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Abstract

Paper is devoted to studies of linguistic dynamic system of dimen-
sion n ≥ 2 over arbitrary commutative ring K, i.e. family F of nonlin-
ear polynomial maps fα : Kn → Kn depending on ”time” α ∈ {K−0}
such that fα

−1 = f−α and fα1(x) = fα2(x) for some x ∈ Kn implies
α1 = α2, each map fα has no invariant points.

The neighbourhood {fα(v)|α ∈ K − {0}} of element v defines the
graph Γ(F ) of a dynamical system on the vertex set Kn.

We shall refer to F as linguistic dynamical system of rank d ≥ 1 if
for each string a = (α1, . . . , αs), s ≤ d, where αi + αi+1, is not a zero
divisor for i = 1, . . . d− 1, vertices v and va = fα1 × . . .× fαs(v) in the
graph are connected by a unique pass.

For each commutative ring K and even integer number n 6= 0 mod 3
there is family of linguistic dynamical system Ln(K) of rank d ≥ 1/3n.
Let L(n, K) be the graph of a dynamical system Ln(q).

If K = Fq graphs L(n, Fq) form a new family of graphs of large
girth. The projective limit L(K) of L(n, K), n →∞ is well defined for
each commutative ring K, in case of integral domain K graph L(K) is
a forest, if K has zero divisors the girth of K is dropping to 4.

We introduce some other families of graphs of large girth related to
the dynamical systems Ln(q) in case of even . The dynamical systems
and related graphs can be used for the development of symmetric or
asymmetric cryptographical algorithms. These graphs allow us to es-
tablish the best known upper bounds on the minimal order of regular
graphs without cycles of length 4n, n is odd ≥ 3.
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1 Introduction

It is well known that a continuous bijection of the interval [a, b] has a fixed
point. In case of open variety Kn, where K is commutative ring situation
is different. For each pair (K, n), n ≥ 3 and each t ∈ K − {0} we shall
construct a linguistic dynamical system, i.e family F = Fn(K) = {ft} of
invertible nonlinear polynomial maps ft : Kn → Kn without fixed points
(ft(x) 6= x for each x ∈ Kn), such that ft

−1 = f−t and t1 6= t2 implies
ft1(x) 6= ft2(x) for each x.

Foe each sting a = (a1, . . . as we consider the composition Ga = fa1 ×
fa2 × fas of transformations fai , i = 1, . . . , s.

We shall refer to a string a = (a1, . . . , as) with regular elements (not
zero divisors) ai + ai+1, i = 1, . . . , s − 1 as regular string of length s. Let
Rs = Rs(K) be the totality of all regular string of length s.

The level d = d(F ), d ≥ 1 of linguistic dynamical system F is the
maximal number s such that for each a ∈ Rs condition Ga(x) = Gb(x),
b ∈ K − {0}s for some x ∈ Kn implies a = b.

The rank r = r(F ), r ≥ 1 of linguistic dynamical system F is the
maximal number s such that for each a ∈ Rs the condition Ga(x) = Gb(x),
b ∈ K − {0}l, l ≤ s implies a = b. Let us consider simple graph Γ = Γ(F )
of the dynamical system F with the vertex set V = Kn such that u ∈ V
and v ∈ V are connected by edge if and only ft(u) = v for some t ∈ K.

The property d(F ) ≥ s means that for each vertex x and ”regular” string
a = (a1, . . . , as), s ≤ d as above x and Fa(x) = fa1 × . . . × fas(x) are not
included together in a cycle of even length ≤ 2d in the graph Γ(F ).

The property r(F ) ≥ s means that for each vertex x and a ∈ Rs vertices
x and Ga(x) are connected by the unique pass of length ≤ s.

Recall that the girth g = g(Γ) of the graph Γ is the length of its smallest
cycle.

Property r(F ) ≥ s implies that in case of integral domain K the girth g
of the graph Γ(F ) is > 2s.

In section 4 we construct explicitly the family of dynamical systems
Ln(K), n 6= 0(mod) 3 is even number ≥ 2 of rank r ≥ 1/3n and level
d ≥ 2/3n. It means that the family
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L(n, q) = L(n, Fg) of graphs of dynamical systems Ln(q) of fixed degree
q − 1 satisfies to the inequality g(L(n, q)) ≥ γlogq−2q

n, where constant γ
does not depend on n, its value is approximately 2/3logq−2q. So they form a
family of graphs of large girth in sense of N. Biggs [2] for each prime power
q. We shall construct other family of graphs of large girth B(n, q), related
to Ln(q), n = 4, . . . for each even prime power q.

Essential algorithmic advantage of new families from the family of Cayley
graphs X(p, q), constructed by G.Margulis, is the following : the set of
vertices for X(p, q) is the group PSL(2, q), which is algebraic manifold over
prime field Fq of dimension bounded by constant, while sets of vertices for
graphs L(n, q) and B(n, q) are varieties Fq

n and Fq
∗Fq

n−1 of dimension
n over Fq. It means that algorithms related to new families graphs can
be done by Turing machine of algebraic transformations of the potentially
infinite text over the fixed alphabet Fq. Graphs L(n, q) ad B(n, q) are not
bipartite in the difference with members of other known family CD(n, q)
([16]) of graphs of large girth. There is a canonical map of L(n + 2,K)
(B(n, q)) onto L(n, K) (B(n, q)) and the projective limit L(K) (B(K)) of
L(n, K) (B(n, q), respectively) is well defined.

Mentioned above four families give us the full list of families of graphs
of large girth with unbounded degree. They satisfy to inequality g ≥
clogk−1(v), where g, k, v are girth, degree and order, of the graph from
the family, where the ”velocity of logarithmic growth of girth” c is constant.

