Bardeen et al., 1986) and
besides that it simplifies considerably the calculations (e.g. Musco et al., 2005)
because it reduces the problem to one spatial dimension.

For calculations in spherical symmetry it is convenient to divide the col-
lapsing matter into a system of concentric shells and to label each shell with a
comoving radial coordinate r (e.g. Musco et al., 2005). This approach is due
to Misner & Sharp (1964) and the corresponding set of equations is called the
Misner—Sharp equations. In the Misner—Sharp approach the metric is usually
written in the form (e.g. Musco et al., 2005)

ds? = —a’dt* + b2 dr® + R2 (d6” + sin®(0)dg*) (33)

where R (the Schwarzschild circumference radius), a and b are functions of r
and the time coordinate ¢. Here the time coordinate plays the role of a cosmic
time. In the absence of perturbations ¢ reduces to the F'RW time coordinate and
R, to what is commonly referred to as proper distance in Cosmology (Niemeyer
& Jedamzik, 1999a).

For a classical fluid, composed of particles with nonzero rest—mass, it is
convenient to use the rest-mass p (or baryon number) contained interior to the
surface shell as its co-moving coordinate r. For the case of a radiation fluid the
rest—mass and baryon number are not available as conserved quantities (Musco
et al., 2005). The energy density of the early Universe is dominated by photons
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Figure 2: The BH mass as a function of the parameter C' (which governs the
strength of the density perturbation) for supercritical evolutions of initially cen-
tred offset Gaussian pressure profiles. The left figure shows the raw data. The

right figure shows the line of best fit for that subset of the data which is consis-
tent with the scaling law (equation 32) (Hawke & Stewart, 2002).
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Figure 3: According to the numerical simulations PBHs may form with masses
ranging from 10~*Mpy up to M. PBHs with intial masses smaller than 10'°g
are supposed to be completely evaporated by now, PBHs with ~ 10'%g should
be exploding by the present time and those with initial masses greater than
10'°g are still evaporating or accreting matter.
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and relativistic particles such as electrons, muons, neutrinos and their respective
antiparticles (e.g. Bicknell & Henriksen, 1979) and for this case we may use a
relative compression factor p defined as (Musco et al., 2005)

dp = 4mpR%bdr (34)
Identifying 1 and r this gives
1
b= ——
4rpR? (35)
It is usual to introduce the operators (e.g. Musco et al., 2005)
1/0
Dy=~-|—=
=1 (%) (36)
1/0
D, =—-|+—
b <8u> 37
and the definitions (e.g. Musco et al., 2005)
U= DR, (38)
I'=D,R; (39)

where U is the radial component of the four—velocity and I' is a generalisation of
the Lorentz factor. We are interested in processes occurring in the radiation era
of the Universe for which the equation of state can be given by (3). In this case
the system of Einstein and hydrodynamic equations can be written as (Musco
et al., 2005)

r M
DU =—(——D,p+ = +4nR, 4
U <e+p p+R§+ ﬂRp) (40)
___P 2
Dip = I D, (R2U) (41)
Die=TPp,, (42)
a
D,a=— D, 43
¢ e+p P (43)
D, M = 4rTeR? (44)

where M is a measure of the mass—energy contained inside radius g and I' can
be calculated either from (39) or from the constraint equation

r2:1+U2—2# (45)

S
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However,the Misner—Sharp equations are not suitable for the study of BH for-
mation. That is because singularities are tipically formed rather early in calcu-
lations and it is not then possible to follow the subsequent evolution (e.g. Musco
et al., 2005).

In early works this difficulty was overcomed by stopping the evolution in the
region where the singularity would appear (e.g. Novikov et al., 1979). PBHs
with mass of the order My formed. Bicknell & Henriksen (1979) used a method
of integration which avoids the appearance of singularities. Their computation
also shows the formation of PBHs with mass of the order of My or greater
(~ 30Mp) in cases where the overdensity in the initial perturbation was not
compensated by a surrounding under—dense region.

In order to avoid such kind of problems Hernandez & Misner (1966) intro-
duced the concept of observer time, using as the time coordinate the time which
an outgoing radial light ray emanating from an event reaches a distant observer.
For our purposes it is enough that the observer is located sufficiently far from
the perturbed region to be unaffected by the perturbation. Taking into account
that along an outgoing radial null geodesic the metric (33) reduces to

0 = adt — bdr (46)
Hernandez & Misner (1966) defined the observer time, u, by
fdu = adt — bdr (47)

where f is an integrating parameter (sometimes called the lapse function) to be
determined. Inserting (47) into the metric (33) we obtain

ds® = — f2du’® — 2fbdrdu + R2 (d9? + sin®(0)d¢?) (48)

The operators equivalent to (36) and (37) are now

n-3(8)
Dy = % <%) = 4npR? (%) (50)

and the system of Einstein and hydrodynamic equations can be written as
(Musco et al., 2005)

1 r M 2UT
DiU=———|——D — +47R, 2 (D 1
U = [e+p kp+R§+ 7er+cs< U + T )] (51)
_P _ B 20T
Dip = [DtU DU i ] (52)

e
Dte = tp
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_f M
Dyf = T (DeU+ Iz +47R,p (54)
DM = 4nwR? (e’ — pU) (55)

where ¢, is the sound speed, which is equal to 1/ V3 in the present case, and T
can be calculated from the constraint equation (45) of from the relation (Musco
et al., 2005)

T =DiR,—U (56)

In order to numerically solve equations (51) to (55) we may start converting
them to a set of finite difference equations (see Baumgarte et al., 1995). The
description of the calculation method lies beyond the scope of this work ( see
e.g. Musco et al., 2005; Niemeyer & Jedamzik, 1999a, for more details). Here we
will just point out that f = I'+ U works as a boundary condition at the surface
of the collapsing object and that the synchronization (DyRs — 0, f — 0) must
be achieved in order to avoid unphysical results (Musco et al., 2005).

The idea is to introduce into the equations, as an initial condition, a den-
sity perturbation ¢(R;) superimposed on a uniform background with constant
density €9 and then see the subsequent evolution of that perturbation.

Niemeyer & Jedamzik (1999a) considered three families of curvature per-
turbations expressed in the form of perturbations on the energy density. The
first family of perturbations is described by a Gaussian—shaped overdensity that
asimptotically approaches the FRW solution

_ R
C(Rs) = €g »]. + Aexp <—W>:| (57)
The second is described by a mexican—hat function
[ R? 3R?
e(Rs) = € »1 +A (1 - R—’zl> exp (_QR,%)} (58)
and the third by a sixth order polinomial
A(1_ B (3 B
(R)=4 [1 +a(i-m) (- R) | R<vERY (59)
60 I Rs Z\/?_)Rh

Here Ry, represents the horizon length at the initial time (the instant when the
perturbation begins). The amplitude A which appears in all the three families
of perturbations, is a free parameter used to tune the initial conditions to sub
or super criticality with respect to BH formation. The critical amplitude, A.,
is strongly shape dependent, varying between A. = 3.04 for mexican—hat per-
turbations and A, = 2.05 for the Gaussian curve (Niemeyer, 1998). The shape
of all the three perturbations for the critical case are ilustrated in Figure 4. For
the mexican—hat and polynomial perturbations, the excess energy in the over-
dense region is exactly balanced by the deficit in the outer underdense region,
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Figure 4: Shapes of the critical perturbations: Gaussian (solid line, equation 57),
mexican—hat (dotted line, equation 58), and polynomial (dashed line, equation
59) (Niemeyer & Jedamzik, 1999a).

whereas the Gaussian ones have only an excess, decreasing assimptotically to
the background value ¢y (Musco et al., 2005).

Niemeyer & Jedamzik (1999a) finded similar values of . for all the three
families of perturbations considered — §. = 0.67 (mexican—hat), 6. = 0.70
(Gaussian), and . = 0.71 (polynomial) — suggesting a universal value of 6. =
0.7. The results were confirmed by Musco et al. (2005) when considering pertur-
bations on length—scales much larger than the horizon scale and well within the
linear regime. However when considering growing-mode perturbations (which
is more plausible if the fluctuations derive from inflation, Carr (2005)), within
the linear regime and with length—scales larger than Rj Musco et al. (2005) en-
countred very similar curves and almost identical values of v but substantially
different values for the critical threshold (6, ~ 0.43 for mexican-hat perturba-
tions and d. ~ 0.47 for polynomial perturbations).

We will mention also the early study of PBH formation due to Nadezhin et
al. (1978) and Novikov et al. (1979) in which they considered metric perturba-
tions rather than density or pressure perturbations. They considered spherically
symmetric perturbed regions which communicate with the rest of the Universe
via a transition region (see Figure 5).

The perturbation amplitude can be described by Ry (the value of Rs on
the boundary of the perturbed region). The transition region extends over the
range A = Ry — Ry with Ry > R;. Across A the solution gradually matches
the external non—perturbed region. The formation of BHs strongly depends on
the width of the transition region. If A is small enough then steep pressure
gradients and hydrodynamic phenomena develop but if A is large then pressure
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Figure 5: The spherical perturbation and the transition region (Novikov et al.,
1979).

gradients are small. The narrower A, the greater is the role of pressure gradients
that hinder PBH formation. It turns out that PBHs can form only for very large
deviations from the Friedmann model which corresponds to Ry &~ 0.85—0.9R,,qz
where R4, = m/2 (Novikov et al., 1979).

In Figure 6 we have the criterion for PBH formation. The moment of time
at which a BH arises corresponds to the curve which is tangent to the line
log(m/r) = 0 (Novikov et al., 1979). In regions where the expansion is occuring,
r increases, but m decreases because of the work of pressure forces. Hence the
ratio m/r diminishes during expansion. When the expansion is replaced by
contraction the m/r ratio will clearly increase. If the pressure gradient is unable
to halt the contraction before m/r reaches 1 (dashed line) a BH will inevitably
develop (Nadezhin et al., 1978).

In Figure 7 we have the dependence of the PBH formation on the amplitude
of the perturbations and the transition region.

2.4.1 Evolution of super critical perturbations

As an example, we will consider (Musco et al., 2005) the formation of a 0.4415M g
PBH from a growing-mode mexican—hat perturbation with Ry = 5R}, (R is the
radius of the overdensity) and § —d, = 2.37x 1072 at horizon crossing. In Figure
8 we have the evolution of the lapse function f. As f — 0 the redshift of out-
going signals increases and the evolution as seen by a distant observer becomes
frozen, corresponding to PBH formation (which occurs only assimptotically).
In Figure 9 we see the behaviour of the fluid worldlines where it is possible
to devise the separation between the matter which goes to form the PBH and
the matter which continues to expand with the rest of the Universe, as well as
the semi—evacuated region being formed between them. Notice that some of the
outer material first decelerates but then accelerates again before crossing this
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Figure 6: The criterion of BH formation. Different curves correspond to different
moments of time. The moment ot time, when the BH arises, corresponds to the
curve which is tangent to the line log(m/r) = 0 (Novikov et al., 1979).
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Figure 8: The evolution of the lapse function, f, for a mexican—hat perturbation
with § — d, = 2.37 x 1072 at the horizon crossing time. The time sequence of
the curves goes from bottom to top on the right hand side (Musco et al., 2005).

semi-evacuated region to fall onto the PBH (Musco et al., 2005).

Figure 10 shows the behaviour of the ratio 2m/R, plotted against R, at
successive times. The event horizon corresponds to the asymptotic location of
the outermost trapped surface. Remenbering that the BH only forms asymp-
totically we may introduce as an operational definition for Mgy the condition
(1 —2m/R,) < 10~* (Musco et al., 2005).

Finally, Figure 11 shows a plot of m against R. Notice that the profiles for m
become very flat just outside the BH region at late times. This is a consequence
of the very low densities reached there (< 10~* times the background density
at the horizon—crossing time) (Musco et al., 2005).

Figures (12), (13), and (14) illustrate further examples of the evolution of
slightly supercritical perturbations for the three density perturbation families.
The curves display the energy density, €/€g, at constant proper time, 7, for each
mass shell, as a function of the circumferential radius Rs;. The initial horizon
size, Ry, is normalized to unity.

In all cases shown in Figures (12), (13), and (14), a BH with Mgy =~ 0.37My
forms. The evolution of the three different perturbations exhibits strong sim-
ilarities: initially, the central overdensity grows in amplitude while the outer
underdensity, if present in the initial conditions, gradually widens and levels
out. A BH forms in the interior. Some time after the initial formation of an
event horizon, material close to the BH but outside the event horizon bounces
and launches a compression wave traveling outward. This compression wave
is connected to the BH by a rarefaction region that evacuates the immediate
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Figure 9: The fluid element worldlines for a mexican-hat perturbation with
d—8, = 2.37x 1073 at the horizon crossing time. The time is measured in units
of the horizon—crossing time ¢y (Musco et al., 2005).
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Figure 10: The profile of 2M /R, at different times, with the inset showing the
approach of the maximum value of 2M /R, — 1 for a mexican—hat perturbation
with § — §, = 2.37 x 1072 at the horizon crossing time. The time sequence of
the curves goes from top to bottom on the right hand side (Musco et al., 2005).
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Figure 11: The evolution of the mass—energy for a mexican-hat perturbation
with § — d, = 2.37 x 1073 at the horizon crossing time. The time sequence of
the curves goes from top to bottom on the right hand side (Musco et al., 2005).
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Figure 12: Time evolution of a near—critical mexican—hat perturbation with
initial § = 0.6780. A BH with mass Mgy = 0.37Mpg forms in the interior
(Niemeyer & Jedamzik, 1999a).
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Figure 13: Time evolution of a near—critical polynomial perturbation with initial
0 = 0.7175. A BH with mass Mgy = 0.36 My forms in the interior (Niemeyer
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Figure 14: Time evolution of a near—critical Gaussian perturbation with initial
0 = 0.7015. A BH with mass Mgy = 0.37Mp forms in the interior (Niemeyer
& Jedamzik, 1999a).
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Figure 15: Time evolution of an overcritical Gaussian perturbation with initial
0 = 0.7196. A BH with mass My = 2.75Mpy forms in the interior (Niemeyer
& Jedamzik, 1999a).

vicinity of the BH (Niemeyer & Jedamzik, 1999a).

