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Abstract7

We derive the optimal policy for the dynamic scheduling of a class of deterministic, deteriorating, continuous time and continuous state
two-armed Bandit problems with switching costs. Due to the presence of switching costs, the scheduling policy exhibits an hysteretic9
character. Using this exactly solvable class of models, we are able to explicitly observe the performance of a sub-optimal policy derived
from a set of generalized priority indices (generalized Gittins’ indices) similar to those 7rst introduced in a contribution of Asawa and11
Teneketzis (IEE Trans. Automat. Control 41 (1996) 328).
? 2003 Elsevier Ltd. All rights reserved.13

Keywords: Multi-armed Bandit process; Switching costs; Optimal switching curves; Hysteretic policy; Priority index policy

1. Introduction15

In the vast domain of sequential decision problems, the
class of multi-armed Bandits processes (MABP) does play17
a privileged role as it can be solved optimally. The MABP
consists in sequentially selecting one among a class of N19
parallel payoA projects in order to maximize a global reward
on an in7nite horizon. After the seminal and pioneering21
work of Gittins and Jones (1974), we know that the optimal
strategy can be fully characterized by priority indices (the23
Gittins’ indices), provided that no setup cost and/or time is
incurred when switching from one project to another. It is25
however very common to observe in actual situations, that
switchings generate costs and often cannot be instantaneous27
(for example when non-preemptive constraints are taken into
account).

29
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In presence of switching costs and/or time delays, it is no
more possible to characterize an optimal strategy by using 31
priority indices. A counterexample has been constructed by
Banks and Sundaram (1994) to illustrate this point. In ad- 33
dition, numerical experiments such as those performed for
instance in Ha (1997) and Van Oyen and Teneketzis (1994) 35
show that, in presence of switching costs, the optimal strat-
egy exhibits a highly complex structure. While the complete 37
and analytical characterization of the optimal strategy for
MABP with switching costs, remains a mathematical chal- 39
lenge, it is not clear that overcoming this diLculty will be of
great bene7t for applications. Indeed, optimal strategy imply 41
often complex implementations, a drawback that will drive
most practitioners to prefer eLcient (though sub-optimal) 43
rules which are more easy to use. In particular, strategies
based on generalized priority indices potentially remain, due 45
to there simplicity, very appealing.
How far from optimality can we expect to be when us- 47

ing generalized priority indices in MABP with switching
costs? We will approach this question in the present paper 49
by studying a class of models involving MABP for which it
is possible to exactly determine the optimal strategy by di- 51
rect calculation. The model we consider belongs to the class
of deteriorating MABP (DMABP), for which the reward is 53
monotonously decreasing. For these DMABP with switch-
ing costs, we show in Section 3 that when two projects are 55
considered, the optimal policy exhibits an hysteretic shape.
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The hysteresis reDects the intuitive fact that not only the1
present state but also the history of the process are to be
taken into account in order to decide which is the optimal3
scheduling. In Section 5, we introduce a possible general-
ization of the priority indices (along the same lines as those5
proposed in Banks and Sundaram (1994) and Asawa and
Teneketzis (1996)) and we compare, for this two-armed pro-7
cess, the sub-optimal strategy resulting by the use of these
indices, with the optimal scheduling previously derived.9

2. Multi-armed Bandit problem with switching
costs—general and deteriorating case11

The multi-armed Bandit problem (MABP) consists in
deriving an optimal scheduling of N parallel projects (i.e.13
the arms) in order to maximize a global reward. We shall
write Xj(t)∈Xj, j = 1; : : : ; N for the state at time t and15
Xj is the state space of the project j. In the following we
will consider continuous time MABP and the state space17
will be the real line (i.e. Xj = R). The time evolutions
Xj(t) follow in general stochastic processes and we as-19
sume the statistical independence of these processes. At
any particular time, only one project is engaged, the other21
(N − 1) disengaged projects remain dynamically “frozen”.
The state of the engaged project evolves with time while23
the “frozen” projects stay 7xed in their positions. The en-
gaged project j earns rewards at rate hj(Xj(t)). Disengaged25
projects bring no reward. We write {ti; i = 0; 1; : : :}, with
06 t1 ¡ · · ·¡ti ¡ ti+1 ¡ · · · ; i = 1; 2; : : :, the sequence of27
ordered switching times occurring when it is decided to stop
a project and to engage another one. We assume that, each29
time a switching is operated, a 7xed switching cost C ¿ 0 is
incurred. Note that C does neither depend on the project we31
leave nor on the project we engage. The switching decision
at time ti is based on the observation of Xj(t), j = 1; : : : ; N ,33
∀t6 ti.
Let us de7ne the initial conditions: X̃ (0) = (X1(0); : : : ;35