We consider the definition of arithmetical dynamical system F = {fα|α ∈
Q} simply via consideration of quasi projective manyfold M of Kn instead
of Kn and requirement fα ∈ F instead of fα

−1 = f−α f−α, Q is just a subset
of K. Major justification of arithmetical graphs related to such dynamical
systems is that they are examples of graphs with memory (see [29]) because
we can not only consider such a graph as finite automaton where states v
and fα(v) are connected by the arrow with the labl α, but each state v is a
string of characters from the alpabet K.

We consider explicit construction of arithmetic dynamical systems Dn(K)
and Cn(K) on Kn ∪Kn related to permutational representations of infinite
group U(K) and CU(K) defined over arbitrary commutative ring, if K is
an integral domain than CU(K) is a free product K+ ∗K+, where K+ is an
additive group of the ring, well defined projective limit of graphs Γ(Cn(K))
is an infinite tree. If K has zero divisors, then the girth of each graph
ΓCn(K)) and their projective limit is dropping to 4 (see section 4).

The ideas on applications of graphs of large girth and dynamical systems
as above to Cryptography are considered in section 3.
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Section 5 devoted to graphs and dynamical systems related to polarities
of graphs Γ(Dn(K)) and Γ(Cn((K)). It contains explicit construction of
family Ln(K).

2 Cages, regular graphs without even cycles and
families of graphs of large girth

The missing definitions of graph-theoretical concepts which appears in this
paper can be found in [6] or [28]. All graphs we consider are simple, i. e.
undirected without loops and multiple edges. Let V (G) and E(G) denote
the set of vertices and the set of edges of G, respectively. |V (G)| is called
the order of G, and |E(G)| is called the size of G. A path in G is called
simple if all its vertices are distinct. When its convenient, we shall identify
G with the corresponding antireflexive binary relation on V (G), i.e. E(G)
is a subset of V (G)× V (G). The length of a pass is a number of its edges.

The girth of a graph G, denoted by g = g(G) is the length of the shortest
cycle in G. Let k ≥ 3 and g ≥ 3 be in integers. A (k, g)-graph is a k-regular
graph with girth exactly g. A (k, g) − cage is a (k, g)-graph of minimal
order. The problem of determining the v(k, g) of a (k, g)-cage is unsolved
for most pairs (k, g) and is extremely hard in general case. By counting
the number of vertices in the breadth-first-search tree of a (k, g)-graph, one
easily establishes the following lower bounds for v(k, g):

v(k, g) ≥ k(k − 1)(g−1)/2/(k − 2) for g odd, k ≥ 4
v(k, g) ≥ 2(k − 1)g/2−2/(k − 2) for g even, k ≥ 4
The problem of determining v(k, g) was posed in 1959 by F. Kartesi who

observed that v(3, 5) = 10 was realized by the Petersen graph (see [9]). The
above lower bound had been established by Tutte [30].

Let us consider the family of graphs Gi of degree li and unbounded girth
gi such that

gi ≥ γ logli−1(vi) (1)

The last formula means that Gi, i = 1, . . . form an infinite family of
graphs of large girth in the sense of N. Biggs [3].

The order of graphs from such a family is close to the lower bound on
v(k, g), this bound shows that γ ≤ 2 but no family has been found for which
γ = 2. Bigger γ’s correspond to the larger girth.

For many years the only significant result were the theorems of Erdø”s’
and Sachs [10], [25] and its improvement by Sauer [26], Walther [40], [41], and
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others (see [7] for more details and references), who using nonconstructive
methods proved the existence of infinite families with γ = 1. The first
explicit examples of families with large girth were given by Margulis [21]
with γ = 0.44 for some infinite families with arbitrary large valency, and
γ = 0.83 for an infinite family of graphs of valency 4. The constructions
were Cayley graphs of SL2(Zp) with respect to special sets of generators.
Imrich [13] was able to improve the result for an arbitrary large valency,
γ = 0.48, and to produce a family of cubic graphs (valency 3) with γ = 0.96.
A family of geometrically defined cubic graphs, so called sextet graphs, was
introduced by Biggs and Hoare [5]. They conjectured that these graphs
have large girth. Weiss [42] proved the conjecture by showing that for the
sextet graphs (or their double cover) γ ≥ 4/3. Then independently Margulis
[21, 22, 23] and Lubotsky, Phillips, and Sarnak [24] came up with similar
examples of graphs (graphs Xp,q) with γ ≥ 4/3 and arbitrary large valency
(they turned out to be, additionally, so-called Ramanujan graphs). In [4]
Biggs and Boshier showed that that γ is asymptotically 4/3 for graphs from
[21, 22, 23]. The graphs Xp,q are Cayley graphs of the group PSL2(Zq)
with respect to a set of p + 1 generators (p and q are primes congruent to 1
mod4).

The problem of estimation of order of cages is dual to problem on the
maximal size of graphs on girth g.

Let v(k, C2n be the minimal order of k-regular graph without cycles of
the length 2n.The problem to evaluate v(k,C2n) is dual to famous problem
on the maximal size of the graph on v vertices without even cycles C2n by
Erdø”s’ (see [8]). AS it follows from definitions

v(k, C2n) ≤ v(k, 2n + 1) and v(k,C2n) ≤ v(k, 2n + 2). The construction
of graphs L(n, q) and B(n, q) implies the following result (the best known
upper bounds on v(k, C4n).

Theorem 2.1 Let k ≥ 2 and g ≥ 5 be integers, and let q denote the smallest
prime power for which k < q, let b be the smallest power of 2 for which k ≤ q.