The bounce of material outside the newly formed BH is a feature intrinsic
only to BHs very close to the formation threshold (6. ~ 0.7). As Figure 15
demonstrates, no bounce occurs if the initial conditions are sufficiently far above
the threeshold. In this case a large BH with Mgy = 2.75Mp is formed. Here
the event horizon reaches further out, encompassing regions where the pressure
gradient is smaller, preventing pressure forces from overcoming gravitational
attraction (Niemeyer & Jedamzik, 1999a).

Hawke & Stewart (2002) considered another kind of perturbation: the offset
Gaussian curve. Figures 16 and 17 show the pressure, velocity and mass aspect
as function of r at selected times for a supercritical evolution of an initially
offset Gaussian perturbation. The initial pressure profile splits into two parts.
The part closest to the origin collapses under its own self—gravity. The pressure
rapidly grows by four or more orders of magnitude until about ¢ &~ 4. The
velocity profile is uniformly negative here. Simultaneously, an apparent horizon
starts to form, and this is signalled by v falling to —c (¢ ~ 4.2). The matter
inside is now trapped.

The other part of the initial profile disperses from the origin. Most of the
matter is at the back of the pulse (i.e., closest to the origin), and it disperses
with a higher velocity than the rest of the pulse. Initially this pulse is stable and
compact. As it travels into the unperturbed region a shock forms because the
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Figure 16: The pressure, velocity and mass aspect as functions of r for selected
values of ¢t during a supercritical evolution where the initial pressure profile is
an offset Gaussian curve (Hawke & Stewart, 2002).
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Figure 17: The evolution of Figure 16 continued to later times. The spike in
the pressure in the final three plots is not a numerical instability. The apparent
horizon has expanded because of the accretion of the infalling shock (Hawke &

Stewart, 2002).
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pulse moves with a higher velocity than the background material. This occurs
between time ¢t =4 and ¢ = 5 (Hawke & Stewart, 2002).

In the region between the apparent horizon and the outgoing pulse a void
forms. Most of the matter that was formerly in this region has either fallen inside
the apparent horizon, or has been washed out by the underlying expansion of the
Universe. The pressure in this void may be about 15 orders of magnitude less
than that inside the horizon and it is also substantially less than the pressure
of the outgoing pulse. In this case, the pressure gradient and the gravitational
field of the BH force the outgoing pulse to split again. The majority of the
outgoing pulse continues to escape, but some of the matter falls into the BH.
As this matter passes through the void a very strong shock forms across which
the velocity changes from near ¢ to near —c¢ (¢t = 5.7). After the accretion of
this matter, the BH very slowly accretes matter from the background, but the
relative amount accreted during this last stage appears to be negligible (Hawke
& Stewart, 2002).

2.4.2 Evolution of super critical perturbations when A > 0

Let us consider now the effect for PBH formation of including a cosmological
constant A large enough to affect the dynamics. A cosmological constant is
equivalent to a false vacuum with energy density (Musco et al., 2005)

A
o= s (%0)
and pressure
A
b= 1
j2 o (61)

Tts effect can be included by adding these terms onto the standard energy density
e and pressure p. A positive A eventually causes the expansion of the Universe
as a whole to start accelerating (this happens when €, becomes greater than ¢)
and acts against the growth of overdensities. It is convenient to introduce the
quantity (Musco et al., 2005)

€ 4
€y +e 3

y= AME (62)

where
4 s
My = gﬂ'Rh (€ + €y) (63)

and R, = 2Mpg. This quantity can be used as a measure of the importance of
the A term. The qualitative picture of collapses leadind to PBH formation is
not changed very greatly by the presence of a A term but there are significant
differences in the parameters of the scaling law (equation 32). For sufficiently
small A the parameter v follows a linear realtionship given by (Musco et al.,
2005)

v(A) = ~(0) — 8.3y (64)
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Figure 18: Scaling behaviour for Mgy as a function of § — §, calculated for
growing-mode mexican—hat perturbations specified within the linear regime.
The filled circles refer to the case A = 0 and the open circles to the case A > 0
giving y = 3.0 x 10~2 (Musco et al., 2005).

where v(0) is the value of ¥ when A = 0. The critical amplitude d. increases
with increasing A and follows also a linear relationship (Musco et al., 2005)

5.(A) = 6.(0) + 0.98y (65)

A positive A acts against collapse which means that the PBH masses will be
lower and the threshold . will be raised. For a given A its influence is greater
for larger BH masses than for smaller ones (Musco et al., 2005). Figure 18 shows
the scaling behaviour for My as a function of the distance é — . for growing—
mode mexican-hat perturbations specified within the linear regime considering
A=0and A > 0.

In Table 3 it is shown the values for v, K, and §. according to various authors
(see equation 32). Notice that the value of v does not depend very significantly
of the type of perturbation considered and that the same does not apply to
K. Notice also that the critical value ¢, is somewhere between 1/3 (analytical
result) and 0.7 (numerical approach).

2.4.3 Evolution of subcritical perturbations

We have a subcritical perturbation when § < J.. If 6 < J. the perturbation
initially grows but then it vanishes into the surrounding medium. Near critical
perturbations (§ <= d.) may have interesting behaviours (Musco et al., 2005).
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Table 3: The collapse parameters v, d. and K (see equation 32) obtained from
different methods and/or from different density profiles. The references are:
(1) Carr (1975), (2) Koike et al. (1995), (3) Niemeyer & Jedamzik (1999a), (4)
Hawke & Stewart (2002), (5) Green et al. (2004) and (6) Musco et al. (2005).

Method / Density profile 5 O K  Ref.
Analytic - % - (1)
Analytic 0.35580192 - —(©)
Gaussian perturbation 0.34 0.70 11.9 (3)
Mexican-hat perturbation 0.36 0.67 29 (3)
Polynomial perturbation 0.37 0.71 24 (3)
Gaussian perturbation 0.35 04 - (4)
Offset Gaussian perturbation 0.36 0.8 - (4)
Peaks Theory - 0.3-0.5 - (5)
Gaussian perturbation 0.36-0.37 0.71 - (6)
Mexican-hat perturbation 0.36-0.37 0.67 - (6)
Polynomial perturbation 0.36-0.37 0.71 - (6)
Mexican-hat perturbation 0.36-0.37 0.43 - (6)

(growing modes)

Polynomial perturbation 0.36-0.37 0.47 - (6)
(growing modes)
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Figure 19: Time evolution of an undercritical Gaussian perturbation with initial
0 = 0.7006. No BH is formed (Niemeyer & Jedamzik, 1999a).

In Figure 19 it is shown a situation where no PBH is formed. The initial
density perturbation turns into an acoustic wave or wave—package propagating
to infinity (Novikov et al., 1979). Rarefaction waves travel from the fitting re-
gion toward the center of the disturbance and outward. At a certain epoch
the expansion in the inner region is replaced by a contraction. As the contrac-
tion proceeds, the pressure gradient rises to the point where the central core is
dispersed, and a compression wave travels outward (Nadezhin et al., 1978).

In Figure 20 it is shown the fluid worldlines for a mexican—hat perturbation
with § — 8, = —3 x 1073, Initially the perturbation grows within the expanding
fluid. The contraction is not strong enough to produce a PBH and the fluid
bounces out again, expanding until it encounters the surrounding matter which
did not participate in the contraction. A compression wave forms where the two
regions of fluid meet, while the density becomes very low at the centre of the
perturbation. Some matter of the surroundings is sent back into the middle of
the rarefaction where it undergoes a second bounce which is much more extreme
than the first one (because of the near vacuum state inside the collapsing shell).

The compression wave formed by the second bounce propagates out into the
surrounding medium following the first one. Both proceed to damp geometri-
cally and eventually the medium returns to a uniform state. Additional bounces
are expected for ¢ closer to .. No PBH is formed (Musco et al., 2005).

Figures 21 and 22 show the pressure, velocity and mass aspect as functions of
r at selected times for a subcritical evolution of an offset Gaussian perturbation.
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Figure 20: Worldlines for a mexican—hat undercritical perturbation § — §. =
—3.0x1073. The plot shows alternating collapse and expansion of the perturbed
region while the outer material continues to expand uniformly (Musco et al.,
2005).

For the subcritical evolution the initial pressure profile again splits into two
parts. The outer part disperses as before. The part closest to the origin is
initially held by its own self—gravity. However, this is insufficient to maintain its
position and it soon disperses, leaving a void near the origin where the pressure
drops by around ten orders of magnitude (¢ ~ 4.5). Once again the pressure
gradient caused by the formation of this void leads to some of the outgoing
material being drawn back in an infalling shock. The amount of matter in the
infalling shock is comparable to the supercritical case. This indicates that the
amount of accreted matter appears to be independent of the BH mass. This
fills the void and reflects from the origin, leaving the FRW background (Hawke
& Stewart, 2002).

This behaviour is also shown in the evolution of the velocity profile. The
dispersion of the fluid near the origin which occurs between t = 4 and t = 5 is
signalled by the positive velocity near the origin. This grows to form the large
outgoing pulse. The infalling shock appears as the large change in velocity at
around ¢ = 6 in the centre of the grid (Hawke & Stewart, 2002).
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Figure 21: The pressure, velocity and mass aspect as functions of r for selected
values of ¢ during a subcritical evolution where the initial pressure profile is an
offset Gaussian curve (Hawke & Stewart, 2002).
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art, 2002).
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3 The probability of PBH formation

If one wants to determine the PBH density in the Universe at the present time,
one must be able to evaluate the fraction of the universe going into PBHs at
a given epoch. For that we need to know the mass variance (mass dispersion)
in the Universe at that particular epoch besides the shape of the primordial
fluctuations spectrum.

A correct evaluation of the mass variance in the universe when the PBH
forms is crucial. The calculus involves a suitable window function that smoothes
the density contrast and a transfer function which takes into account the dy-
namics of the fluctuations after horizon—entry.

3.1 The primordial power spectrum

The primordial power spectrum of the density contrast is operationally deffined
by (e.g. Blais et al., 2003)

P(k) = (10 I") (66)

where the brackets can be taken as representing classical averages over small
regions of k—space. In fact the brackets refer to quantum expectation values,
but as it was already mentioned (Section 2.1) as long as we are interested in
PBHs that form for ¢t > 107235 then, due to an effective quantum-to—classical
transition, it is sufficient to deal with classical averages. The fluctuations as
well as their Fourier transforms are all classical stochastic quantities and the
power spectrum can be treated as a classical power spectrum (Polarski, 2001).

Notice that what is meant by primordial power spectrum is the power spec-
trum on superhorizon scales (scales much bigger than the Hubble radius for
which k¥ <« aH). On these scales, the scale dependence of the power spectrum
is unaffected by cosmic evolution. On subhorizon scales this is not the case. For
such scales the power spectrum P(k) must involve convolution with a Transfer
Function T'(k,t) (Blais et al., 2003, Section 3.3).

Let us introduce here the quantities 6% (k, t) and k3¢?(k,t), where ¢ denotes
the gauge-invariant gravitational potential, defined as (Bringmann et al., 2002)
(RH)* k? 2 a3

i 27T2P(k,t) = 9772k o° (k,t) (67)
which have the peculiarity of being time independent on superhorizon scales
being equal in very good approximation to their value at the horizon crossing
time t;. At the horizon crossing time (¢ = t;, and k = RH) we have that

o7 (k,t) =

K3 2
8k, th) = 55 Pk, th) = 55 k262 (k,ta) (69)

272
Following the literature we will introduce here also the quantity F'(k) defined
at the horizon crossing time as (e.g. Blais et al., 2003)

B (k) = GF () (69)
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valid as long as t, < ty < te;. The quantity kj¢?(ko,to), or equivalently
8%, (ko,to) (where the subscript 0 stands for a quantity evaluated at present
time) at the present Hubble radius scale can be derived using the large angular
scale CMB anisotropy data. It is that quantity that comes from observations
which fixes the overall amplitude of the fluctuations spectrum.

Since the primordial power spectrum is an unknown function one is forced
to parametrize it (see e.g. Bridle et al., 2003). The simplest models of inflation
predict a power—law primordial power spectrum (see Sections 4.1, 4.2 and 4.4).
However there are also viable models of inflation which predict primordial power
spectra which cannot be parametrized by a simple power law. That is the case
of the Broken scale invariance power spectrum (see Section 4.3). Mukherjee &
Wang (2003) have considered a model independent approach and have shown
that, with the present WMAP data, the shape of the reconstructed power spec-
trum is consistent with scale-invariance, although it allows some indication of
a preferred scale at k ~ 0.01 Mpc™! (~ 1072° m™1).

3.2 The fraction of the universe going into PBHs

If the primordial fluctuations obey a Gaussian statistics then the probability
Ps that a spherical region of initial mass m has a density contrast in the range
[0, 0 + dd] will also obey a Gaussian statistics (e.g. Green et al., 2004). Thus we
may write (Carr, 1975)

Psds = (70)

! exp ( o > dé
- exp-——
V2ra(m) 202(m)
which represents a Gaussian normal distribution about zero with standard de-
viation or mass variance o(m). We may write also o(m) as o(r) where 7 repre-
sents the radius of a spherical region containing the mass M in its interior. The
probability 3(Mp) that a region of comoving size r = (RH)Z,, = (ck)™! (see
equation 24) has an averaged density contrast at horizon crossing in the range
0 <8 < dpmaw, which is the condition for PBH formation (Section 2.2), is given
by (e.g. Bringmann et al., 2002)?

1 Omaz 62
BMu) = o /5 erp (‘2a2<tk>> b (T

where
o?(ty) = o*(k) = o° |t “ (72)

If 6. > o(tr) and Spmax — 0. >> o(tx) we have the approximation (e.g. Bringmann
et al., 2002)

62
8(0) = A exp (~ 52 ) (73

2Taking into account that My represents the horizon mass evaluated at the instant ¢
when the fluctuation with wavenumber k crosses the horizon we may write also B(tx) or 8(k)
meaning exactly the same as S(Mpg). The idea applies also to other quantities (e.g. mass
variance).
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The value of (My) is usually interpreted as giving the probability that a PBH
will be formed with a mass Mppy > My (ty). Strictly speaking this is not true,
since [ does not take into account those regions that are underdense on a scale
My, but nevertheless overdense on some larger scale. In the Press—Schechter
formalism this seems to be taken care (in some models) by multiplying 8 with a
factor 2. Fortunately, in most cases, 3 is a very rapidly falling function of mass,
so this effect can be neglected. In this case S(Mpy) does give the probability
for PBH formation and thus also the mass fraction of the regions that will
evolve into PBHs of mass greater or equal to Mgy at time ¢ (Blais et al., 2003;
Bringmann et al., 2002).