XN (0)), and Ĩ �(0) = (I�1 (0); : : : ; I
�
N (0)), where I�j (t) stand

for the indicator function de7ned by37

I�j (t)

=

{
1 if project j is engaged at time t under policy �;

0 otherwise:

The solution of the MABP consists in determining the op-
timal strategy �∗ ∈�, where � is the set of all admissible39
(i.e. non-anticipating) policies which speci7es the switching
time sequence {t∗i ; i = 0; 1; : : :} and for each t∗i , it indicates41
which project to engage in order to maximize the global re-
ward:43

J �∗
(X̃ (0); Ĩ �

∗
(0)) = max

�∈�
E�



∫ ∞

0
e−�t


 N∑

j=1

hj(Xj(t))I�j (t)

−
∑
i

C��(t − ti)

)
dt

∣∣∣∣∣ X̃ (0); Ĩ �(0)


 (1)

with E�{· | X̃ (0); Ĩ �(0)} being the conditional expectation 45
with respect to the initial conditions X̃ (0) and Ĩ �(0), 0¡�
is a discounting factor and ��(t − ti) is the Dirac mass dis- 47
tribution.
In absence of switching cost (i.e. whenC ≡ 0), theMABP 49

is optimally solved by a priority index policy. This policy
is based on the possibility to assign to each project an index 51
�j(xj) (i.e. the Gittins’ index de7ned on the state xj ∈Xj) de-
pending only on the dynamic Xj(t) and the reward structure 53
hj(xj). In terms of the �j(xj), the optimal strategy reduces
to the rule: “At each time t engage the project exhibiting 55
the largest index value �j(Xj(t)).”
The Gittins’ index of project j can be determined by study- 57

ing an associated optimal stopping problem (problemSPj),
which consists in determining �∗¿ 0, that maximizes the 59
global reward JM

j (Xj(0)) gained by engaging project j until
time �∗, then stop and collect a reward e−��∗M : 61

JM
j (Xj(0))

=E

{∫ �∗

0
e−�thj(Xj(t)) dt + e−��∗ M

�

∣∣∣∣∣Xj(0)

}
: (2)

De�nition (Gittins’ index). The Gittins’ index �j(xj) asso-
ciated with a position Xj(0) = xj of the project j is de7ned 63
by (Gittins & Jones, 1974; Whittle, 1982; Walrand, 1988;
Gittins, 1989): 65

�j(xj) = sup
�¿0

E
{∫ �

0 e−�thj(Xj(t)) dt
}

E
{∫ �

0 e−�t
} ; (3)

where the supremum is taken over all admissible stopping
time. 67

De�nition (Deteriorating MABP (Whittle, 1982)). We say
that aMABP is deteriorating, if for all j=1; : : : ; N , JM

j (Xj(t)) 69
is decreasing for t increasing. For future use, we shall write
DMABP for the class of deteriorating MABP. 71

Property 1. In Whittle (1982) the following results are
established:

73
(i) A MABP is a DMABP if and only if for all

j = 1; : : : ; N , hj(Xj(t)) is decreasing for t increasing. 75
(ii) The Gittins’ index for DMABP is

�j(xj) = hj(xj): (4)

3. Optimal hysteretic policy for a class of deterministic 77
deteriorating DMABP with switching cost—the
two-armed case 79

In presence of switching costs, it is obvious that when
comparing two projects with identical dynamics and being 81
in the same state, to stay on the project currently in use is
necessarily more attractive than to switch to the other one 83
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Fig. 1. (a) Typical shape of the optimal policy. (b) The dashed lines are the optimal trajectories for three diAerent initial conditions A, B and C.