Then the following upper bounds hold

v(k, C4n) ≤ (k + 1)q(3/4)n−2 (2)

v(k, C4n) ≤ kb(3/4)n−2 (3)

It is clear, that for some very special k the bound (3) is better then (2).
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By Chebyshev’s Theorem for a fixed integer k ≥ 3 there is always a
prime between k and 2k− 2. For any e ≥ 0 and k > k0(e), this interval can
be narrowed to [k, k + k2/3+e], see [24], p.131.

The best known bound for v(k, 2n), n is odd, follows from the bound on
v(k, 2n) ([17]):

Let k ≥ 2 and g ≥ 5 be integers, and let q denote the smallest odd prime
power for which k ≤ q. Then

v(k, g) ≤ 2kq(3/4)g−α (4)

where α = 4, 11/4, 7/2, 13/4 for g = 0, 1, 2, 3 mod 4, respectively.
It is clear that bound (2) on v(k,C4n) is always better then (4).

3 Graphs with special walks and Cryptography

Graphs of large girth are applied tools in Networking (see [1]), other appli-
cation is Cryptography (see [32], [34], [35] for theoretical studies and [36],
[37], [38] [39] for the computer implementation.

The general idea of such a graph theoretical approach is considering the
set of vertices as the plainspace and the pass in the graph as an encryption
tool (password). In case of the graph of girth g distinct passes of length s, s ≤
[(g − 1)/2] starting from given vertex produce different verices-ciphertexts.
In the case of parallelotopic graphs ([32], [34]) or Cayley graphs we have
a nice parametrisation of walks and passes by strings over some alphabet
(set of colours for parallelotopic graphs and set of generators for Cayley
graphs). In case of (k, g)-graphs and encryption by passes of length s, s ≤
(g−1)/2 the size of the key-space is k(k−1)s−1, the vertex-plaintext and the
vertex ciphertext are joint by the unique pass. It means that if adversary
has access only to encrypted communications, he or she can use only brut-
force search to recover plaintext. The encryption by walks on the graph
has a certain resistance in other situation when adversary knows several
pairs (plaintext-ciphertext) and trying to get the password for the control
of communication channel. Such resistance is increasing with the grows of
the girth (see [34], [35]). Thus families of (k, g)-graphs of increasing girth,
especially parallelotopic graphs or Cayley graphs, are valuable tools for the
encryption. If such graphs form the family of graphs of large girth we have
the following theoretical advantage: size of the key space is comparable with
the size of the plainspace.
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The advantage of families D(n, q), CD(n, q) and new graphs related
to dynamical systems Ln(Fq), Bn(Fq) in comparison with Cayley graphs
X(p, q) is the possibility to work with the ”potentially infinite” plaintext
as a string over the fixed alphabet Fq like in the case of affine encryption
or real block ciphers DES, AES, NEST and many others (see [27] or [12]).
In the encryption process via graphs X(p, q) we need change the size of
the alphabet Fq with the grows of the information volume because of the
dimension of the plainspace PSLn(q) over Fq is constant.

Affine encryption is used not only for finite field Fq but in the case of
general commutative rings (see unit ”Enciphering matrices” in the Koblitz
book [11]). The idea to investigate girth of graphs related to invertible dy-
namical systems over rings with zero divisors is natural but difficult one.
Instead of girth investigation we can justify existence of many pairs of
vertices joint by the unique pass. More precisely, we can consider pairs
(v, u = Fα1(Fα2 . . . (Fαk

(v)) . . .), where v is arbitrary vertex of the graph
related to invertible dynamical system Fx of level k over commutative ring
K, αi + αi+1 are regular elements of K. We can treat v as a plaintext, u as
a ciphertext, string (α1, α2, . . . , αk) as a password and the transformation
G = Fα1 . . .× Fαk

as encryption rule.
The idea to combine such symmetric encryption N via graphs with two

affine transformation A and B over K or its proper subring (use ANB) for
the public key encryption (for the case of integrity rings see [36]).

Combination of encryption base on families of graphs Dn(K), Cn(K),
L(n, K), B(n, K) with appropriate affine transformations A and B can be
useful also in symmetric mode algorithms. Such an encryption schemes are
not block ciphers, change of one character in the plaintext leeds to change
of entire ciphertext, not just one block of it.

Important to notice that choice K = Z2n instead of K = F2n leads to
essential speed up of the encryption because of multiplication of numbers
are faster than multiplication of polynomials, but the key space remains to
be rather large: zero divisors are odd classes and strings of alternating even
and odd classes are appropriate passwords.

4 Transformation groups of incidence structures
defined over commutative rings

We need the following well known results on groups acting on graphs.
Let G be a group with proper distinct subgroups G1 and G2. Let us
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consider the incidence structure with the point set P = (G : G1) and the line
set (G : G2) and incidence relation I : αIβ if and only if the set theoretical
intersection of cosets α and β is nonempty set. We shall not distinguish the
incidence relation and corresponding graph Γ(G)G1,G2 .

Lemma 4.1 Graph I is connected if and only if < G1, G2 >= G.

Let A =< a1, . . . , an|R1(a1, . . . , an), . . . , Rd(a1, . . . , an) > and
B =< b1, . . . bm|S1(b1, . . . bm), . . . , St(b1, . . . , bm) > are subgroups with

generators ai, i = 1, . . . , n and bj , j = 1, . . . ,m and generic relations Ri,
i = 1, . . . , d and Sj , j = 1, . . . , t, respectively. Free product F = A ∗B of A
and B be the subgroup < a1, . . . , an, b1, . . . , bm|R1, . . . Rd, S1, . . . , St > (see
[20]).