Remenber that for the smallest scales we cannot speak anymore about clas-
sical fluctuations (see Section 2.1) and that is why the equations (70), (71) and
(73) do not apply anymore on that case. As it was mentioned for all PBHs
produced after approximately 10~23s, the quantum-to-classical transition is al-
ready extremely effective which means that one can really work to tremendously
high accuracy with classical probability distributions (Polarski, 2001).

3.3 The mass variance

The main problem in calculating the production rate for PBHs is the correct
evaluation of o(r) at a given epoch (e.g. Blais et al., 2003; Green & Liddle,
1997). The mass variance can be generically written as (e.g. Liddle & Lyth,
1993; Longair, 1998)

a%(r) = <<5WM>2> = # /Ooo P(k)d®k (74)

where P(k) is the power spectrum averaged over a small region of k—space. As
long as we are interested in ¢t > 107235 it will be sufficient to consider classical
averages due to the quantum-to—classical transition (Section 2.1). Assuming
spherical symmetry, the volume element of k—space d®k turns out to be 4nk?dk
and we are left with

2 1 2
o’(r) = 5.2 /0 k*P(k)dk (75)
If we want to examine specific mass ranges, we have to smooth the density
distribution, introducing a suitable window function W (e.g. Green & Liddle,
1997). Different window functions have been proposed in the literature, namely
the top—hat window function (e.g. Blais et al., 2003) and the Gaussian window
function (e.g. Green et al., 2004).

The choice of a suitable window function turns out to be a very important
problem. It must be done in accordance with the results one uses. For example,
if one uses d, & 0.7 as found by Niemeyer & Jedamzik (1999a) then one must also
use the top—hat window function in order to be consistent with their numerical
results (Bringmann et al., 2002).

Despiste the fact that a Gaussian window would be more convenient for
theoretical calculations (e.g. Liddle & Lyth, 1993) it would erroneously yeld too
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Figure 23: The Fourier transform of the top—hat window function (equation 76)
with (a) r = 2k, and (b) r = k./2 where k. is an arbitrary wavenumber.

small values for the mass variance (Blais et al., 2003). Actually the top—hat
window function is accepted as the most physical choice to study the formation
of PBHs. With this choice the smoothed density contrast § describes directly
the average density contrast in the region relevant to PBH formation (Blais et
al., 2003), i.e., it is sensitive to scales well within the horizon (Green et al.,
2004). Thus, we will addopt a top—hat window function. The Fourier transform
of the top—hat window function divided by the probed volume Vi = %777’3 is
given by (e.g. Blais et al., 2003; Bringmann et al., 2002)

Wru (kr) = (sin(kr) — kr cos(kr)) (76)

3
(kr)?
In Figure 23 we have examples of typical curves for the window function de-
fined by equation (76). The mass variance can now be rewritten in order to
accomodate (76) as (e.g. Blais et al., 2003; Bringmann et al., 2002)

a%(r) = % /000 kW2, (kr)P(k)dk (77)

There is a natural upper cut—off in k—space for the power spectrum, namely k.,
corresponding to the Hubble radius at the end of inflation ¢.. In fact the smallest
scale generated by inflation (Blais et al., 2003). The lower limit can be taken
zero if we assume that the number of e—folds during inflation (cf. equations
(4) and (5)) amply solves the cosmological horizon problem (Bringmann et al.,
2002). Thus we will rewrite equation (77) as

o2 (r) = — / "R, (k) P (k) (78)

)
2T 0
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Considering that k represents the scale entering the horizon at time ¢ and that
k' represents all scales, i.e 0 < k' < k., we will introduce here the variable
x = k'/k such that 0 < z < k./k and # = 1 at horizon crossing. Considering
this variable change, equation (78) becomes

ke
1 [*
a%(r) = ﬁ/o B x* Wiy (2)P(kx)dx (79)
Considering the same variable change in equation (67) we have that
2r2kx

Inserting this into equation (79) we have

.3 ka3
o2 (r) = / ey ke O Wi ()ds (81)

But we are interested in the instant ¢ = ¢;, when the fluctuation with wavenum-
ber k enters the horizon. Thus, inserting (24) into equation (81) we have that

o2 (k) = /0T 230% (kx, ty) Wiy (2)dx (82)

With the help of the relation (69) we can write (82) also in the form

ke
8 a
- 81n2 J,

a2 (k) 2P F(kx)W2y (x)ds (83)
On superhorizon scales (ck < RH) the scale dependence of the power spectrum
is unnafected by cosmic evolution. However on subhorizon scales the power
spectrum must involve convolution with a Transfer function 7'(k,t) (e.g. Blais et
al., 2003) appropriate to the type of perturbation (i.e. adiabatic or isocurvature
perturbations 3).

The transfer function must be taken at the time ¢; of interest and not today.
That is because at each stage of the cosmological evolution, the correct use of
the transfer function takes into account the dynamics of the fluctuations after
horizon—entry. This leads effectivelly to very different spectra on small scales at
different times. The transfer function is defined through (Blais et al., 2003)

2 _ P(kvt) P(Ovtu)
P00 = Pkt P01 (50
where t, represents some initial time when all scales are outside the Hubble
radius, i.e., when ck < RH. Taking as a reference the end of inflation we will

3Isocurvature perturbations correspond to perturbations in the local equation of state,
while adiabatic perturbations correspond to perturbations in the local energy density, and
thus the local curvature. However at the time of PBH creation (which corresponds to the
time we need to evaluate the transfer function) the fluctuations can be classified as either
adiabatic or isocurvature (Chisholm, 2006).
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Figure 24: The transfer function (equation 85) as a function of = k/k. where
k. is some arbitrary wavenumber.

consider ¢, = t.. Notice that when k — 0 (superhorizon scales) we have that
T(k,t) — 1 as expected. The transfer function can be computed analytically
yelding (Blais et al., 2003)

T2 (ke ty) = Wi (o) = Wiy (%) (85)

where ¢, = 1/ /3 denotes the speed of sound in the radiation dominated era. We
see that actually T?(kx, ;) does not depend on the wavenumber k. This will be
true for scales very deep inside the radiation era (t, < t <K teg, ke > k> keg),
which are the ones we are interested in (Blais et al., 2003). In Figure 24 it
is represented the characteristic curve for the transfer function (85). We are
now in position to write an accurate general formula for the mass variance valid
when the fluctuation with wavenumber & enters the horizon (Blais et al., 2003)

o2 817r2/ F(kx)W2 g (2)W2y (cszx)dx (86)

It may be useful to consider the following relation where all the quantities are
evaluated at the time ¢, (Blais et al., 2003; Bringmann et al., 2002)

o*(tx) = o (k) (k. tr) (87)
with the function a(k) given by (e.g. Blais et al., 2003)

/ By i i (59)
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or, equivalently (e.g. Polarski, 2002)

ke
ozz(k)z/’c 3
0

It is crucial to distinguish both quantities o2 (¢) and 6% (k,tx). As seen from
equation (87) the quantity o2(#x), which depends on the averaging, is correctly
related to the non-averaged quantity d% (k,t;) in a non—trivial way by means
of the function a(k). The quantity 6% (k,t) can be reconstructed at the time
t), from its present value 6% (ko,to). This is not the case for the quantity o2 ()
because the deformation of the power spectrum is different at the time ¢; and
today (Polarski, 2002).

The problem in evaluating a(k) comes from the evolution of the perturba-
tions for scales k' inside the Hubble radius: k = RH < k' < k. or equivalently
1<z < kf This small scale evolution is encoded in the transfer function
T(k,t). Clearly, an accurate value of a(k) can be obtained only numerically
and with an explicit knowledge of T'(k,t) (Bringmann et al., 2002).

It is clear at this point that the problem in evaluating 3(k) is transfered to
the evaluation of the function a(k). Knowing a(k) (equation 88) it is straight-
forward to find o (k) (equation 87) and (k) (equation 71) as long as we have the
needed observational input and a suitable expression for the primordial power
spectrum P (k).

kx)

T W (@) Wy (cua)da (59)

3.4 Mass variance in the presence of A

Recent supernovae observations strongly suggest that we live in a presently
accelerating universe, i.e., in a universe with a positive Cosmological Constant
A (e.g. Polarski, 2002). The total matter density value is (e.g. Spergel et al.,
2006)

Qo = 2m0 ~ 0.24 (90)
Per,0

and the dark energy density is (e.g. Polarski, 2002; Spergel et al., 2006)

A
QA,O = ﬁ =1- Qm70 ~ 0.76 (91)
For a correct calculation of the mass variance at early times we must take into
account the existence of a A > 0. However as long as we are interested in times
tr < teg and in universes where 24 domination occurs late it turns out that
the transfer function at time ¢ does not depend on A and the same must apply
therefore to the quantity a(k) (Polarski, 2002).

Thus, we can conclude that the influence of a cosmological constant on the
mass variance o (k) and consequently on the probability 8(k) comes solely from
its influence on the quantity 8% (k, tx) (cf. equation 87, Polarski (2002)). It can
be shown that in a flat universe, a cosmological constant with 2 ¢ ~ 0.7 will



The fraction of the universe going into PBHs 45

have the effect of decreasing the mass variance o (k) in about 15%, (see Polarski
(2002) for more details)

o® (tr) | o=0.7 = 0.850°(te) |, _, (92)

When dealing with a flat universe with Q,,, o < 1, we have the relation (Polarski,
2002)

k3 2 -
01 (ko, to) = 55 P(ko, to) = 55 ok @* (ko to) (93)

where all quantities are evaluated at the present time ty. In the following sec-
tions, unless information in contrary, we will be considering that 4 ¢ =~ 0.76.
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4 Reconstructing the primordial spectrum

The simplest models of inflation predict a scale—free power law primordial spec-
trum (Section 4.1). Although this kind of spectrum explains quite well the
formation of LSS, according to it the fraction of the Universe going into PBHs
is pratically zero (Section 5.1).

If we want to keep the hyphothesis of PBH formation we must consider a
spectrum with more power in the smaller scales. Thus we have introduced the
scale—free power spectrum with a pure step (Section 4.2), which is a phenom-
enological variant of the scale—free power law spectrum, and in a more natural
basis the Broken Scale Invariance spectrum which cannot be parametrized by
a simple power law (Section 4.3). A very promissing spectrum is the so called
running-tilt power spectrum (Section 4.4) which relays in recent observations
of the anisotropy on the CMB.

4.1 Scale—free power law spectrum

The fact that gravity does not have a characteristic scale, leads us to postulate
for the fluctuations a power—law spectrum (e.g. Combes et al., 2002; Bringmann
et al., 2002; Green & Liddle, 1997; Longair, 1998)

P(k,t) = A(t)k" (94)

where n is the so called spectral inder and A(t) is a function of time. The
simplest case for the power spectrum, which is usually considered, is the one
which is scale—free, i.e., the case where n is equal to a constant. This choice is
made in the assumption that the spectrum of the initial fluctuations must have
been very broad with no prefered scales (e.g. Longair, 1998).

Harrison (1970) and Zeldovich (1970) argued that in order to explain the
development of primordial fluctuations into protogalaxies, n must exactly, or
very closely, equal unity and that we should have at the horizon crossing time

P(k,ty) ~ k73 (95)

That is because in that case the density contrast §(m) has the same amplitude
on all scalles when the perturbations came throuhg the horizon (e.g. Carr, 1975;
Longair, 1998; Combes et al., 2002). When n = 1, the power spectrum (94) is
called the Harrison—Zeldovich Spectrum (e.g. Longair, 1998). In this particular
case when the fluctuation enters the horizon we have (e.g. Bringmann et al.,
2002)

Alty) ~ k= (96)

In the more general case we may write the power spectrum as (e.g. Narlikar,
2002)

P(k,ty) ~ k" (97)
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The value of the constant of proportionality in equation (97) depends on the
kind of universe we are dealing with (radiation dominated universe or matter
dominated universe). Thus, we may write the power spectrum (97) as

Pk, t;) = T2(0)k"* (98)

where T'(6) is a function of the adiabatic index 6 (see equation 2) given by the
expression (see Liddle & Lyth (1993) for more details)

2(1+6)
TO) =373
In the case of a radiation dominated universe (6 = 1/3) we have I'(1/3) = 4/9
and in the case of a matter dominated universe (§ = 0) we have T'(0) = 2/5.
We can now relate, with the help of equations (98), (99) and (67) the value of
0 (k) evaluated at some instant during the radiation dominated era with the
value of dg(k.) evaluated at some instant ¢ , where k. is some suitable pivot
scale. Doing so we obtain the following result

(99)

n—1
) = 0% (k0 ket (7 (100
where we have considered
10
T 1 9 kc < keq
Ok = ~G) (101)
F(ekc) 1 kc > keq

The amplitude of the density perturbation spectrum at some pivot scale k. is
given, according to WMAP observations, by (e.g. Easther, 2005; Verde et al.,
2003)

2 7T2
sk = (3) S (102

where T is the CMB temperature in units of uK (i.e., T = 2.725 x 10 pK —
(e.g. Verde et al., 2003)) and A(k.) is the normalization of the amplitude at the
pivot scale k.. Inserting the CMB temperature into equation (102) we obtain
(e.g. Easther, 2005)

62 (ke) = 2.95 x 1072 A(k,) (103)

Two important pivot scales often used are the one corresponding to the present
(ke = ko) for which equation (100) becomes (Bringmann et al., 2002)

10° k"
5 (kv th,) = (3) 831 (Ko, tr) (k_0> (104)

and the one corresponding to the last scatering surface (k. = key) for which
equation (100) becomes (e.g. Diichting, 2004)

kr n—1
Gl t) = Gt (1) (105
eq
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Another pivot scale that have been used more recently is k. = 0.002Mpc™! ~

6.5x1072m ™! (e.g. Spergel et al., 2003). It may be useful to relate the value of
62 (ko, tk,) with the value of 6% (k.,t,) where k. represents some pivot scale in
the past. Remenbering that for a scale—free power law spectrum n is a constant
and considering that k. < k., (i.e. considering k. within the matter dominated
stage) we have from equations (100) and (104) that

ko

n—1
SOt = Sy hvtn) (1) (106)