(as no switching cost is incurred). Clearly, the past history of1
the system aAects the decision maker (DM) in selecting his
action. Accordingly, the scheduling policy will generically3
include an hysteretic buAer which will be determined by two
switching curves.5
Let us now focus on the optimal policy for a simple class

of two-armed DMABP with switching costs, having the7
following properties:

dXj

dt
= �j;

Xj(0) = x0j and hj(xj) := �j(1 + e−�jxj): (5)

Note that:
9

• The dynamics of the Xj(t); j = 1; : : : ; N is deterministic.
• The reward functions hj(xj); j=1; : : : ; N are decreasing.11
• For any initial condition Xj(0), the instantaneous reward

hj(Xj(t)) ful7lls:13

lim
t→∞ hj(Xj(t)) = �j ∈R; j = 1; 2: (6)

• hj(Xj(t1))¡hj(Xj(t2)), ∀ t2 ¿t1 and then Property 1(i)
of Section 2 holds. Therefore the problem does belong to15
the class of DMABP.

Claim. For a two-armed continuous time, deterministic17
DMABP with switching costs, for which the dynamical
processes and the reward functions are de8ned by Eqs.19
(5) and (6), the optimal policy is characterized by two
non-decreasing switching curves SO1→2 and SO2→1.21
Moreover, given an initial condition, only a 8nite number
of switchings occur under the optimal policy.23

Proof of the claim. We report in the appendix the essential
steps of the proof. More details can be found in Dusonchet25
and Hongler (2002).

4. Explicit derivation of the switching curves 27

From the fact that the optimal switching curve SO1→2,
[respectively, SO2→1], are non-decreasing and that the op- 29
timal policy involves only a 7nite number of switchings,
it necessarily exists two values A1 and A2, such that for 31
any initial condition (X1(0)¿A1; X2(0); 2) [respectively,
(X1(0); X2(0)¿A2; 1)], the optimal policy commands to 33
engage the project 2 [respectively, the project 1], forever
(i.e. the optimal switching curves exhibit the qualitative 35
shape sketched in Fig. 1(a). We can calculate these values as
follows: 37
Starting at the initial condition (∞; A2; 1), [respec-

tively, (A1;∞; 2)], it is equivalent to either engage the 39
project 1 forever [respectively, the project 2 forever],
or to switch initially from project 1 to 2, [respec- 41
tively, from project 2 to 1] and then to engage it for-
ever (i.e. the initial conditions (∞; A2; 1) and (A1;∞; 2) 43
are on the switching curves). Accordingly, we can
write: 45

[∫ ∞

0
e−�th1(X1(t)) dt |X1(0) =∞

]

=− C +
[∫ ∞

0
e−�th2(X2(t)) dt |X2(0) = A2

]
(7)

which determines A2. In Eq. (7), we have used the notation
[ · |Xi(t) = xi] to indicate that the project i is in state xi at 47
time t. To simplify the exposition, we assume 7rst that both
projects have identical dynamics and reward characteristics 49
(i.e. we consider symmetric DMABP). In this case, the Fig.
1(a) is symmetric and A1 = A2. 51
The non-decreasing property of the switching curves

enables to determine them recursively. To see this, write 53
f(x2) [respectively, g(x1)] for the function which describes
SO1→2 [respectively, SO2→1]. De7ne the sequences of 55
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Fig. 2. The optimal switching curves SO2→1 and SO1→2.

points (u0; u1; : : :) and (v0; v1; : : :) as (see Fig. 2):1

u0 = A1; u1 = g−1(A2);

u2 = g−1(v1); : : : ; uk = g−1(vk−1);

v0 = A2; v1 = f−1(A1);

v2 = f−1(u1); : : : ; vk = f−1(uk−1):

Remark. For symmetric two-armed DMABP g(x1) =
f−1(x1).3

Iteration (1), calculation of SO2→1 in the interval
[u1; A1]. Assume that the DM is initially engaged on project5
2, and that the initial positions are u16X1(0) = x1 ¡A1

and X2(0) = A2 (see Fig. 2). Following the optimal policy,7
the DM switches only once, when the state of the system
reaches the position (X1(t) = x1; X2(t) = Ux2; 2) (i.e. (x1; Ux2)9
lies on SO2→1, see Fig. 2). Therefore the optimal reward
for the initial condition (x1; A2; 2) ful7lls:11