The definition of an operation of free product FH of groups A and B
amalgamated at common subgroup H can be found in [20]. If H =< e >,
then FH = A ∗B.

Theorem 4.2 (see, for instance [20]) Let G acts edge transitively but not
vertex transitively on a tree T . Then G is the free product of the stabilizers
Ga and Gb of adjacent vertices a and b amalgamated at their intersection.

Corollary 4.3 Let G acts edge regularly on the tree T , i. e. |Ga ∩Gb| = 1.
Then G is the free product Ga ∗Gb of groups Ga and Gb.

We define the family of graphs D(k, K), where k > 2 is positive integer
and K is a commutative ring, such graphs have been considered in [15] for
the case K = Fq ( some examples are in [14]).

let P and L be two copies of Cartesian power KN , where K is the
commutative ring and N is the set of positive integer numbers. Elements of
P will be called points and those of L lines.

To distinguish points from lines we use parentheses and brackets: If
x ∈ V , then (x) ∈ P and [x] ∈ L. It will also be advantageous to adopt the
notation for co-ordinates of points and lines introduced in [15] for the case
of general commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .].

The elements of P and L can be thought as infinite ordered tuples of
elements from K, such that only finite number of components are different
from zero.
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We now define an incidence structure (P,L, I) as follows. We say the
point (p) is incident with the line [l], and we write (p)I[l], if the following
relations between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i

l′i,i − p′i,i = li,i−1p0,1 (6)

li,i+1 − pi,i+1 = li,ip0,1

li+1,i − pi+1,i = l1,0p
′
i,i

(This four relations are defined for i ≥ 1, p1,1 = p1,1, l‘1,1 = l1,1)). This
incidence structure (P,L, I) we denote as D(K). We speak now of the
incidence graph of (P,L, I), which has the vertex set P ∪ L and edge set
consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik)
as follows. First, Pk and Lk are obtained from P and L, respectively, by
simply projecting each vector onto its k initial coordinates. The incidence
Ik is then defined by imposing the first k−1 incidence relations and ignoring
all others. The incidence graph corresponding to the structure (Pk, Lk, Ik)
is denoted by D(k, K).

To facilitate notation in future results, it will be convenient for us to
define p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = −1, and
to assume that (6) are defined for i ≥ 0.

Notice that for i = 0, the four conditions (6) are satisfied by every
point and line, and, for i = 1, the first two equations coincide and give
l1,1 − p1,1 = l1,0p0,1.

The incidence relation motivated by the linear interpretation of Lie ge-
ometries in terms their Lie algebras [31] (see [33]). Let us define the ”root
subgroups” Uα, where the ”root” α belongs to the root system Root =
{(10), (01), (11), (12), (21), (22), (22)′ . . . , (i, i), (ii)′, (i, i+1), (i+1, i) . . .}. Group
Uα generated by the following ”root transformations” tα(x), x ∈ K of the
P ∪ L :

1) lt1,0(x) = [l1,0 + x, l1,1, l2,1 − l1,1x, l1,2, l2,2, . . . , l
′
s,s + ls−1,sx, ls+1,s +

ls,sx, ls,s+1, ls+1,s+1, . . .];
1’) pt1,0(x) = (p0,1, p1,1−p0,1x, p2,1−2p1,1+p0,1x

2, p1,2, p2,2+p1,2x, . . . , ps+1,s−
(ps,s + p′s,s)x + ps−1,sx

2, ps,s+1, ps+1,s+1 − ps,s+1x, . . .)
2) lt0,1(x) = [l1,0, l1,1 + l1,0x, l1,2 + 2l1,1x + l1,0x

2, l2,1, l2,2 + l2,1x, . . . , l′s,s +
ls,s−1x, ls,s+1 + (ls,s + l′s,s)x + ls,s−1x

2, l(s + 1, s, ls,s + ls,s−1x, . . .
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2’) (p)t0,1(x) = (p0,1 + x, p1,1, p1,2, p2,1, p2,2, . . .)
3) lt1,1(x) = [l1,0, l1,1 + x, l1,2, l2,1 + l1,0x, l2,2 − l1,1x, l′2,2 + l1,1x, . . . , ls,s −

ls−1,s−1x, l′s,s + ls−1,s−1x, ls,s+1 − ls−1,sx, ls+1,s + ls,s−1x, . . .]
3’) pt1,1(x) = (p0,1, p1,1+x, p1,2−p0,1x, p2,1, p2,2−p2,1x, . . . , ps,s−ps−1,s−1x, p′s,s−

p′s−1,s−1x, ps,s+1 − ps−1,s, ps+1,s + ps,s−1x, . . .
The transformations tm+1,m(x), m ≥ 1 acts on the coordinates of l and

p by the following rules.
(a) lm+1,m → lm,m+1 + x , pm,m+1 → pm,m+1 + x.
(b) l′m+1,m+1 → l′m+1,m+1,
p′m+1,m+1 → p′m+1,m+1 + p0,1x
(c) l′m+r,m+r → l′m+r,m+r − lr−1,rx, p′m+r,m+r → p′m+r,m+r − pr−1,rx,

r ≥ 2.
(d) lm+r+1,m+r → lm+r+1,m+r− lr,rx, pm+ r +1,m+ r → pm+r+1,m+r−

pr,rx, r ≥ 2.
(e) All other components are unchanged.
The transformation tm,m+1(x), m ≥ 1 is defined by following rules.
(a)lm,m+1 → lm,m+1 + x, pmm+1 → pm,m+1 + x.
(b) lm+1,m+2 → lm+1,m+2 + l1,1x, pm+1,m+2 → pm+1,m+2 + p1,1x.
(c) lm+1,m+1 → lm+1,m+1 + l1,0x.
(d) lm+r,m+r+1 → lm+r,m+r+1 + l′r,rx, r ≥ 2.
(e) All other components are unchanged.
The transformation t′m,m(x) acts on vertices of D(K) by the following