It is clear from equations (100), (104) or (105) that in the case of a scale—free
power spectrum the quantity g behaves at horizon crossing like (e.g. Bring-
mann et al., 2002)

62 (k,ty) oc k"1 (107)
or, equivalently, like
E3¢? (k,ty) oc k"1 (108)

Noticing, with the help of equation (104), that in the case of a scale-free power
law spectrum we have

53 (kz)
o7 (k)
we can write the function a(k) (equation 88) in the form (e.g. Blais et al., 2003)

=g"! (109)

ke
(k) = / W2 ()W (cor)da (110)
0

The mass variance o (k) can be determiend with the help of equation (87) with
a(k) given by equation (110) and dz given by equation (104). It may be useful
to express the mass variance in terms of masses instead of wavenumbers. Making
use of equations (24), (8), (9), (11) and (12) we have that

ko RE)HM) 3 (to " [ty
Fo = Rlto)H(o) 1 (t_o) (H) (1D

Taking now into account that My (t) ~ t (cf. equation 17) and considering

the result (111), equation (104) and equation (87) it turns out that the mass
variance can be written as (e.g. Blais et al., 2003; Bringmann et al., 2002)

= e (2)” ] ) o

In the case n = 1 (Harrison—Zeldovich spectrum) this simplifies considerably
and we are left with

100
(R (o) (13)
Notice that we are assuming here that A = 0. If A > 0, as it is suggested by
recent observations, the values for the mass variance as given by equations (112)
and (113) are over estimated by a factor of about 15% (see Section 3.4).

o’ (ty) =
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4.2 Scale—free power law spectrum with a pure step

We will consider now a primordial power spectrum with a pure step at some
wavelength k = ks, with the corresponding time of re—entrance satisfying ¢, <
teg (i-e. ks > keq). The basic idea is to replace equation (100) by (Blais et al.,
2003)

k"' 1 for k<ks
stk i) =0kt () f L o G5 (114)

where O is given by equation (101) and the ratio of the power on large scales
to that on small scales is given by the parameter p?. Note that aside from the
step the spectrum as a constant spectral index n. Equations (112) and (113)
continue to be valid but now with «a(k) given by (Blais et al., 2003)

a2(k) = [y a2 Wiy (csr) Wiy (2)de
) (115)
+p2 S " P2W2  (cs2) Wiy (z)dx

Notice that, as must be the case, the effect of the step disappears both for
ks, = k. and k; — 0.

4.3 Broken Scale Invariance spectrum

A more natural primordial power spectrum is the so called Broken Scale Invari-
ance (BSI) spectrum which is produced during the inflationary era (notice that
the scale—free power law spectrum with a pure step is purely phenomenological).

A BSI primordial spectrum is based in an inflationary model with a jump
in the first derivative of the inflaton potential V' (¢) at some scale ks;. An exact
analytical expression has been derived for this kind of spectrum by Starobinsky
(1992). At re—entrance inside the Hubble radius during the radiation dominated
stage, the BSI spectrum is given, for t. < t; < teq, by (e.g. Blais et al., 2003)

6
F(F) = 525 £ (F) (116)
where
fk)=1-3(p—1)1 ((1 - ;—2) sin(2y) + §cos(2y))
(117)
+3(p— 1) (1 + y%) (1 +&+ (1 - ;—2) cos(2y) — %sin(Qy))
with
y= kﬁ (118)
p=2= (119)
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szw

; 3 (120)

where ¢ denotes the gravitational potential and the quantities A_ and A, are
the inflaton potential derivatives on both sides of the jump.

The expression for F(k) depends, besides the overall normalization, only on
the parameters p and k;. The shape of the spectrum depends only on y and the
scale ks only determines the location of the step. The strenght of the jump is
given by p (Blais et al., 2003). The typical form of the spectrum is depicted in
Figures 47 (p < 1) and 48 (p > 1). The asymptotic behaviour of F(k) is given
by (Blais et al., 2003)

6

F(0) = gfi (121)
6

F(o0) = ;’Z = FIEQO) (122)

and approaches the scale invariant Harrison—Zeldovich spectrum on large and
small scales, but with different amplitudes (e.g. Diichting, 2004). Combining
equations (122) and (116) we have

F(0)

Fk) =5

f(k) (123)

Equation (69) gives the relation between F'(k) and ¢(k) at the horizon crossing
time ¢ as long as te K ty K tey. If we want to relate these quantities on larger
scales, such as kg we should consider instead the relation (Blais et al., 2003)

. 92 9 9
3,2 _ 2 _ 7 ~
K36? (ko to) = ~2-0%(to) = 5= F (ko) ~ 52 F(0) (124)
According to this we have
2 2
F(0) = 2753, 0) (125)

where §%(0) =~ 6% (ko) is the observational input from the CMB radiation as
in the scale—free power spectrum. Inserting this result into equation (123) we
obtain

_ 2572

F(k) = 55 050 £ (k) (126)

Taking the last result into account we have from equations (68), (69) and (126)
that

100 6%(0
% (tr, k) = 3L 12(2 )

f(k) (127)
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Inserting this result into equation (87) we obtain for the mass variance the
expression

100 6%(0)
o*(k) = 57 ’;2 f(k)a? (k) (128)
where f(k) is given by equation (117) and o?(k) is given by
_ [ sfk)
(k) = /0 73 70 W3 (2)W2 py (csz)d (129)

4.4 Running-tilt power law spectrum

Inflationary models predict that the spectral index of fluctuations n should be
a slowly varying function of scale (i.e. n = n(k)). Fits of observations of LSS
and CMB usually employ a power law spectrum

P(k) = P(k,) (ﬁ)nm (130)

where k. is some pivot scale and n(k) represents the running of the spectral
index. We may write n(k) in the form (e.g. Diichting, 2004)

n(k) = no + ; aToi <1n k—) (131)

The value of ng depends on the pivot scale used, and represents the #ilt of the
spectrum. It is given by (e.g. Spergel et al., 2003)

_ _ dIn(P(k))
Ng = ns(k;) = dT(k)

The value of n; represents the running of tilt of the spectrum for the chosen
pivot scale. It is given by (e.g. Diichting, 2004)

dns(k)
m = (k) = T
Typical slow—roll models predict that the running of the spectal index aj is
unobservably small. However this issue has generated recent interest after the
WMAP team claim that as; < 0 was favored over oy = 0 (e.g. Tegmark et
al., 2004). The evidence for running come predominantly from the very largest
scales multipoles. Excluding | < 5 multipoles from the WMAP temperature we
obtain a; &~ 0 (Bridle et al., 2003). At this moment we only have observational
values for ng and nq. A definitve measurement of ny and possibly of ns and ns is
expected from the Planck satellite and other upcoming surveys (e.g. Diichting,
2004).
Notice that we can continue to apply for the calculus of o?(k) and o2 (k)
equations (110) and (112), as long as we consider a variable spectral index as
the one given by equation (131).

(132)

(133)
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5 Results

In this Section we integrate the equations in order to find the fraction of the
universe going into PBHs at different epochs 5(k). We have considered all the
four primordial spectrum models presented in Section 4. In all cases the basic
observational input is the numerical value of §% (ko, to) which is found using the
CMB anisotropy data for large angular scales. In the case of a scale—free power
law spectrum we have that §(k) = 0 at all epochs (Section 5.1).

For the remaining models (pure step power spectrum, BSI and running—tilt
power spectrum) we have also to give values to two aditional parameters (see
Sections 4.2, 4.3 and 4.4). In each case we tried to find out the values leading
to a bigger value of (k).

5.1 Scale—free power law spectrum

The observational input needed in equations (112) and (113) is the numerical
value of 8% (ko,to) which is found using the CMB anisotropy data for large
angular scales. Once 6% (ko, to) is a known number, the overall normalization of
the spectrum is fixed (Blais et al., 2003).

We will consider here the case n = 0.951 which corresponds to the best fit
of the results obtained by the WMAP mission? (Spergel et al., 2006) and the
case n = 1 which corresponds to the Harisson—Zeldovich spectrum.

For the case n = 1 we have from the COBE data that (e.g. Polarski, 2002)

k3 #? (ko,to) = 0.86 x 1072 A3 ({n;}) (134)

The exact amplitude depends on the cosmological parameter of order unity
Ao({n;}). For a power law spectrum with spectral index n at least on large
scales, the quantity Ag is chosen such that (Polarski, 2002)

1 Qmo=03

2 _ ~ m,0

Ag(n=1) ~ { 1.94 Qpo=1 (135)
Thus, considering a flat critical density universe with Q,, ¢ = 0.3 we have,

according to equations (93), (134), and (135) that forn =1
6% (ko,m =1) ~ 2.152 x 107° (136)

On the other hand for the case n = 0.951 we have A = 0.75 for the pivot scale
k. = 0.002Mpc™! ~ 6.5 x 10726m~! (Spergel et al., 2003). Inserting the value
of A into equation (103) we obtain 6% (k.) = 2.21 x 107°. With the help of
equation (106) we have that

8% (ko,m = 0.951) ~ 2.45 x 107° (137)

We will know evaluate the integral (110). The value of x4, = ke/k depends
on the moment that we are interested in. For instance if we want to determine

4Using WMAP data only the best fit value for the spectral index, in the context of a power
law flat ACDM model, is n = 0.951f8:gig(Spergel et al., 2006).



The fraction of the universe going into PBHs 53

-

~30 —25 ~20 15 ~10
t
loglO(ﬁ)

Figure 25: The a?(t;) function for a scale-free power law spectrum (equation
110) with: (a) » = 1 and (b) n = 0.951. As long as we are interested in
t > 107%%s we can consider the value of o?(t;) as constant (a?(t) =~ 5.37 for
n =1 and o?(t;) ~ 5.17 for n = 0.951).

the value of a(k) right at the end of inflation we should take Zpa, = 1 (k = k).
On the other hand if we are interested in the present value of a(k) we should
take Tyqz = ke/ko ~ 10%* (cf. Table 2).

Let us consider first the case n = 1. In Figure 25 it is shown the plot of the
function for k. < k < ko. Notice that in the limit #,,,, — oc (or equivalently
k — 0) we have the value

a?(0,n =1) ~ 5.36981 (138)

Numerical calculations and inspection of Figure 25 show that this value is very
accurately aproximated already for relatively small values of ;... For example
when @4, = 50, which corresponds to k = k. /50 ~ 10~% m~!, we have already
a?(k,n = 1) ~ 5.36981. This happens well before the quantum-to-—classical
transition (k ~ 1077 m~!, c¢f. Table 2) and as long as we are interested in
events that took place after that particular epoch we may consider (cf. Blais et
al., 2003)

a?(k,n =1) =~ a?(0,n = 1) ~ 5.36981 (139)
In the case n = 0.951 we have a similar situation (cf. Figure 25) but now with
a?(k,n = 0.951) ~ o*(0,n = 0.951) ~ 5.17079 (140)

We are now in position to determine the value of the mass variance o(k). We
will consider only scales that enter the horizon after the quantum-—to—classical
transition for which the value of a?(k) can be taken as a constant as we have



The fraction of the universe going into PBHs 54

2x107°8

1.5%x10°°¢

/; 8

£ 1x107°¢
o

5%10° 7t

1x107°f

20 -15 -10 -5 0 5 10 15

t
lng(ﬁ)

Figure 26: The function o?(t;) for a scale-free power law spectrum (equation
112) with n = 0.951, from ¢, = 107%%s to to = 10'7s. During this period o ()
increased only by an order of magnitude.

already mentioned. For the case n = 1 inserting the corresponding values of
a?(k) and 0% (ko) into equation (113) we obtain the constant value

o?(k,n=1)~ 143 x 1078 (141)

In the case n = 0.951 the mass variance is a function of time (or, equivalently,
a function of k) as it is clear from equation (112). In Figure 26 it is shown the
behaviour of o2(k) from t = 107%3s (0?(k) =~ 1.76 x 107%) up to the present
(0%(ko) =~ 1.73 x 107%). Notice that in that period the value of o2(k) was
increased only by an order of magnitude. Notice also that the value obtained
for og is of the same order for both cases (n = 1 and n = 0.951) and that it
agrees as expected with the value presented in the literature (e.g. Bringmann
et al. (2002), 02(tp) ~ 10~%). Knowing the value of the mass variance we can
now turn our attention into the function (k) which gives the fraction of the
universe going into PBHs at the instant ;. Assuming d. = 1/3 and remenbering
the magnitude of the values obtained for the mass variance it is obvious that we
can use equation (73). We find out that, for all the times of interest, we have

Bk) = 0 (142)

That is because (62/202) ~ 101° and exp(—10'®) a2 0. In order to obtain more
interesting values we got to move to a blue spectrum, i.e., to a spectrum with
n > 1. In order to know the allowed range of values that n can assume we
must take into account the observational constraints on the value of §(k). For
example, from the gravitational constraint, which states that the present PBH
mass density must not exceed the present density of the universe, we have (e.g.
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Blais et al., 2003)

1 15 1/2
Qppimo(M)h? = 6.35 x 1053(M) <%) (143)

where h = 0.73 (Spergel et al., 2006) represents the Hubble parameter. Inserting
this constraint into equation (71) and numerically solving in order to obtain o (k)
it is possible to estimate the maximum value allowed for the spectral index n
which turns out to be sensitive to the assumed value of .. If §. = 1/3 we have
n < 1.33 (Blais et al., 2003). Let us consider, as an example, the extreme case
n = 1.33. For of a flat critical universe €1,, 0 = 1 we have the normalization
(e.g. Blais et al., 2003)

2
82 (to) = 9?1.67 x 107® x exp [-0.959(n — 1) — 0.169(n — 1)?]  (144)

which gives
82 (to,n = 1.33, Q0 = 1) & 2.8 x 10710 (145)

Inserting this last result into the expression of o%(k) (equation 112)5 we can
determine (k) at different epochs. In Figure 27 we have the corresponding
curve of (k) which shows some interesting values for the considered interval.
Notice however that as far as we are assuming a scalefree spectrum (n =
constant) we cannot just move into a blue spectrum (n > 1) because we now
from recent observations, for example at the pivot scale k., = 0.05 Mpc~?, that
n < 1 (Spergel et al., 2006).