JO(x1; A2; 2; Ux2)

=
[∫ �( Ux2)

0
e−�th2(X2(t)) dt |X2(0) = A2

]
+ e−��( Ux2)

×
(
−C +

[∫ ∞

0
e−�th1(X1(t)) dt |X1(0) = x1

]
dt
)

; (8)

where �( Ux2) is the time at which the process X2(�( Ux2))= Ux2.
By optimality, the value of Ux2 must ful7ll:13
@
@ Ux2

JO(x1; A2; 2; Ux2) = 0:

For the symmetric DMABP, we directly get the switching
curve SO1→2 on the interval [A1;∞] by symmetry. Now15
we can calculate the position of the switching curveSO2→1

on the interval [u2; u1] as follows:17

Iteration (2), calculation of SO2→1 in the interval
[u2; u1]. Assume that project 2 is initially engaged and that19
the initial positions are u26X1(0)=x1 ¡u1 and X2(0)=v1.
Following the optimal policy, the DM switches exactly21

twice, 7rst in the interval [u2; u1], when the state of the
system reaches the position (X1(t) = x1; X2(t) = Ux2; 2) and 23
a second times in the interval [A1;∞] when the state of the
system reaches the position (X1(t)= Ux1; X2(t)= Ux2; 1) (Note 25
that SO1→2 for x∈ [u1; A1] has been calculated previously,
(see Fig. 2)). Therefore the optimal reward for (x1; v1; 2) is 27

JO(x1; v1; 2; Ux2)

=
[∫ �1( Ux2)

0
e−�th2(X2(t)) dt

∣∣∣∣X2(0) = v1

]
dt

+e−��1( Ux2)
(
−C +

[∫ �2( Ux1)

0
e−�th1(X1(t)) dt

∣∣∣∣X1(�1( Ux2)) = x1

]
dt

+e−�(�1( Ux2)+�2( Ux1))
(
−C +

[∫ ∞

0
e−�th2(X2(t)) dt

∣∣∣∣
× X2(�1( Ux2) + �2( Ux1)) = Ux2

]
dt
))

; (9)

where �1( Ux2) is the time at which the process X2(�1( Ux2)) =
Ux2 (i.e. is on SO2→1) and �2( Ux1) is the time at which the 29
process X1(�2( Ux1)) = Ux1 (i.e. is on SO1→2). Here again, by
de7nition of the switching curve, the value of Ux2 must ful7ll: 31
(@=@ Ux2)JO(x1; v1; 2; Ux2)=0. The switching curveSO1→2 on
the interval [u1; A1] is again given by symmetry. Iteratively, 33
we clearly can calculate the complete curve SO1→2.

Remark. For asymmetric two-armed DMABP, the above 35
procedure can be generalized straightforwardly. Indeed, the
symmetry assumption is not required to iterate the construc- 37
tion of SO2→1.

4.1. Explicitly solved example—deteriorating and 39
deterministic MABP

To illustrate our method, let us calculate explicitly the re- 41
cursion for the deterministic two-armed symmetric DMABP
for which the dynamical processes and the reward functions 43
are de7ned in Eqs. (5) and (6) with: �1=�2=�, �1=�2=�.

In this case, Eq. (7) reduces to:
∫∞
0 e−�t�(1 + 45

e−�(�1t+∞)) dt =−C +
∫∞
0 e−�t�(1 + e−�(�2t+A2)) dt, from 47
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which we obtain: A2 = −(1=�) ln [C(� + ��2)=�]. The Eq.1
(8) reduces to:

JO(x1; A2; 2; Ux2)

=

(∫ �( Ux2)

0
e−�t�(1 + e−�(�2t+A2)) dt

+e−��( Ux2)
(
−C +

∫ ∞

0
e−�t�(1 + e−�(�1t+x1)) dt

))
with �( Ux2) = Ux2 − A2=�2.3
Eqs. (9) reduces to:

JO(x1; v1; 2; Ux2)