rules.
(a) l′m,m → l′m,m + x, p′m,m → p′m,m + x.
(b) lm+1,m → lm+1,m + l1,0x.
(c) lm+1,m+1 → lm+1,m+1 + l1,1x, pm+1,m+1 → lm+1,m+1 + p1,1x
(d) lm+r,m+r → lm+r,m+r + l′r,rx, pm+r,m+r → pm+r,m+r + p′r,rx, r ≥ 2.
(e) lm+r+1,m+r → lm+r+1,m+r + lr+1,rx, pm+r+1,m+r → pm+r+1,m+r +

pr+1,rx, r ≥ 2.
(f) All other components are unchanged.
The transformation tm,m(x),m ≥ 1 act on coordinates of vertices by the

following rules.
(a) lm,m → lm,m + x, pm,m → pm,m + x.
(b) pm,m+1 → pm,m+1 − p0,1x.
(c) lm+r,m+r → lm+r,m+r − lr,rx, pm+r,m+r → pm+r,m+r − pr,rx, r ≥ 1.
(d) All other components are unchanged.
Note that action of each transformation above on the n-s component of

a vertex from P ∪ L depends only from this component itself and previous
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components. Thus we can define a natural projection of this transformation
onto the graph D(n, K).

Proposition 4.4 (i)For each pair (α, x), α ∈ Root, x ∈ K the transforma-
tion tα(x) are automorphisms of D(K). The projections of these maps onto
the graph D(n, K), n ≥ 2 are elements of Aut(D(n, K).

(ii) Group U(K) acts edge regularly on the vertices of D(K).
(iii) Group U(n, K) generated by projections of tα(x) onto the set of

vertices V of D(n, K) acts edge regularly on V .

Proof:
Statement (i) follows directly from the definitions of incidence and closed

formulas of root transformations tα(x). Let < be the natural lexicographical
linear order on roots of kind (i, j), where |i−j| ≤ 1. Let us assume addition-
ally that (i, i) < (i, i)′ < (i, i + 1). Then by application of transformations
tα(xα), α 6= (0, 1) to a point (p) consecutively with respect to the above or-
der, where parameter xα is chosen to make α component of the image equals
zero, we are moving point (p) to zero point (0). A neighbour [a, 0, . . . , 0] of
the zero point can be shifted to the line [0] by the transformation t(1,0)(−a).
Thus each pair of incident elements can be shifted to ((0), [0]) and group U
acts edge regularly on vertices of D(K). This action is regular ((ii)) because
the stabilizer of the edge (0), [0] is trivial. Same arguments about the action
of U(n, K) justify (iii).
•

Lemma 4.5 Let φa be a binary relation : ”difference of colours of the same
type is a”. Then group U (U(n, K)) preserves φa.

Proof:
Transformations tα , α 6= (0, 1), (1, 0) preserves colours of vertices. Maps

t(0,1)(x) and t(1,0)(x) preserve the binary relation φa for each a ∈ K.
•

Let k ≥ 6, t = [(k+2)/4], and let u = (uα, u11, · · · , utt, u
′
tt, ut,t+1, ut+1,t, · · ·)

be a vertex of D(k, K) (α ∈ {(1, 0), (0, 1)}, it does not matter whether u is
a point or a line). For every r, 2 ≤ r ≤ t, let

ar = ar(u) =
∑

i=0,r

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at).
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Proposition 4.6 (i) The classes of equivalence relation τ = {(u, v)|a(u) =
a(v)} form the imprimitivity system of permutation groups U(K) and U(n, K)

(ii) For any t−1 ring elements xi ∈ K), 2 ≤ t ≥ [(k +2)/4], there exists
a vertex v of D(k, K) for which

a(v) = (x2, . . . , xt) = (x).
(iii) The equivalence class C for the equivalence relation τ on the set

Kn ∪ Kn is isomorphic to the affine variety Kt ∪ Kt , t = [4/3n] + 1 for
n = 0, 2, 3 mod 4, t = [4/3n] + 2 for n = 1 mod 4.

Proof:
Let C be the equivalence class on τ on the vertex set D(K) (D(n, K)

then the induced subgraph, with the vertex set C is the union of several
connected components of D(K) (D(n, K)).

Without loss of generality we may assume that for the vertex v of C(n, K)
satisfying a2(v) = 0, . . . at(v) = 0. We can find the values components v′i,i)
from this system of equations and eliminate them. Thus we can identify P
and L with elements of Kt, where t = [3/4n] + 1 for n = 0, 2, 3 mod 4, and
t = [3/4n] + 2 for n = 1 mod 4.
•

We shall use notation C(t, K) (C(K)) for the induced subgraph of D(n, K)
with the vertex set C.

Remark.
If K = Fq, q is odd, then the graph C(t, k) coincides with the connected

component CD(n, q) of the graph D(n, q) (see [18]), graph C(Fq) is a q-
regular tree. In other cases the question on the connectedness of C(t, K) is
open. It is clear that g(C(t, Fq)) is ≥ 2[2t/3] + 4.

We define an incidence structure with point set P ′ and line set L′. It
will be convenient for us to denote vectors from P ′ as

x = (x) = (x0,1, x1,1, x1,2, x2,2, . . . xi,i, xi,i+1 . . . , ) and vectors from L′ as
y = [y1,0, y1,1, y1,2, y2,2, . . . , yi,i, yi,i+1, . . .].