The idea is to use a power spectrum model with more power in the smaller
scales which are the ones relevant to PBH formation. With this purpose we
have already introduced three alternatives: the scale—free power spectrum with
a pure step (Section 4.2), the Broken Scale Invariance spectrum (Section 4.3)
and the Running-tilt spectrum (Section 4.4)). In the following sections we will
be determining the allowed values of §(k) for such kinds of spectrum.

5.2 Scale—free power law spectrum with a pure step

The observational inputs needed in the pure step case are the numerical values
of 8% (ko,to) and the spectral index n which are equal to the ones used in the
free-scale power law spectrum with no step (Section 5.1). In addition we have
also to give values to the parameters ks (location of the step) and p (height of
the step).

Considering that PBHs form tipically with masses of the order of the horizon
mass at the epoch of formation we will have Mpgy ~ Myg(tg). Thus, give a
location for the step ks is equivalent to give the order of the maximum mass
allowed for the PBHs. We will take as an upper constraint the value Mppy =

5Notice that the obtained values of o2(k) will correspond to a flat universe with Qm,0 = 1.
The obtained values for the mass variance should be decreased by about 15% in order to have
results consistent with a Q,,,0 = 0.3 universe (cf. Section 3.4).
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Figure 27: The (k) function (equation 71) for a scale—free power law spectrum
with n = 1.33.

1019M¢ (ks ~ 1.2x1072'm ™1, cf. Table 2) which corresponds to the mass of the
biggest SMBH known candidates (e.g. Kormendy, 2004). As a lower limit we
will consider the value Mpgy = 5.0 x 10719 M ~ 10%g (ks ~ 1.7 x 10~ "m™!,
cf. Table 2) which corresponds to PBHs that are exploding by the present time
(e.g. Green & Liddle, 1997). Besides these two values we will consider also
Mppr =5.0x107Mg (ks ~ 5.5 x 107" m™1), Mppy = 5.0 x 1072 Mg, (ks ~
5.5 x 10_16m_1), MppHg = 3M® (ks ~ 7.1 X 10_17m_1) and Mppy = 106M®
(ks ~ 1.2 x 1071%m~1) (cf. Table 2 and Section 2.1).

We are interested in having a spectrum with more power in the smaller scales
because that will offer the possibility to produce more instead of less PBHs on
small scales. Thus we will consider only the case 0 < p < 1 (Blais et al., 2003).
If p = 1 we recover the scale-free power law spectrum with no step and if p =0
the entire universe is converted into BHs. In Figure 28 we have the typical curve
for the power law spectrum with a pure step for the case 0 < p < 1.

We know from observational constraints the maximum values allowed for
B(Mjpr) for different mass ranges (see e.g. Green & Liddle, 1997; Carr, 2005).
These values are the ones represented in Figure 29. As it is clear the strongest
constraint on (M) comes from My ~ 10'%g with 3(10'%g) ~ 10728, Inserting
this observational constraint into equation (71) we may numerically find, for a
given ¢, and for a given kg, the corresponding minimum value for the parameter
p. For §, = 1/3 we find out that the minimum value allowed for p varies
between 0.00136 (t, = 1072%s, ks = 1.78 x 10~""m ') and 0.00139 (ts = 2 x 10°s,
ks = 1.2x 1072!m~1). In face of these results we will neglect the dependence of
Dmin On ks and consider that py,(d. = 1/3) &~ 0.0014. For the rest of the cases
of interest to us we find out that p,.;, is pratically constant for t, > 10~20s
beeing only a bit smaller when ¢, = 10723s. In Table 4 we have the obtained
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Figure 28: Typical form of the scalefree power law spectrum with n = 0.951
and: (a) 0 < p < 1andtg, =107%; (b) p=1 (no step at all).

Density

-30 : .
0 10 20 30 w0

Log,o(M/gm)

Figure 29: Observational constraints on the fraction of the universe going into
PBHs, 3(M), as a function of the horizon mass My. The strongest constraint
(8 ~ 1072®) comes from My ~ 10'g (e.g. Carr, 2005).
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Table 4: The minimum values allowed for the parameter p as a function of é. for
the scale—free power law spectrum with a pure step. Notice that for t, > 10720
the mimimum values allowed for p are pratically constant in all cases.

6c Pmin

ts =10"2%s t, > 107205

1/3 0.0014 0.0014
0.4 0.0011 0.0012
0.5 0.00091 0.00093
0.6 0.00076 0.00077
0.7 0.00065 0.00066

results. In Figure 30 we have plotted the relation py,in(d.) for t, > 1072%. We
find out that this relation is quit well interpolated by a cubic polynomial.

Let us now analise the behaviour of the function o?(k) (equation 115). In
Figure 31 we have the curve of a?(k) for p = 1 (no step) and for p = 0.75 with
a step located at t; = 1071% (k; ~ 5.5 x 107*m~1'). Notice that, in the case
p = 0.75, the function rapidly grows up to its maximum value (a?(0)p~2 ~
5.17p~2, cf. equation 140) right after inflation, remaining there until it gets
near the step, then it decreases quite rapidly (but not instantaneously) to the
asymptotic value a?(0) ~ 5.17 (cf. equation 140) which is commom to the case
p=1.

We will consider now the function o2 (k) (equation 112) for different values
of ks and p. But first let us remember that, as it was already explained, we are
interested only in PBHs which form after ¢ > 10~23s. Thus, if the step occurs
for t; < 107235 it will have no action on the values of 3(k) of interest (i.e. we
will have for all epochs §(k) ~ 0 as in the scale—free power law spectrum with
no step, Section 5.1).

In Figure 32 we have the representation of o2(k) with t; = 6 x 107%s (ks =
7.10 x 10~'"m~!) and with p assuming the values 0.1, 0.01 and 0.0014. On the
other hand in Figure 33 we have o%(k) with p = 0.0014 and with ¢, assuming
the values t, = 107%s (ks = 1.7 x 10"m™1), 6 x 107%s (ks = 7.1 x 1071"m 1)
and 20s (ks = 1.2 x 1071m™1!). In both cases we can see that the effect of the
step on the mass variance is already significant at t = 10~23s and keeps its value
(to roughly one order of magnitude) until ¢ ~ 10¢, (i.e. for t ~ 10ts the action



The fraction of the universe going into PBHs 59

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Oc

Figure 30: The minimum values allowed for p as a function of the critical thresh-
old §, for the scale-free power law spectrum with a pure step when ¢, > 10720,
The blue dots represent the evaluated cases and the red line represents the cu-
bic polynomial interpolation (pymin(d.) = —0.00800852 +0.0163252 —0.012176, +
0.003933).
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Figure 31: The function a?(k) for a scalefree power law spectrum with n =
0.951 and (a) a pure step located at t; = 10719 with p = 0.75 and (b) no step
at all (p=1).
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Figure 32: The function o2(k) for a scalefree power law spectrum with a pure
step. The location of the step is ts = 6 x 107%s (ks = 7.10 x 10'"m~"!) and the
height of the step is (a) p = 0.1, (b) p = 0.2 and (c) p = 0.0014.

of the step still is very significant). At that point the value of o?(k) decreases
rapidly reaching a minimum value and then it increases again reaching at the
present the value o2 ~ 1078.

Let us now turn our attention to the function §(k). We want to explore the
influence of p, ts and 6. on the values of B(k). We will start with p = 0.0014
and with §, assuming the values 1/3 and 0.7. In Figure 34 we have the curve
of B(k) for ty = 1072%s (ks = 1.7 x 10""m~!) which corresponds to have the
step right at the end of inflation. When d, = 1/3 we have (k) ~ 1073 near
the step but if §. = 0.7 then 3(k) will be of order 107!25. Notice that although
p = 0.0014 corresponds to the minimum value allowed for p when 6. = 1/3 that
is not the case when §, = 0.7. In that case we have p;,,;,(0.7) &~ 0.00065 (see
Table 4).

Keeping p = 0.0014 we have in Figures 35, 36, 37, 38 and 39 the curves of
B(k) for the remaining cases: ts = 107% (k, = 5.5 x 10~'*m™1), ¢, = 10~ %
(ks = 5.5 x 1071%m=1), ¢, = 6 x 107%s (ks = 7.1 x 107"m™1!), t, = 20s
(ks =1.2x 107m™1) and ¢, = 2 x 10°s (ks = 1.2 x 1072'm~1). Notice that
B(k) starts always as a growing function attaining its maximum value near the
step and then it decreases very rapidly. This behaviour was hidden in the case
ts = 107235 (cf. Figure 34) because we are considering only ¢ > 10~23s.

We will increase now the value of p and see what happens to 8(k). In Figures
40, 41 and 42 we have the curve of (k) for the case p = 0.01. It is notorius that
the obtained values for (k) are smaller by several orders of magnitude when
compared with the ones obtained for the case p = 0.0014 (e.g. compare Figures
35 and 41).

With the data obtained from Figures 35 to 39 it is possible to find a relation
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Figure 33: The function o2 (k) for a scalefree power law spectrum with a pure
step. The height of the step is p = 0.0014 and the location of the step is (a)
ts = 10735 (ks = 1.7x 107 "m ™), (b) 6 x 107%s (ks = 7.1 x 107 "m~1!) and (c)
20s (ks = 1.2 x 107 ¥m™1).
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Figure 34: The function §(k) for a scalefree power law spectrum with a pure
step located at t; = 10723s (ks = 1.7 x 10~"m~!) with p = 0.0014 and with
(a) 6. = 1/3 and (b) 6. = 0.7. When t;, = 10~23s we have the values (a)
B(k) ~ 10739 and (b) B(k) ~ 107125,
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Figure 35: The function §(k) for a scalefree power law spectrum with a pure
step located at t, = 10710 (k, = 5.5 x 10~ '*m~!) with p = 0.0014 and with (a)
8. =1/3 and (b) §. = 0.7. The maximum values of 3(k) are (a) Bmar ~ 10714
and (b) Bmaz ~ 1079 and they are located at t; ~ 1071935,
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Figure 36: The function §(k) for a scalefree power law spectrum with a pure
step located at t; = 107 % (k; = 5.5 x 1071%m~!) with p = 0.0014 and with (a)
d. = 1/3 and (b) d. = 0.7. The maximum values of 3(k) are (a) Bmaz ~ 10712
and (b) Bmaz ~ 107%® and they are located at t; ~ 107%3s.
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Figure 37: The function §(k) for a scalefree power law spectrum with a pure
step located at t, = 6 x 107%s (ks = 7.1 x 107'"m™!) with p = 0.0014 and
with (a) §. = 1/3 and (b) §; = 0.7. The maximum values of S(k) are (a)
Bmaz ~ 107 and (b) Bas ~ 107* and they are located at t; ~ 10~*5s.
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Figure 38: The function §(k) for a scalefree power law spectrum with a pure
step located at ty = 20s (ks = 1.2 x 107m~1!) with p = 0.0014 and with (a)
d. = 1/3 and (b) d. = 0.7. The maximum values of 3(k) are (a) Bmaz ~ 1078
and (b) Bmaz ~ 10732 and they are located at t; ~ 1071 1s.
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Figure 39: The function §(k) for a scalefree power law spectrum with a pure
step located at t, = 2x10%s (ks = 1.2x1072'm~!) with p = 0.0014 and with (a)
8. = 1/3 and (b) §. = 0.7. The maximum values of S(k) are (a) Bmar ~ 1077
and (b) Bmaz ~ 10726 and they are located at t; ~ 107°1s.
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Figure 40: The function §(k) for a scalefree power law spectrum with a pure
step located at t;, = 1072%s (ks = 1.7 x 107"m™!) with p = 0.01 and with
(a) . = 1/3 and (b) 6. = 0.7. When t; = 10~2*s we have the values (a)
B(k) ~ 1071490 and (b) B(k) ~ 1076200,
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Figure 41: The function §(k) for a scalefree power law spectrum with a pure
step located at t, = 1071% (k, = 5.5 x 107m~!) with p = 0.01 and with
(a) 6. = 1/3 and (b) 6, = 0.7. The maximum values of (k) which are (a)
Bmaz ~ 1078 and (b) Biaz ~ 1072983 are located at 5 ~ 1071035,
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Figure 42: The function §(k) for a scalefree power law spectrum with a pure
step located at t, = 2 x 10%s (ks = 1.2 x 1072'm~!) with p = 0.01 and with
(a) 6. = 1/3 and (b) d. = 0.7. The maximum values of (k) which are (a)
Bmaz ~ 107286 and (b) Biae ~ 1071258 are located at tj, ~ 10!s.
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Figure 43: The relation between t, .. (corresponding to the instant for which
B(k) gets its maximum) and ¢, (corresponding to the location of the pure step)
for a scale—free power law spectrum with a pure step.

between the location of the step and the location of the maximum value allowed
for B(k). The location of 3,4, depends only on the value of 5 (the value of
Bmaz depends also on the values of p and d.). In Figure 43 it is represented
the dependence between ¢y, .. (the instant corresponding to S,4.) and ts. This
linear relation can be written as

ty, ~ 0.54¢, (146)

maz

In Figures 34 to 42 it is clear the dependence of §(k) on the parameter .. For
example, if the correct value of d. is 0.7 instead of 1/3 (see Section 2.2) then
the values allowed for (k) will be much smaller (considering the same value of
p in both cases). For example for ¢, = 20s and p = 0.0014 (Figure 38) we have
Bmaz(k) ~ 1078 when §, = 1/3 and Bnax (k) ~ 10732 when §, = 0.7.

In Figure 44 we have the curve of 3(k) when t; = 10~%s and with 6, assuming
the values 1/3, 0.4 and 0.7. In each case it was considered the minimum value
allowed for p (cf. Figure 30). Notice that previously we have considered the
cases 0. = 1/3 and 6. = 0.7 but with the same value of p for both (e.g. Figure
36). The example of Figure 44 shows that when one combines a given §, with
the respective value of py, (cf. Figure 30) the obtained results for §(k) are
very similar.

In Figure 45 we have the relation between (3,4, and the location of the step
ts when p = 0.0014 and 6. = 1/3. In Figure 46 we have the same situation but
now with §, = 0.7. This relation is well interpolated by a quadratic polynomial.
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Figure 44: The function §(k) for a scalefree power law spectrum with a pure
step located at ts = 107% (ks = 5.5 x 107%m~!) with (a) 6. = 1/3, p =
Pmin(1/3) ~ 0.0014, (b) §. = 0.4, p = Ppmin(0.4) ~ 0.0012 and (c) 6. = 0.7,
D = Pmin(0.7) = 0.00066. The maximum values of (k) are for all cases of order
10712 and they are located at t; ~ 107%3s.