=

(∫ �1( Ux2)

0
e−�t�(1 + e−�(�2t+v1)) dt

+e−��1( Ux2)

(
−C +

∫ �2( Ux1)

0
e−�t�(1 + e−�(�1t+x1)) dt

+e−�(�1( Ux2)+�2( Ux1))

×
(
−C +

∫ ∞

0
e−�t�(1 + e−�(�2t+ Ux2)) dt

)))
with �1( Ux2) = Ux2 − v1=�2 and �2( Ux1) = Ux1 − x1=�1.5
These equations are transcendant for general values of

�; �; �i, i=1; 2. When �=�=�1=�2=1, an explicit solution7
can however be found. It reads:

A1 = A2 =−ln
[
2C
�

]
; u1 = v1 =−ln

[
6C
�

]
;

u2 = v2 =−ln
[

16C

7� −√
33�

]
; Ux1 =−ln

[
e− Ux2

2
− C

�

]
:

Hence the switching curves for positive initial conditions9
(X1(0); X2(0))∈R+ × R+ read as:

SO2→1 =




∞ if x1 ¿A1;

−ln
[
e−x1

2
− C

�

]
if u16 x1 ¡A1;

−ln

[
2(� − ex1C)2

�ex1 (2� + 2ex1C +
√

�2 + 14�Cex1 + Q2e2x1

]
if u26 x1 ¡u1

...

and11

SO1→2 =




−ln
[
2
(
e−x1 +

C
�

)]
if x1¿A1;

−ln

[
2� + 2Cex1 +

√
�2 + 16�Cex1

2�ex1

]

if u16 x1 ¡A1

...

:

The above results are drawn in Fig. 3.

Fig. 3. Optimal policy and the GIH for the parameter value: �=�=�i=1
� = 2, C = 0:1.

5. Generalized index heuristic and suboptimal hysteresis 13

Clearly, the hysteretic type optimal scheduling which re-
sults from the presence of switching costs, precludes a naive 15
generalization of the Gittins’ index policy. By following the
idea 7rst exposed in Banks and Sundaram (1994) and Asawa 17
and Teneketzis (1996), let us introduce a set of two indices
for each project, namely:

19
• a continuation index �cj(xj),
• a switching index �sj(xj). 21

This duplication of indices enables to construct a generalized
priority index heuristics (GIH) which takes into account 23
information regarding the history of the system and hence
does exhibit an hysteretic shape topologically similar to the 25
optimal solution. In terms of �cj(xj) and �sj(xj) a N -armed
MABP will be sub-optimally solved by the policy: 27

29
Generalized index heuristics (GIH): For a project j ini-

tially engaged, the GIH read as: “Continue to engage project 31
j as long as �cj(Xj(t))¿ �sk(Xk(t)), ∀ k 
= j. If �cj(Xj(t))
falls below the switching index of another project, then 33
switch to the project having the largest switching index.”

5.1. Construction of the continuation and the switching 35
indices

To construct the indices on which the GIH is based, 37
we 7rst introduce a special two-armed MABP (denoted
by problem Pj in the following) which is equivalent to the 39
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stopping problem SPj introduced in Section 2. In problem1
Pj, the 7rst project is the project j itself and the second
project (here denoted as project T) follows the frozen dy-3
namics XT(t) ≡ '; ∀t ∈R+. When engaged, this second
project yields a systematic reward hT(') ≡ M . Assume that5
initially project j is engaged and note that once the optimal
policy commands to switch from the project j to T, it is7
never optimal to reengage project j. Indeed, if at time t1, it
is optimal to engage project T, so it is for all times t¿ t1,9
as the global evolution is “frozen”. This observation estab-
lishes the equivalence between the SPj and Pj problems.11
Write P̃j for the problem Pj, in which a switching cost
C ¿ 0 is added. Using the problem P̃j, we now de7ne:13

De�nition (Continuation index �cj(x)). The function �cj(x)
is the continuation index of project j if and only if the curve15
Sj→T = {(x; y)∈R2 | �cj(x) = �sT(y)} is the optimal
switching curve for problem P̃j when the DM is initially17
engaged on j. The index �sT(y) is the switching index of
the frozen project T given in Lemma 2 below.19

De�nition (Switching index �sj(x)). The function �sj(x)
is the switching index of project j if and only if the curve21
ST→j = {(x; y)∈R2 | �cT(x) = �ss(y)} is the optimal
switching curve for problem P̃j when the DM is initially23
engaged on T. The index �cT(y) is the continuation index
of the “frozen” project T given in Lemma 2 below.25

5.2. Derivation of the continuation and the switching
index27

Lemma 2. The continuation and the switching indices for
the “frozen” project T respectively, read as: �cT(') =M29
and �sT(') =M − C�.