We say that point (x) is incident with the line [y] and we write it xJy or
(x)J[y] if and only if the following condition are satisfied:

yi,i − xii = xi−1,iy1,0

yi,i+1 − xi,i+1 = x1,0yi,i

where i = 1, 2, . . ..
Let E(K) be the incidence graph of the incidence graph of the inci-

dence structure Γ(K) = (P ′, L′, J ′). For each integer k ≥ 2 let Γ(k, q) =
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(P ′(k), L′(k), J(k)) be the incidence system, where P (k) and L(k) are images
of P and L under the projection of these spaces on the first k -coordinates
and binary relation J(k) is defined by the first k equations. Finally, let
E(k,K) be the incidence graph for Γ(k, K).

Similarly we can define an incidence structure E′(K) with points of
kind (x) = (x0,1, x1,1, x2,1, . . . , x

′
i,i, xi+1,i, . . .), i ≥ 2, lines of kind [y] =

[y1,0, y1,1, y2,1, . . . y
′
i,i, yi+1,i, . . .] and the incidence relation given by equations

y′i,i − x′i,i = yi,i−1x1,0

yi+1,i − xi+1,i = y1,0x
′
i,i.

By projections of the point space and the line space on the first k com-
ponents we get the quotient graph E′(n, K). It is easy to see that graphs
E(K) and E′(K) (E(n, K) and E′(n, K)) are isomorphic.

Let G be the graph with the colouring ρ : V (G) → C of the set of vertices
V (G) into colours from C such that the neighbourhood of each vertex looks
like rainbow, i.e. consists of |C| vertices of different colours. In case of pair
(G, ρ) we shall refer to G as parallelotopic graph with the local projection ρ
(see [36] and further references).

It is obvious that parallelotopic graphs are k-regular with k = |C|. Lin-
guistic graphs are just bipartite parallelotopic graphs of order 2qt and degree
q = ps where p is a prime number.

If C ′ is a subset of C, then induced subgraph GC′
of G which consists

of all vertices with colours from C ′ is also a parallelotopic graph. It is clear
that connected component of the parallelotopic graph is also a parallelotopic
graph.

The arc of the graph G is a sequence of vertices v1, . . . , vk such that
viIvi+1 for i = 1, . . . , k−1 and vi 6= vi+2 for i = 1, . . . , k−2. If v1, . . . , vk is an
arc of the parallelotopic graph (G, ρ) then ρ(vi) 6= ρ(vi+2) for i = 1, . . . , k−2.

The trail of the graph G is the sequence of vertices v1, . . . , vk, such that
vi 6= vi+1, i = 1, . . . , k − 1 and v1 = vk.

If (G1, ρ1) and (G2, ρ2) be two parallelotopic graphs over the same set of
colours. We say that graph homomorphism φ : G1 → G2 is a parallelotopic
morphism if ρ1(v) = ρ2(φ(v)) for each vertex v of the graph G1.

Parallelotopic morphism moves arc of the graph G1 into the arc of graph
G2.

Examples. Let Γ = Γk(K) be one graph among the graphs D(k, K),
CD(k, K) and E(k, K). Γ with the colouring ρ([x]) = x1, ρ((x)) = x1 is a
parallelotopic graph. If K = Fq, then it is q-regular bipartite graph with 2qk
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vertices. The map ηs of deleting the s last components of the tuple-vertex
(point or line) of Γk+s(q) is a parallelotopic morphism onto Γk(q).

Let φ be a map of deleting of coordinates with indices (i, i+1), (i, i)′ for
vertices of D(K) (or CD((K)). Then φ is a parallelotopic morphism onto
the graph E(K). It is preserves not only colours but all components xα, α ∈
Root′, where Root′ contains exactly (1, 0), (0, 1), (i, i), (i, i + 1), i = 1, . . ..

We can consider the map φn (φ′
n)on the set of vertices of the graph

D(n, K). The image of this parallelotopic morphism belongs to the family
E(k, K) (E′(k, K), respectively).

Let Uα =< tα(x)|x ∈ K > be a subgroup of U(K). It is isomorphic
to the additive group K+ of the ring K. Let UC be subgroup generated
by tα(x), x ∈ K, α ∈ {(0, 1, (1, 0), . . . , (i, i), (i, i + 1), . . .}. Let Un

C be
the subgroup generated by transformations tα(x) from UC onto the graph
D(n, K) (or C(n, K)).

(i) The connected component CD(n, K) of the graph D(n, K) (or its
induced subgraph C(t, K)) is isomorphic to Γ(Un)C)U(0,1),U(1,0)

.
(ii) Projective limit of graphs D(n, K) (graphs C(t, K), CD(n, K) ) with

respect to paralletopic morphisms of D(n+1,K) onto D(n, K) (their restric-
tions on induced subgraphs) equals to D(K) (C(K), CD(K) = UC

U(0,1),U(1,0)
,

respectively).
Remark. Let v1, v2, . . . vk be the pass in the parallelotopic graph G, then

it is uniquely determined by the starting point v1 of the colour c1 and the
sequence of colours c2, . . . ck of colours of vertices v2, . . . , vk, respectively.
We have ci 6= ci+2, for i = 1, . . . , k − 2.

The following statement can be proven by straightforward induction on
n.

Lemma 4.7 (two numbers lemma)
Let [y1]I(y2)I . . . Iyn be the pass in the graph E(n, K), n ≥ 4 starting

from the zero point (y1 = 0) defined by the sequence of colours 0, x1, x2, . . . xn−1.
Then two last components of the vertex yn are α = x1x2(x1−x3) . . . (xn−3−

xn−1), and β = −xn−2α.