_8,
E
& -10f
o
(0]
— —127
~14
10 -7.5 <5 -2.5 0 2.5 5
£
l S
091 ( TS )

Figure 45: The relation between (3,4, and ts for a scale—free power law spectrum
with a pure step when p = 0.0014 and . = 1/3. The blue dots represent the
obtained values (see Figures 35 to 39) and the red line represents the quadratic
interpolation Byay = 10~8-67+0-442-0.0142% whope o — log ts-



The fraction of the universe going into PBHs 68

-25F

_30,

_35.

_40,

_45,

1ogig (Brax)

_sol

_ss|

—60¢ts . . . . . .

-10 -=7.5 -5 -2.5 0 2.5 5
Logy (12

Figure 46: The relation between (3,4, and ts for a scale—free power law spectrum
with a pure step when p = 0.0014 and é. = 0.7. The blue dots represent the
obtained values (see Figures 35 to 39) and the red line represents the quadratic
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interpolation B,q, = 10734:5+1.922-0.0632" where 1 = log,, ts.

5.3 Broken Scale Invariance spectrum

The observational input needed in equation (128) is the numerical value of
0p (ko, to) which may be taken from CMB measurements. We will consider once
again the value given in equation (137) because when one goes to large scales
the BSI spectrum approaches the scale invariant Harrison—Zeldovich spectrum
(e.g. Diichting, 2004).

We are left with the two free parameters k, (the location of the jump) and p
(the strenght of the jump). For the value of ks we will consider the same values
as in the pure step case (cf. Section 5.2, Table 2).

The typical form of the spectrum is depicted in Figures 47 (p < 1) and
48 (p > 1). When compared to a pure step (Figure 28), we see that the BSI
spectrum is a step dressed up with a rich structure, in particular large oscilations
confined to the neighborhood of the step. For the case p > 1 the BSI spectrum
has a flat upper plateau on larger scales and a sharp decrease on smaller scales
with large oscilations. In the case p < 1 we have instead an increase in small
scales. Thus, the case of interest to us is the one with p < 1 due to the increase
of power in small scales (Blais et al., 2003).

In order to find the minimum value permited for p we will proceed as in the
pure step case (see Section 5.2). Thus, inserting the observational constraint
B(10*g) ~ 1072® into equation (71) we may numerically find, for a given d,.
and for a given ks, the corresponding minimum value for the parameter p. In
Figure 49 we have the relation between p,,;, and ¢ (or, equivalently k) for the
case 6. = 1/3. Notice that for t, > 1072% the minimum value allowed for p is
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Figure 47: Typical form of the BSI spectrum (equation 117) with the parameter
p < 1. The jump scale k; and the large scale normalization are arbitrary.
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Figure 48: Typical form of the BSI spectrum (equation 117) with the parameter

p > 1. The jump scale k; and the large scale normalization are arbitrary.
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Figure 49: The dependence between the mimimum value allowed for p and the
value of the parameter ¢, for the BSI spectrum when §. = 1/3. Notice that for
ts > 1072% the minimum value allowed for p is pratically constant.

pratically constant. A similar behaviour is achieved when we consider the other
values of 6. of interest to us. Notice that, with the exception of t; = 107235, the
values of ¢, of interest to us are all above 1072%. In Table 5 we have some of the
obtained results. We find out that the relation p,,(d.) is quit well interpolated
by a cubic polynomial for both cases, t; = 1072%s and ¢, > 10235, as it is shown
in Figure 50.

Notice that, although we have used the same observational constraint here
and in the pure step case (Section 5.2), we have obtained different minimum
values for the parameter p. That is because we are dealing with different models.

Let us consider now the function o2 (k) (equation 129). In Figure 51 we have
the curve of a2(k) for ks = 5.5 x 107 m ™! (¢, = 1071%) with p = 0.0040 and
p = 0.0020. The two curves are very similar despiste the fact that the peak is
not located at the same place for both cases. In Figure 52 we have the curve
of o?(k) when p = 0.0050 for k; = 1.7 x 10~"m~! (¢, = 1072%s) and in Figure
53 the curve of a?(k) when p = 0.0040 for ks = 1.2 x 107%m~? (¢, = 20s). In
these three examples it is evident the non—trivial shape of the function o?(k)
specially when one gets near the peak.

In Figures 54, 55 and 56 we have the curves of o%(k) for the same cases
considered for the function a?(k) (Figures 51, 52 and 53). It is notorious that
the rich structure of the BSI spectrum (Figure 47), which was still present in
the a?(k) (cf. Figures 51, 52 and 53), nearly completely disappeared due to
the effects of the filtering. Nevertheless, and most importantly, what remains is
a noticeable peak. Notice also that in each case o2(k) decreases quite rapidly
after the peak and then it evolves to the present value o3 ~ 1075.

Let us now turn our attention to the function (k). We want to explore the
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Table 5: The minimum values allowed for the parameter p as a function of 4,
for the BSI spectrum. Notice that for ¢, > 1072 the mimimum values allowed

for p are pratically constant for all cases.

de Pmin
ts =10"2%s ¢y > 1020
1/3 0.0050 0.0040
04 0.0041 0.0033
0.5 0.0033 0.0026
0.6 0.0028 0.0022
0.7 0.0024 0.0019
0.005
0.0045
0.004
4 0.0035 (a)
0,
0.003}
0.0025 )
0.002

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Sc

Figure 50: The minimum values allowed for p as a function of the critical thresh-

old é. for a BSI spectrum when (a) t; =

10723s and (b) t5 > 1072%. The blue

dots represent the evaluated cases and the red line represents the cubic polyno-
mial interpolation (a) pyin(d.) = —0.0471262 + 0.0881052 — 0.058816, + 0.01656
and (b) pmin () = —0.0289762 + 0.057685% — 0.041166, + 0.01238.
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Figure 51: The function o?(k) for the BSI spectrum when ks = 5.5 x 10~ 14m~!
(ts = 1071%) and (a) p = 0.0040, (b) p = 0.0020.
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Figure 52: The function o?(k) for the BSI spectrum when k, = 1.7 x 10~ "m™!
(t; = 102%s) and p = 0.0050.
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Figure 53: The function o?(k) for the BSI spectrum when ks = 1.2 x 107 1%m~!
(ts = 20s) and p = 0.0040.
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Figure 54: The function o2 (k) for the BSI spectrum when ks = 5.5 x 10714 m~!
(t; = 10-19) and (a) p = 0.0040, (b) p = 0.0020.



The fraction of the universe going into PBHs 74

logio (0% (tx))

32 -30 -28 -26 -24 -22 -20 -18
Tx
lOglo(I)

Figure 55: The function o2(k) for the BSI spectrum when &k, = 1.7 x 10~ "m™!
(ts = 10723s) and p = 0.0050.
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Figure 56: The function o2 (k) for the BSI spectrum when ks = 1.2 x 107 1%m~!
(t; = 20s) and p = 0.0040.
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Figure 57: The function (k) for the BSI spectrum for t, = 107235 (k, =
1.7 x 10""m~!) with p = 0.0050 and with (a) §. = 1/3 and (b) J. = 0.7. When
tr = 1072%s we have the values (a) 3(k) ~ 1072 and (b) B(k) ~ 107123,

influence of p, ts and J. on the values of S(k). In Figure 57 we have the curve
of B(k) for t, = 10723s (ks = 1.7 x 10~"m™!; which corresponds to have the
jump right at the end of inflation) and p = 0.0050. When 6. = 1/3 we have
B(k) ~ 10728 near the step but if 6. = 0.7 then the corresponding value of 3(k)
will be of order 10722, Notice that although p = 0.0050 corresponds to the
minimum value allowed for p when §. = 1/3 that is not the case when §. = 0.7.
In that case we have pp,in(0.7) = 0.0024 (see Table 5).

Considering p = 0.0040 we have in Figures 58, 59, 60, 61 and 62 the curves
of B(k) for the remaining cases: t; = 1071% (k, = 5.5 x 10~ "m~1), t, = 10~
(ks = 5.5 x 1071%m=1), ¢, = 6 x 107%s (ks = 7.1 x 107'"m™!), ¢, = 20s
(ks = 1.2 x 107"m™1) and ¢, = 2 x 10°s (ks = 1.2 x 1072'm~!). Notice
that §(k) starts always as a growing function attaining its maximum value near
ts and then it decreases very rapidly. This behaviour was hidden in the case
ts = 107235 (cf. Figure 57) because we are considering only ¢ > 107235,

It seems that the order of 3,4, does not depend on the location of kg;. From
Figures 58 to 62 we sse that for 6, = 1/3 and p = 0.0040 we have always
Bmaz ~ 1071 and for §, = 0.7 and p = 0.0040 we have always Bmaz ~ 10798,
This was not the case for the pure step power law spectrum with a pure step
(cf. Figures 45 and 46).

We will increase now the value of p and see what happens to 8(k). In Figures
63, 64 and 65 we have the curve of S(k) for the case p = 0.01. It is notorius that
the obtained values for (k) are smaller by several orders of magnitude when
compared with the ones obtained previously (Figures 57 to 62).

With the data obtained from Figures 58 to 62 it is possible to find a relation
between the location of the step and the location of the maximum value allowed
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Figure 58: The function 3(k) for the BSI spectrum when k, = 5.5 x 10~ m™!
(t; = 10-1%) with p = 0.0040 and with (a) 6. = 1/3 and (b) 6, = 0.7. The
maximum values attained by B(k) are (a) Bmaz ~ 10716 and (b) Bpae ~ 1078
and they are located at t; ~ 1071925,
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Figure 59: The function (k) for the BSI spectrum when ks = 5.5 x 10716m~!
(t, = 107%) with p = 0.0040 and with (a) 6. = 1/3 and (b) 6. = 0.7. The
maximum values attained by B(k) are (a) Bmaz ~ 10716 and (b) Bpae ~ 1078
and they are located at ¢, ~ 10752,
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Figure 60: The function 3(k) for the BSI spectrum when k, = 7.1 x 10~ "m™!
(ts = 6 x 10755) with p = 0.0040 and with (a) 6, = 1/3 and (b) é, = 0.7. The
maximum values attained by B(k) are (a) Bmaz ~ 10716 and (b) Bpae ~ 1078
and they are located at ¢, ~ 10~*%s.
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Figure 61: The function 3(k) for the BSI spectrum when ks = 1.2 x 107 1%m~!
(t, = 20s) with p = 0.0040 and with (a) 6. = 1/3 and (b) 6. = 0.7. The
maximum values attained by B(k) are (a) Bmaz ~ 10716 and (b) Bpae ~ 1078
and they are located at ¢, ~ 10'!s.
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Figure 62: The function 3(k) for the BSI spectrum when k, = 1.2 x 10~ 2'm~!
(s, = 2 x 10%s) with p = 0.0040 and with (a) 8. = 1/3 and (b) 8. = 0.7. The
maximum values attained by 8(k) are (a) Bmaz ~ 107¢ and (b) Bpae ~ 1078
and they are located at ¢, ~ 10°!s.
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Figure 63: The function (k) for the BSI spectrum for t, = 107235 (k, =
1.7 x 10~"m~!) with p = 0.01 and with d, = 1/3. When t;, = 10~?*s we have
B(k) ~ 10112,
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Figure 64: The function 3(k) for the BSI spectrum when k, = 5.5 x 10~ m™!
(ts = 1071%) with p = 0.01 and 6. = 1/3. The maximum value attained by 3(k)
is Bmaz ~ 10797 located at t; ~ 1071025, The case §. = 0.7 (not represented)
gives Bmar ~ 107421,
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Figure 65: The function (k) for the BSI spectrum when ks = 1.2 x 107 2'm~!
(ts = 2 x 10%s) with p = 0.01 and 6. = 1/3. The maximum value attained by
B(k) is Bmaz ~ 10727 located at t; & 105-1s. The case 6. = 0.7 (not represented)
gives Bmas ~ 107421,
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Figure 66: The relation between t, .. (corresponding to the instant for which
B(k) gets its maximum) and ¢, for the BSI spectrum.

for S(k). The location of (., depends only on the value of t; (the value of
Bmaz depends also on the values of p and J.). In Figure 66 it is represented
the dependence between ¢y, .. (the instant corresponding to S,4.) and ts. This
linear relation can be written as

th. ~0.63t, (147)

maz

which is very similar to the result obtained for the pure step power spectrum
(cf. equation 146).

In Figure 67 we have the curve of 3(k) when t, = 10755 and with . assuming
the values 1/3, 0.4 and 0.7. In each case it was considered the correspondent
minimum value allowed for p (cf. Table 5). Notice that previously we have
considered the cases 6. = 1/3 and d. = 0.7 but with the same value of p for
both (e.g. Figure 59). The example of Figure 67 shows that when one combines
a given . with the respective value of pp,;, (cf. Table 5) the obtained results
for S(k) are very similar.
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Figure 67: The function B(k) for the BSI spectrum with ¢, = 107% (ks =
5.5 x 1071%m~1) and (a) 6. = 1/3, p = pmin(1/3) = 0.0040, (b) d, = 0.4, p =
Pmin(0.4) &~ 0.0033 and (c) d. = 0.7, p = Pmin(0.7) &~ 0.0019. The maximum
values of #(k) are of the same order for all cases (Bpmae ~ 1071%) and they are
located at t; a~ 1076 2s.
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5.4 Running—-tilt power law spectrum

The observational input needed for the running—tilt power spectrum are, besides
the value of 6% (ko, tk, ), the values for the parameters n; evaluated at some pivot
scale k.. According to the most recent results from the WMAP mission we have
(e.g. Spergel et al., 2006)

no = ng(ke) = 0.95179015 (148)
ny = as(k.) = —0.055790%9 (149)

where the pivot scale is k. = 0.002Mpc™! ~ 6.5 x 10~26m~t. The values for the
other parameters (i.e. the values of n;, i > 2) are unknown at the present. A
definitive measurement of ny, and possibly also of ny and ns3 is expected from
upcoming surveys such as the Planck satellite mission (e.g. Diichting, 2004).