Proof. Consider a two-armed MABP with both projects31
having the frozen dynamics as de7ned for the project T.
Suppose that the 7rst project (project T1) generates a sys-33
tematic reward of M1 and that the second project (project
T2) generates a systematic reward of M2. Then the optimal35
policy if the DM is initially engaged on projectT1 is to con-
tinue forever on this project if and only if M1¿M2 − C�,37
otherwise to switch to project T2 and stay on it forever.
This policy is indeed achieved when the priority indices39
�cTl(') and �sTl('), l = 1; 2 are de7ned as: �cTl(') =Ml

and �sTl(') =Ml − C�.41

Theorem 3. The switching index �sj(xj) associate with po-
sition Xj(0) = xj read as43

�sj(xj) = sup
�¿0

E
{∫ �

0 e−�thj(Xj(t)) dt − C(1 + e−��)
}

E
{∫ �

0 e−�t
}

(10)

with � being a stopping time.

Proof. The optimal reward JM;C
j (Xj(t0)) for the problem 45

P̃j when the DM is initially engaged on project T reads as:

JM;C
j (Xj(t0)) = E

{
−C +

∫ �∗

0
e−�thj(Xj(t)) dt

−e−��∗C +
∫ ∞

�∗
Me−�t dt

}
; (11)

where �∗ is the time at which it is optimal to engage project 47
T. For an initial condition (Xj(t0); ') on the switching curve
ST→j and when the DM is initially engaged on project T, 49
it is optimal to immediately engage project T and to stay
on it forever. This yields a reward: 51

JM;C
j (Xj(t0)) =

∫ ∞

0
Me−�t dt: (12)

Using Eq. (12) into Eq. (11) implies:

∫ ∞

0
Me−�t dt = E

{
−C +

∫ �∗

0
e−�thj(Xj(t)) dt

−e−��∗C +
∫ ∞

�∗
Me−�t dt

}
: (13)

On the other hand, for an initial condition on ST→j, the 53
continuation index value of project T equals the switching
index value of project j, namely: 55

�sj(xj) = �cT(') =M (14)

with M being the solution of Eq. (13), which is given in Eq.
(10). 57

Theorem 4. The continuation index �cj(xj) associated with
position Xj(0) = xj is the Gittins index given by Eq. (3). 59

Proof. Proceed along the same lines as for the proof of
Theorem 3. 61

Remarks.

• Our present de7nitions of �sj(x) and �cj(x) slightly dif- 63
fer from to those used in Asawa and Teneketzis (1996).
Our de7nitions directly follow from the associated stop- 65
ping problems used to construct the Gittins’ indices (see
Dusonchet and Hongler (2002) for more details). 67

• When C ≡ 0, we consistently have that �sj(xj)=�cj(xj)=
�gj(xj). 69

5.3. Explicitly solved example—deteriorating and
deterministic two-armed MABP 71

For the explicit DMABP given by Eqs. (5) and (6), the
optimal stopping time �∗ for problem P̃j when the DM is 73
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initially engaged on project T, read as1

�∗ =




0 if M¿�(1 + e−x0�) + C�;

−
x0�+ ln

[
−� + C� −M

�

]
��1

if � + C�¡M ¡�(1 + e−x0�) + C�;

∞ if M6� + C�:

(15)

To calculate the switching index �sj(xj), we solve Eq. (10)
where the supremum is reached for �∗ given by Eq. (15)3
and identify: M = �sj(xj).
This equation is generally transcendant. For the special5

case � = � = �1 = �2 = 1 however, a closed form solution
exists and reads as7

�s1(x0) = �(1 + e−x0 ) + C − 2
√
�C e−x0=2: (16)