Theorem 4.8 Let Nx(v) be the operator of taking the neighbour of the ver-
tex v = (v1, v2, . . . , vs) of the colour v1 + x in the graph D(n, K).

Then operator it defines an arithmetical dynamic system Dn(K) on Kn∪
Kn of level d = [(n + 5)/2]− 1.

Proof:
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Let us consider the action of operator Fd = Nt1Nt2 . . . Ntd , where ti+ti+2

are regular elements of K, on the vertex u.
Consecutive applications of Nti produce the walk
u = u0,u1 = Nt1(u0), . . . ,ud = Ntd(ud−1), where the difference of colours

for elements ui and ui+2 is ti + ti+1. The group U(n, K) acts transitively on
the vertex set of D(n, K) and preserves difference of colours for elements of
same type. Thus without loss of generality we may assume that u is zero
point.

We can apply map φn (or φ′
n) to ud and compute the common for ud

and its image component α via two numbers lemma. It is product of regular
elements and one nonzero element. Thus it differs from zero. Let us assume
that F ′

s(u) = Nt′1
. . . Nt′s(u) = Fd(u). Without loss of generality we may

assume that t′i 6= t′i+1, i = 1, . . . , s − 1. If s ≤ d, the component with
number α for F (u) = 0 according to the 2 numbers lemma and we are getting
a contradiction. So s = d and consecutive execution of transformation
Nt′i

, (i = 1, . . . , d) produces the walk u′1, . . . u
′
d. Let t1 6= t′1. Then we can

apply operator t0,1(−t′) to each element ui, u′i, i = 1, . . . , d and get elements
vi, v′i, i = 1, . . . , d, respectively. Conditions ud = u′d and vd = v′d are
equivalent.

According to two numbers lemma component α of v′d equals zero but
same component of vd is not a product of regular and nonzero elements.
Thus t1 = t′1. Application of same argument to the sequence ui, . . . ud,
i = 1, . . . , d− 1 gives us ti = t′i for i = 2, . . . d.
•

Operator Nx preserves connected components of D(n, K) and blocks of
equivalence relation τ .

Corollary 4.9 Let N ′
x(v), t ∈ K be the operator of taking the neighbour of

the vertex v of the colour v1+x in the graph C(t, K), which is the restriction
of operator Nx(v) on the equivalence class C. Then it defines arithmetical
dynamic system Ct(K) on Kt ∪Kt over Q = K of rank d = [2/3t] + 1.

If K is an integrity domain, then D(K) and CD(K) are forests. Let C
be the connected component, i.e tree.

Group UC acts regularly on CD(K). So we can apply theorem on group
acting regular on the tree and get the following statement.

Proposition 4.10 If K is integrity domain then group UC(K) is isomor-
phic to the free product of two copies of K+.
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5 Polarities of incidence structures and related dy-
namical systems

Let P and L be disjoint sets, the elements of which we call points and lines,
respectively. A subset I of P × L is called an incidence relation on the
pair (P,L). The incidence graph Γ of geometry (P,L, I) is defined to be
the bipartite graph with vertex set P ∪ L and edge set {{p, l}|p ∈ P, l ∈
L, (p, l) ∈ L}.

Let π : P ∪ L → P ∪ L be a bijection for which the following hold
(1) P π = L and Lπ = P ,
(ii) for all p ∈ P , l ∈ L (lπ,pπ) ∈ I if and only if (p, l) ∈ I,
(iii) π2 = 1.
We call such π a polarity of the incidence structure (P,L, I). Note

that π induces an order two automorphism of the incidence graph Γ which
interchanges the bipartition sets P and L. We shall use the term ”polarity”
and the notation ”π” for the graph automorphism as well.

We now define the polarity graph Γπ of the structure (P,L, I) with re-
spect to polarity π. It is the graph with the vertex set V (Γπ) = P and edge
set E(Γπ) = {{p1, p2}}|p1, p2 ∈ P, p1 6= p2, (p1, p2

π) ∈ I}.
Finally, we call point p ∈ P an absolute point of the polarity π provided

(p, pπ) in I.
Let Nπ denote the number of absolute points of π.

Proposition 5.1 (see, for instance [18])
Let π be be a polarity of the finite incidence structure (P,L, I) and let Γ

and Γπ be the correspondent incidence and polarity graphs.
(a) degΓπ = degΓπ − 1 if p is an absolute point of π, and degΓπ = degΓ

otherwise.
(b) |V (Γ)π| = 1/2|V (Γ)|, |E(Γπ)| = |E(Γ)| −Nπ,
(c) If Γπ contains a (2k + 1)-cycle then Γ contains a (4k + 2) cycle.
(d) If Γπ contains a 2k-cycle then Γ contains two vertex disjoint 2k cycles

C and C ′ such that Cπ = C ′. Consequently, if Γ is 2k-cycle-free then so is
Γπ.

(e) The girth of the two graphs are related by g(Γπ) ≥ 1/2g(Γ).

It is clear that statements (c) , (d) and (e) are valid for an infinite
incidence structure with polarities.

Let us consider the case of the incidence structure with paralleloopic
graph (Γ, ρ) with the polarity π which is the parallelotopic morphism. We
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call such π a parallelotopic polarity. In that case we can define the regular
folding graph RΓ = R(Γπ) = {(p.p′)|ρ(p) 6= ρ(p′), (p, p′) ∈ E(Γπ)}.

Let us consider the case when the set B of colours of the absolute points
is a proper subset of the set of all colours C. In that case we can define an
induced subgraph IΓ = IΓπ with the set of vertices {v ∈ Γπ|ρ(v) ∈ C −B}
Directly from the definitions and above proposition we are getting the fol-
lowing statement.