Here we will consider for ng and n, the values obtained from the WMAP
mission and we will look for some sets of values for n, and ns leading to a blue
spectrum (n(k) > 1) because that is the case which favours PBH production.
The remaining n; (n;, i > 4) will be set to zero. Within this assumption equation
(131) can be written as

() =+ M K72 (1 B) s (R (150)
MEE T P T e k) T Mk

According to the observational constraints the maximum value allowed for n(k)
should be somewhere between 1.2 and 1.4 (e.g. Green & Liddle, 1997). Thus, for
a given pair of values no and ns we will consider that we have a blue spectrum
if

1<n(k)<14 (151)

We must ensure also that 3(10'%g) does not exceed the value 1072%. Thus,
inserting the observational constraint 3(10'%g) ~ 10728 into equation (71) we
may numerically find, for a given ., the corresponding value for the spectral
index n(k). For example, when §. = 1/3 we have n(10'%g) ~ 1.2412, which is
the highest value allowed for n(10'°g). In Table 6 we have the results for other
values of d..

If ny = 0 and ng = 0 we will have n(k) < 1 for all epochs as it is clear from
Figure 68. Giving other values to ny and n3 we may find situations for which
condition (151) holds. Provided that 4n3 — 9n;nz > 0 the function (150) shows
a maximum and a minimum located at

4dn 2 7
k:F = kc exp <—ﬁ F % 471% — 9711713) (152)

Fixing a value to k+ we find the following linear relation between ns and ns

—4(3n1 + 2n2 1n Izi)

3(In 3% )2

ny = (153)
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Table 6: The maximum value allowed for the spectral index n(10'%g) as a func-
tion of &, for the running—tilt power spectrum.

5. n(10¥g)

/3 1.2412
0.4 1.2493
0.5 1.2591
0.6 1.2671
0.7 1.2739
0.8
0.6
0.4
£ 0.2
o
O_
-0.2
-0.4
-25 =20 -15 -10 -5
k
Logyo (g)

Figure 68: The function n(k) (equation 150) with ny = n3 = 0. We have that
n(k) < 1 for all the epochs of interest.
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Figure 69: The function n(k) (equation 150) with a maximum located at k; =
1.7 x 107"m~!. The cases represented correspond to (a) n(ky) = 1.4, ny =
0.00123, ny = —0.000650; (b) n(ks) = 1.2, no = 0.0103, ny = —0.000524 and
(c) n(ky) =1, ny = 0.00827, n3 = —0.000398.

Considering d*>n(k)/dk*> = 0 with ng replaced by the expression (153) we find
out that n(k) has an inflexion point located at
3711

n2inf = —@ (154)
Taking into account that n; < 0 and that In ’,iic > 0 ¢ it turns out that n(k) will
have a maximum (k4 ) if na > nso,, . and a minimum (k_) if ny < ny,, .. We are
interested in the case of the existence of a maximum and on the possible values
of na that verify condition (151). To find out those values we will consider
n(ky) =1 and n(ky) = 1.4 with ng replaced by the expression (153).

We will consider for k4 the same values that we have atributted to ks in
the pure step and BSI spectrums (cf. Section 5.2, Section 5.3, Table 2). In
Table 7 we have, for each case, the values of ns and ns such that n(ky) = 1,
n(ky) = 1.2, n(ky) = 1.3 and n(ky) = 1.4. In Figures 69 to 74 we have the
curves of n(k) for all the cases considered in Table 7.

Tt is clear that we must exclude the cases n(ks) = 1.3 and n(ky) = 1.4 when
ki =1.7x10""m™! (t;, = 1072%s). That is because on that cases we will have
B(10723s) > 1072® which does not agree with observation. As we have already
seen n(1.7 x 107"m 1) should not exceed 1.24121 (see Figure 69).

In Figure 75 we have examples of the typical form for the running—tilt power
spectrum (equation 104 with n replaced by n(k)) in comparisson to the scale—

6We will always have In Izi > 0 because the values of kx we are interested in are by far
greater than the pivot scale k. & 6.5 X 10=26m—1,
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Table 7: The values for the parameters ny and ns leading to a maximum of the
spectral index n(k) located at k. We have considered maximum values of n(k)
equal to 1, 1.2, 1.3 and 1.4.

ki (m™1) na n3 na n3

1.7x 1077 0.00827 —0.000398 0.0103 —0.000524
55x 107 0.0132  —0.000989 0.0180 —0.00145
55x 10716 0.0161  —0.00146  0.0230  —0.00226
71x 1077 0.0179  —0.00178 0.0262  —0.00285
1.2x 1071  0.0271  —0.00395 0.0444 —0.00715

1.2x 10721 0.0427  —0.00932 0.0800 —0.0194

n(ky) =1.3 n(ky) =14

ki (m™1) na n3 na n3

1.7x 1077 0.0113  —0.000587 0.0123 —0.000650
55x 107 0.0203 —0.00168 0.0227 —0.00192
55x 10716 0.0265 —0.00267 0.0299 —0.00307
71x 1077 0.0304 —0.00338 0.0345 —0.00391
1.2x 1071 0.0530 —0.00875 0.0617  —0.0103

1.2 x 10721 0.0987 —0.0245 0.117 —0.0296
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Figure 70: The function n(k) (equation 150) with a maximum located at k; =
5.5 x 1071 m~!. The cases represented correspond to (a) n(ky) = 1.4, ny =
0.0227, n3 = —0.00192; (b) n(ky) = 1.2, no = 0.0180, ng = —0.00145 and (c)
n(ks) =1, ns = 0.0132, n3 = —0.000989.

25 -22.5 -20 -17.5 -15 -12.5 -10

k
Logyo (77)

Figure 71: The function n(k) (equation 150) with a maximum located at k; =
5.5 x 1071%m~!. The cases represented correspond to (a) n(ky) = 1.4, ny =
0.0209, ny = —0.00307; (b) n(ky) = 1.2, ns = 0.0230, ny = —0.00226 and (c)
n(ks) = 1, ns = 0.0161, ny = —0.00146.
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Figure 72: The function n(k) (equation 150) with a maximum located at k; =
7.1 x 107'"m~!. The cases represented correspond to (a) n(ky) = 1.4, ny =
0.0345, ny = —0.00391; (b) n(ks) = 1.2, ns = 0.0262, n3 = —0.00285 and (c)
n(ky) = 1, ns = 0.0179, ng = —0.00178,

24 22 ~20 18 16
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Figure 73: The function n(k) (equation 150) with a maximum located at k; =
1.2 x 107*m~!. The cases represented correspond to (a) n(ky) = 1.4, ny =
0.0617, 1y = —0.0103; (b) n(ks) = 1.2, ns = 0.0444, ny = —0.00715 and (c)
n(ky) = 1, ny = 0.0271, n3 = —0.00395.
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Figure 74: The function n(k) (equation 150) with a maximum located at k; =
1.2 x 1072'!m~!. The cases represented correspond to (a) n(ky) = 1.4, ny =
0.117, ng = —0.0296; (b) n(ky) = 1.2, ny = 0.00800, n3 = —0.0194 and (c)
n(ks) = 1, no = 0.0427, ny = —0.00932.

free power spectrum (Section 4.1).

Let us now analise the behaviour of the function a2 (k) (equation 110 with the
spectral index given by equation 150). In Figure 76 we have the curve of o2 (k)
when n(k;) = 1.4 with k; assuming the values 5.5 x 107 *m™" (¢, = 107'%s),
5.5 x 107m=1 (¢, = 107%) and 1.2 x 107"%m~" (t;,, = 20s). In Figure 77
we have the curve of a?(k) for ky = 5.5 x 107 %m~" (¢, = 107%) now with
n(ky) assuming the values 1.2, 1.3 and 1.4.

Let us now turn our attention to the function o2(k) (equation 112). In
Figures 78 and 79 we have the curve of o?(k) for the same examples that we
have considered for a2 (k) (Figures 76 and 77). Notice that any peculiar features
present in the curves of a?(k) are smeared out when one gets to the o2(k)
function. It is clear from Figures 78 and 79 that when ¢ ~ 10'2s the value of
o2 (k) is already very close to the present value o2 ~ 1075,

We will consider now the function 8(k). We want to explore the influence
of ky, n(ks) and 4. on the values of 3(k) (remember that the influence of k; is
incorporated into the parameters ny and ng).

In Figures 80 to 84 we explore the case n(k;) = 1.4 when ¢, = 107'0s
(ks = 5.5 x 1074m1), ;, = 1075 (ky = 5.5 x 1071%m1), ;, = 6 x 1055
(ky =71 x107"m™), t5, = 20s (kx = 1.2 x107m™!) and ¢, =2 x 10°s
(ky = 1.2x1072!m~!). In Figures 80 and 81 we have considered both §, = 1/3
and 0. = 0.7. On the remaining cases (Figures 82 to 84) we have considered only
the curve of 5(k) with §, = 1/3. That was because, on that cases, the obtained
values for §(k) when 6. = 0.7 were much smaller than the ones obtained with
d. = 1/3 (see Figure captions). Notice that §(k) starts as a growing function,
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Figure 75: Typical form of the running—tilt power spectrum (curves (a) and (b))
in comparisson with the scale—free power law spectrum (curve (c)). The curve
(a) corresponds to ki = 7.1 x 1071"m~! with n(ky) = 1.4 and the curve (b)
corresponds to ky = 5.5 x 107*m ™! with n(k;) = 1.4 (cf. Table 7). The curve
(c) represents the scalefree power law spectrum with n(k) = 0.951.

10
8
=
2 6
k) (c)
o 4
o |
o |
— \
2 \\Zc
L\_//L_/al//t/
~20 ~10 0 10
T
10910(—];)

Figure 76: The function «?(k) for the running-tilt power spectrum when
the spectral index has the maximum value n(ky) = 1.4 with (a) ky =
5.5 x 107Mm=! (t;, = 1071%), (b) ky = 5.5 x 1071%m~! (t,, = 107%) and
(¢) kx =1.2x107m™" (¢, = 20s).
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Figure 77: The function o?(k) for the running-tilt power spectrum when the
spectral index presents a maximum located at ky = 5.5 x 107m~! (¢, =
10~ %) with (a) n(ks) = 1.4, (b) n(ks) = 1.3 and (c) n(ky) = 1.2.
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Figure 78: The function o?(k) for the running-tilt power spectrum when the
spectral index presents the maximum value n(ky) = 1.4 with (a) ky = 5.5
107 Mm™ (tp, = 107'%), (b) ky = 5.5 x 107 %m~" (¢, = 107%s) and (c)
ky =1.2x107"m™! (¢, = 20s).
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Figure 79: The function o?(k) for the running-tilt power spectrum when the
spectral index presents a maximum located at ki = 5.5 x 107m~1 (¢, =
10~ %) with (a) n(ks) = 1.4, (b) n(ks) = 1.3 and (c) n(ky) = 1.2.

attains its maximum value around the peak of n(k) which is located at t;, and
then it decreases to negligible values.

In Figures 85 and 86 we explore the case n(k;) = 1.3 when ¢, = 10710
(ky = 5.5 x107"m™") and tx, = 107% (ky = 5.5 x 107%m~1). We have
not considered further cases because, as it is clear, when one moves to shorter
wavelenghts the obtained values for 8(k) will be smaller, by several orders of
magnitude, and in the case ky = 5.5 x 1071%m~! (Figure 86) we already have
Bmaz ~ 10749 with §. = 1/3.

In Figures 87 and 88 we explore the case n(k;) = 1.2 when ¢, = 10723
(ky =1.7x107"m™!) and t;, = 1071% (k; = 5.5 x 107" m™!) with §. = 1/3.
Notice that although this value of n(ky) is well inside the range of values that
lead to a blue spectrum (see condition 151) the obtained values for (k) are
very small which makes the PBH production highly improbable.

We will consider also the case when 3(1072%s) ~ 10728, As we have already
seen this happens for n(1.7 x 10~"m~!) ~ 1.2412 when J. = 1/3 (cf. Table 6).
In that case we obtain from equation (150) the relation

ns ~ 0.000457871 — 0.0942809n (155)

Inserting a given k+ into equation (153) we find a second relation between n.
and n3. We will consider two examples. First, when kx = 1.7 x 107 "m™!
(trz = 107**s) we have

ns =~ 0.000122329 — 0.0628813n, (156)
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Figure 80: The function §(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.4 with k&, = 5.5 x 10714m~!
(tk, = 1071%) and (a) 6. = 1/3, (b) d. = 0.7. The maximum values attained
by B(k) are (a) Bmaz ~ 1078 and (b) Bimaz ~ 10732 located at t; ~ 107110,

_25_
=50t (a)
-75

-100

B(tx))

-125¢

logip (

-150¢

_175' <b>

-9 -8 -7 -6 -5 -4
tx
loglo(ﬁ)

Figure 81: The function $(k) for the running—tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.4 with k&, = 5.5 x 10716m~!
(te, = 107%) and (a) 6. = 1/3, (b) . = 0.7. The maximum values attained by
B(k) are (a) Bmaz ~ 10738 and (b) Bmar ~ 107162 located at tj, &~ 107 7%s.
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Figure 82: The function §(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.4 with k&, = 7.1 x 1071"m ™!
(te, = 6 x 1075s) and 4. = 1/3. The maximum value attained by B(k) is
Bmaz ~ 10780 located at t;, ~ 107°%s. The case §. = 0.7 (not represented)
gives Bmas ~ 107349,
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Figure 83: The function §(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.4 with by = 1.2 x 10719m~!
(tr, = 20s) and d, = 1/3. The maximum value attained by (k) is Bmaez ~

107990 Jocated at ¢, ~ 10%2s. The case §. = 0.7 (not represented) gives Bpae ~
10—4360.
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Figure 84: The function §(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.4 with &, = 1.2 x 1072!m~!
(te, = 2 x 10%s) and 6, = 1/3. The maximum value attained by S(k) is
Bmaz ~ 107878 Jocated at t, ~ 10*7s. The case 6. = 0.7 (not represented)
gives Bmae ~ 10737821,
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Figure 85: The function §(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.3 with k. = 5.5 x 10~ m ™!
(te, = 107'%) and 4. = 1/3. The maximum value attained by (k) is Bmas ~
107136 located at t; ~ 107'15s. The case . = 0.7 (not represented) gives
ﬂmaz ~107°%,
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Figure 86: The function $(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.3 with k&, = 5.5 x 10716m~!
(te, =107%) and 6. = 1/3. The maximum value attained by B(k) is Bmas ~
10749 located at t; ~ 10~73s. The case §. = 0.7 (not represented) gives
/Bmaz ~ 1072178,
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Figure 87: The function $(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.2 with k. = 1.7 x 10~ "m~!

(tk, = 10723s) and 8. = 1/3. When t; = 10~23s we have (k) ~ 107'27. The
case d. = 0.7 (not represented) gives for t;, = 10723s the value B(k) ~ 107°%6.
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Figure 88: The function $(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.2 with k&, = 5.5 x 10714m~!
(tk, =107'%) and 6, = 1/3. The maximum value attained by (k) is Bpaz ~
1072295 located at t; ~ 107!1-3s. The case §. = 0.7 (not represented) gives
/Bma:t ~ 10—10102'

which means that in this case ns ~ 0.010686 and ns ~ —0.00054967. Second,
when kz = 1.2 x 1072'm™! (thy =2 X 10°s) we have

ng ~ 0.00227979 — 0.271459n, (157)

which means that in this case ny &~ 0.010283 and ng &~ —0.00051162. In Figure
89 we have the curve of n(k) for these two examples and in Figure 90 we have
the corresponding curves for 3(k). Notice that (k) is of order 1072% when
tx = 10723s and decreases very rapildly with time. When t; ~ 1072's we
already have for both cases 8(k) ~ 10799,

With the data obtained from Figures 80 to 84 it is possible to find a relation
between t;, (i.e. the point where n(k) gets its maximum value) and the location
of the maximum value allowed for S(k). In Figure 91 it is represented the
dependence between t;,... (the instant corresponding to By4,) and t,. This
relation can be written as

thpnan A 0.0866 X £ (158)

maz

In Figure 92 we have the relation between (3,4, and t;, when n(k;) = 1.4
and 6. = 1/3. In Figure 93 we have the same situation but now with §. = 0.7.
We have interpolated this relation with a quartic polynomial.
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Figure 89: The function n(k) in two cases such that n(1.7 x 10~"m~!) ~ 1.2412
(leading to (1.7 x 10~"m~1) ~ 10~2% when §, = 1/3). The two cases are (a)
ns % 0.010686, ny &~ —0.00054967 (k4 = 1.7x 10~Tm~1) and (b) ns ~ 0.010283
and nz ~ —0.00051162 (k— = 1.2 x 1072'm~1).
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Figure 90: The function $(k) for the running-tilt power spectrum when the
maximum value of the spectral index is n(ky) = 1.2412 with §. = 1/3 and
B(10723s) ~ 10728, We have considered the cases (a) ky = 1.7 x 10""m~! and
(b) k- = 1.2 x 1072'm~! (cf. Figure 89 for more details).
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Figure 91: The relation between t, .. (corresponding to the instant for which

B(k) gets its maximum) and ¢, (corresponding to the point where the spectral
index n(k) reaches its maximum value) for the running-tilt power spectrum.
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Figure 92: The relation between f,,q, and ¢, when n(ky) =14 and §. =1/3
for the running—tilt power spectrum. The blue dots represent the obtained

values (see Figures 80 to 84) and the red line represents the quartic interpolation
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Figure 93: The relation between f,,,, and t;, when n(k;) = 1.4 and §. = 0.7
for the running—tilt power spectrum. The blue dots represent the obtained

values (see Figures 80 to 84) and the red line represents the quartic interpolation
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6 Conclusions and Future work

6.1 Obtained results and conclusions

The Universe is a well developed structure on the scale of galaxies and smaller
formations. This requires that at the beginning of the expansion of the Universe
there should have existed fluctuations which leaded to the formation of such
structures.

Now we have in cosmology a successful paradigm based on the existence of
an inflationary stage which allow us to consider the quantum origin of the fluctu-
ations. The quantum fluctuations produced during inflation are then stretched
to scales much larger than the Hubble radius (at the time when they were
produced) and, as the expansion of the universe goes on, each fluctuation will
reenter inside the Hubble radius at some later epoch, depending on its wave-
length. With this mechanism we can explain not just all the inhomogeneities
we see today, even on the largest cosmological scales, but also the production
of PBHs.

However, only the fluctuations with amplitude é above some threshold é. can
lead to the formation of PBHs (Section 2.2). If § < J. the fluctuation dissipates
and there is no PBH formation at all (Section 2.4.3). Thus, it is very important
to know the correct value of §.. Analytical considerations point to d. = 1/3.
Recent numerical simulations revealed different values for é., all in the range
1/3 — 0.7 (cf. Table 3).

It was believed for a long time that when a PBH forms its mass is of the order
of the horizon mass My (equation 17). The aplication of critical phenomena
to the mechanism of PBH formation has shown us that there exists an IMF
for PBHs (Section 2.3, equation 32). It seems that PBHs could form with
masses ranging from 10~ My up to 1Mp. The IMF introduces two additional
parameteres besides d.: a normalization factor K and an exponent ~.

If one wants to determine the fraction of the universe going into PBHs at
a given epoch, B(k), then it is very important to know which values we should
give to the parameters d., K and 7. At the present these values are to be find
numerically doing the simulation of the process of PBH formation (Section 2.4).
These simulations are, in general, very complicated due to the fact that we
are dealing with a dynamic process which leads to the formation of an horizon
with a singularity in its interior. Here we have described, in some detail, the
mechanism of PBH formation in a radiation dominated Universe (the formation
of PBHs in other possible scenarios will be part of future work). In Table 3
we have summarized the values obtained for the parameters 6., K and v by
different authors.

In order to determine the probability of PBH formation at a given epoch
or, equivalently, the fraction of the universe going into PBHs at that epoch, we
must know the value of the mass variance o(k) at that epoch. In fact, this is one
of the main problems in the calculation of §(k). Recent studies have shown that
a correct evaluation of the mass variance requires convolution with a filtering
window function (equation 76) and with a transfer function (see equations 84
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and 85). The expression for the mass variance can be splitted into two parts
(see equations 86, 87 and 88). One of the parts includes the observational input
which derives from the anisotrpy on the CMB. The other part includes a non—
trivial relation o(k) between the observational input and the mass variance at
some epoch in the past.

In order to determine the mass variance it is also crucial to know the shape
of the primordial spectrum of the fluctuations. It is known for a long time that a
scale—free power law spectrum (Section 4.1) explains quite well the formation of
the LSS observed in the Universe. However, if we consider this kind of spectrum
in the context of PBH formation then we will obtain negligible results to 3(k)
for all epochs (Section 5.1).

If we want to go on studying the hypothesis of PBH formation then we must
move to a more suitable primordial spectrum. It should be a spectrum equivalent
to the scale—free power law spectrum during the era of LSS formation, matching
the background normalisation, but also a spectrum which is more powerfull
during the epochs relevant to PBH formation. Thus, we have considered three
alternatives to the primordial spectrum of the fluctuations:

1. Scale—free Power Spectrum with a Pure Step — A scale—free power law
spectrum with a step at some instant in the past giving more power to the
fluctuations in the early stages of the Universe. Note that this is a pure
phenomenological spectrum (Section 4.2).

2. Broken Scale Invariance Spectrum — A spectrum based in an inflationary
model with a jump in the first derivative of the inflaton potential at some
scale. This is a more natural alternative than the previous one (Section
4.3).

3. Running—tilt Power Spectrum — A power law spectrum with a variable
index n(k) highly supported by recent WMAP observations (Section 4.4).

Each one of these spectrums introduces a pair of additional parameters to
the equations. In general, one of the parameters tells us the location of the peak
in the spectrum and the other one tells us the amplitude of the spectrum at that
peak. At the present the best we can do is to constrain these parameters in ac-
cordance with observational results. There are several observational constraints
that we can impose to (k) (see Figure 29). Perhaps the strongest one is the
constraint which arises from the y—ray background radiation which tells us that
when the universe was ~ 10723s old B(k) should not exceed 10728, We have
considered this value in our calculations in order to constrain the maximum
amplitude of the peak.

PBHs form tipically with masses of ~ My at the epoch of formation. This
means that to give the location of the peak is equivalent to give the typical
maximum mass allowed for the PBHs. The biggest SMBHs known candidates
have masses of ~ 101°M which corresponds to the horizonn mass when the
Universe was 2x10%s (k = 1.2x1072!m~!). On the other hand PBHs, exploding
today were formed with masses of ~ 10'%g when the Universe was 10~2%s (k; =



The fraction of the universe going into PBHs 102

1.7 x 10""m~1!). Thus, we have considered for the location of the peak some
values in the range 1.7 x 107"m™! > k; > k = 1.2 x 107 2'm™~" or, equivalently,
in the range 1072%s < t, < 2 x 10°s (cf. Table 2).

For a scale—free power law spectrum with a pure step and for a BSI spec-
trum the maximum amplitude of the peak is attained when the parameter p
is minimum. This minimum value was calculated considering the constraint
B(10723s) = 10728, We have noticed that the minimum value allowed for p is
model dependent, depends on the value of d. and also on the location of the
peak ks (cf. Table 4, Figure 30, Table 5 and Figure 50).

In the case of a running—tilt power spectrum the location and the amplitude
of the peak are given by a pair of coefficients ns and n3 (cf. equation 131). We
have chosen for ny and ng values leading to peaks at the some locations as on
the previous cases and also leading to blue spectrums but without overheading
the value n(k) = 1.4 as well as the value 3(10723s) = 10728 (cf. Table 7).

We have done the integration of 3(k) for all the considered spectrums and
for all the values of ks presented in Table 2. We have considered for §. the
"extreme” values 1/3 and 0.7.

In the case of a scale—free power law spectrum with a pure step and in the
case of a BSI spectrum we have considered first the minimum value allowed
for p which leads to the maximum values allowed for (k). Secondly we have
considered, for the same cases, higher values for p and that has shown us a
drastic decrease on the values of S(k) (Sections 5.2 and 5.3).

In the case of a running—tilt power spectrum we have considered in first place
sets of values for no and ng such that n(kpeqr) = 1.4. Then we have considered
lower values for n(kpeqr) and that has shown us again a drastic decrease on the
values of (k) (Section 5.4).

In Table 8 we present a list of the studied cases for which Bez > 1074, On
the top of the list we have the results for the scale—free power law spectrum with
a pure step. Considering that this is a pure phenomenological spectrum these
results must be regarded with caution. For the BSI spectrum we have obtained
interesting results with B4, ~ 10716 for all the considered epochs and for the
running-tilt power spectrum it seems that the most interesting result occurs for
ts = 1071% with the formation of 10*®g PBHs.
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Table 8: The cases for which the fraction of the Universe going into PBHs,
B(k), is higher than 10~4°. Here p/n represents the parameter p in the case of
a pure step or BSI spectrum (cf. Tables 4 and 5) and the spectral index n(k)
in the case of a running-tilt power spectrum. The value ¢, (or #;, ) represents
the instant for which the primordial spectrum is maximum. PS represents the
Pure Step power spectrum and RT the Running—tilt power spectrum.

ts(s) Oc p/n logig Bmaz  l0g1g t’“’l”;“ Fig. Spec.
2x10° 1/3  0.0014 -7 -5.1 39 PS
1010 1/3 14 -8 —11.6 80 RT
20 1/3  0.0014 -8 —-1.1 38 PS
6x107° 1/3 0.0014 —11 —4.5 37 PS
106 0.4 0.0012 —12 —6.3 44 PS
106 0.7 0.00066 —12 —6.3 44 PS
106 1/3  0.0014 —12 —6.3 36 PS
1010 1/3  0.0014 —-14 -10.3 35 PS
1010 1/3  0.0040 —16 —-10.2 58 BSI
106 1/3  0.0040 —16 —6.2 59 BSI
106 0.4 0.0033 —16 —6.2 67 BSI
6x107° 1/3  0.0040 —16 —44 60 BSI
20 1/3  0.0040 —16 1.1 61 BSI
2x10° 1/3  0.0040 —16 5.1 62 BSI
106 0.7 0.0019 —16 —6.2 67 BSI
2x10° 0.7 0.0014 —26 -5.1 39 PS
1023 1/3  0.0050 —28 —-23 a7 BSI
10723 1/3  1.2412 —28 —23 90 RT
1023 1/3  0.0014 -30 —-23 34 PS
1010 0.7 1.4 —-32 —-11.6 80 RT
20 0.7 0.0014 —32 1.1 38 PS

10-¢ 1/3 1.4 —38 —7.5 81 RT
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6.2 Future Work

In this section we present some objectives and ideas for future work. In the near
future we want to improve the calculus of the fraction of the universe going into
PBHs at a given epoch 3(k).

So far we have determined (k) within the assumption that PBHs form with
masses of the order of the horizon mass at the epoch of formation. The horizon
mass is the most probable mass for a PBH formed at a given epoch. However,
the existence of an IMF for PBHs tells us that there is also some probabiltiy
that a PBH could form with a smaller mass, in fact, according to recent results,
the PBH mass could be as small as 10~%My. Thus as a first step we want to
incorporate the IMF into the calculus of §(k) for each primordial spectrum.

We have considered PBH during the radiation dominated era. However we
know that during that era the universe experienced some phase transitions (e.g.
end of inflation, quark—hadron phase transition, electroweak phase transition)
during which it becomed for an instant matter (dust) dominated. Those tran-
sitions could have been very favorable for the production of PBHs. We want
to review the mechanism of PBH formation during phase transitions and deter-
mine the coresponding possible values for §(k).

The previous objectives will be part of immediate work. With the obtained
reults we want to determine a first approach to the density distribution func-
tion of PBHs on the universe.

When a PHB forms at a given epoch it could swallow smaller mass PBHs ex-
isting in the neighboord. We want to study the importance of this process and
evaluate how it affects the values of (k).

It is not clear if a PBH leaves a relic behind as a final result of the evapo-
ration due to the the Hawking radiation mechanism. This is a very important
subject because PBH relics would affect the values of the observational con-
straints. In the previous study we have considered that there are no PBH relics.

With the IMF we are taking into account the formation of horizon size and
sub-horizon size PBHs (10~*Mpy—Mpy). Recent studies point also to the pos-
sibility of formation of super—horizon sized PBHs. We want to explore this
subject and study how it affects 5(k).

In the not so near future we want to study more deeply the PBH distribu-
tion in the Universe. There are two main ideas: (a) the distribution of PBHs is
homegeneous throught the entire universe and (b) PBHs are clustered around
galactic halos. We want to explore the two possibilities and, taking into account
the obtained results, determine the distance to the nearest PBH.
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