Lemma 5.2 Let P,L, I be the incidence structure with the k-regular par-
allelotopic incidence graph Γ and parallelotopic polarity π : Γ → C. Then
R(Γπ) is k − 1-regular graph of girth g, where g ≥ g(Γπ) ≥ g(Γ).

If the set B of colours for absolute points of π is different from C, then
IΓ is |C −B|-regular graph and g(IΓ)) ≥ g(Γπ) ≥ g(Γ).

Remark 1:
Graph IΓ is a parallelotopic graph. Let S be a finite proper subset of C−B

of cardinality s. Then the graph IΓS has valency s and g(IΓS) ≥ g(IΓ).
Remark 2:
Graph RΓ is not a parallelotopic graph because of sets of colours from tne

neighbourhoods differs from vertex to vertex. Let S, |S| = s be a subset of
the colour set C of the parallelotopic graph Γ. Then parallelotopic polarity π
induces a parallelotopic polarity π of RΓS. The graph RΓS shall be a graph
of valency s− 1 and g(RΓS) ≥ g(ΓS) ≥ g(Γ).

Proposition 5.3 The map π given by the close formula
pπ = [p10,−p11, p21, p12,−p′22,−p22, . . . ,−p′ii,−pii, pi+1,i, pi,i+1, . . .],
lπ = (l01,−l11, l21, l12,−l′22,−l22, . . . ,−l′ii,−lii, li+1,i, li,i+1, · · ·)
is a parallelotopic polarity of D(n, K). It preserves blocks of the equiva-

lence relation τ . It is restriction on V (CD(n, K)) is a parallelotopic polarity
of CD(n, K).

Let L(n, K) be regular folding graph corresponding to the parallelotopic
polarity π induced on the vertices of the graph C(n, K). In case of charK = 2
the colours of absolute points of the polarity graph of C(n, K) corresponding
to the polarity π form the set B = {x|x2 = 0}. Thus colours of the vertices
of B(n, K) are elements of K −B.

Directly from the fact g(D(n, Fq)) ≥ 2[(n + 5)/2] , proposition 6.1 and
lemma 6.2 we are getting

Proposition 5.4 (i) The girth of the graph L(n, Fq) = L(n, q) and B(n, Fq) =
B(n, q), q is even is, at least 2[(n+5)/2]. They are regular graphs of degrees
q − 1 and qt with qt and (q − 1)qt−1) vertices , respectively.
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(ii) For each q they form a families of graphs of large girth with the
γ = 2/3logq−1(q).

(3i) Let S be a subset of nonzero elements of Fq, |S| = s then L(n, Fq)S

and B(n, Fq)S (q is even) are graphs of the order sqt−1, girth ≥ 2[(n+5)/2]
and degrees s− 1 and s, respectively.

Theorem 2.1 follows directly from the statement (3i) of the Proposition
5.4.

The proposition 5.4 can be obtained alternatively as the corollary of the
two following theorems.

Theorem 5.5 (i) Let Nx(v), x ∈ {K − 0} be the operator of taking the
neighbour of the vertex v ∈ V (RC(t, K)) = Kt, of colour v1,0 + x, then it
defines the linguistic dynamical system Lt(K) on Kt, t ≥ 2 of level d =
[2/3t] + 1 and rank r ≥ [1/3t]

(ii) Let charK = 2, B is the set of roots for the equation x2 = 0,
Nx(v), x + ρ(v) 6= y, y ∈ B be the operator of taking the neighbour of
v ∈ V (IC(n, K)) = (K − B) × Kt−1 of the colour v1,0 + x, then it defines
an arithmetical dynamic system Bn(K) of level d = [2/3t] + 1 and rank
r = [1/3t] + 1.

Proof:
Let G(K) be one of the systems Ln(K), Bn(K). Let us consider the

action of operator Fd = Nt1Nt2 . . . Ntd, where ti + ti+2 are regular elements
of K, on the vertex u.

Consecutive applications of Nti produce the walk
u = u0,u1 = Nt1(u0), . . . ,ud = Ntd(ud−1), where the difference of colours

for elements ui and ui+2 is ti + ti+1. Let us consider the -dynamic equation-
F s(u) = Fd(u), where

Fs(u) = Nt′1
. . . Nt′s(u) = Fd(u). Without loss of generality we may as-

sume that t′i 6= t′i+1, i = 1, . . . , s− 1.
Consecutive execution of transformation Nt′i

, i = 1, . . . , s produces the
walk u′1, . . . ,u

′
s. So we are getting -the dynamical trail-: u0, . . . ud, u

′
s−1, . . . , u

′
1,

where u′1 is adjacent to u0. We can consider elements of the trail as points in
D(n, K). Then u0, π(u1), u2, π(u3), . . . is a dynamical trail in D(n, K) cor-
responding to the same dynamical equation. But the only trail in D(n, K)
can be related to the sequence of colours x, x + t1, x + t1 + t2, . . . x + t1 +
. . . td, x + t1 + . . . td−1, x + t1, where x is the colour of u. Thus s = d, tu-
ple (t1, . . . , td)∗ = (t′1, . . . t

′
d) and G(K) is an invertible dynamical system of

level d.
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Let us investigate possible odd cycles in the graph. If Nts . . . Nt1(x) = x
and pl = Ntl−1

, l = 2, . . . , 2k = 1. Then p1, (p2)π, . . . , p2k+1, (p1)π . . . (p2k+1)π

are consecutive verices of a (4k+2)-cycle in the bipartite graph. Half of this
cycle has colours from the regular string.
•

It is clear that theorems 2.1 is direct corollary of theorem 5.5.
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