Using this expression, we can explicitly characterize the
switching curve resulting from the GIH for our symmetric9
two-armed DMABP. We indeed have:

S1→2 = {(x1; x2)∈R2 | �c1(x1) = �s2(x2)} ⇒ S1→2

=
{
(x1; x2)∈R2 | x2 =−2 ln

[
e−x1=2 +

C√
�C

]}
(17)

and11

S2→1 = {(x1; x2)∈R2 | �c2(x1) = �s1(x2)} ⇒ S2→1

=


(x1; x2)∈R2

∣∣∣∣∣∣∣∣


 x2 =−2 ln

[
e−x1=2 − C√

�C

]
if x1 ¡− 2 ln

[√
�C
C

]
;

+∞ otherwise:



∣∣∣∣∣∣∣∣


 : (18)

We plot simultaneously, in Fig. 3, the optimal hysteretic
policy Eqs. (17) and (18) and the GIH. This picture, clearly13
shows that the optimal policy has a wider hysteretic gap.
This behaviour is in agreement with the result expressed by15
Lemma 2.7 in Asawa and Teneketzis (1996).

Remarks.17

• The claim and its demonstration can be generalized for
DMABP when the dynamic of the project is given by19
random walks with no downward jumps (Kaspi, 2002).

• The sub-optimality of the GIH can be observed by the21
explicit calculation of the discounted reward obtained un-
der a special initial condition. For example, chose �=2,23
C = 1:1, � = � = �1 = �2 = 1, and the initial conditions
(X1(0)=0; X2(0)=0; 1). With these values, the GIH com-25
mands to engage project 1 until the system reaches the po-
sition (−2 ln[1− (C=

√
�C)]; 0), then to switch to project27

2 and engage it forever. This scheduling yields a global
reward of 2988. Instead, the optimal policy commands to29
engage project 1 for ever and yields a global reward of 3.

• For large values of �, the reward gained in the close future31
is dominant. Hence, when � is large enough, the reward33

realized after the 7rst switching tends to be negligible and
the GIH is expected to bring results closer to the optimal 35
one. We observe this fact for the class of symmetric bandit
given by Eq. (5) by calculating numerically the value 37
A2 ≡ A1 and comparing it with the optimal one. Both
values indeed converge as � is increased. A numerical 39
example is given in the following table where we calculate
A2 for C = 0:1, �i = � = 1, � = 2 and for three diAerent 41
values of �

� A2 GIH A2 optimal

1 2.996 2.302
5 1.386 1.203
10 0.571 0.597

43
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Appendix A 45

The proof of the claim lies on the three following propo-
sitions: 47

Proposition 1. For any given initial condition, the opti-
mal policy commands to switch only a 8nite number of 49
times.

Proposition 2. The optimal policy is characterized by two 51
switching curves SO1→2 and SO2→1 which can be, re-
spectively, described by two functions, ỹ : x1 �→ ỹ(x1) and 53
x̃ : x2 �→ x̃(x2).
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Proposition 3. The optimal switching curves SO1→2 and1
SO2→1 are non-decreasing.

As the aim of this paper is to focus on a simple soluble3
example, we only sketch the proof of these propositions.

Sketch of the proof of Proposition 1. The space of initial5
conditions (x1; x2; i)∈R2 × {1; 2}, where i∈{1; 2} corre-
sponds to the project initially engaged, can be splitted into7
two disjoint subsets:

(a) A set (x1; x2; i)∈+ such that when starting on +, the9
optimal policy commands to engage the project i for-
ever.11

(b) Its complementary set +′ = {R2 × {1; 2}} \ +.

Let us de7ne the cumulate sojourn times T1 and T2, respec-13
tively, spent on projects 1 and 2, under the optimal policy.
As we consider in7nite time horizon problems, we have15
that T1 + T2 = ∞. By de7nition, for any initial condition
(x1; x2; i)∈+′, the sojourn times T1 and T2 necessarily ful7ll17
one of the following alternatives:

(i) T1 =∞ and T2 =∞; (ii) T1 ¡∞ and T2 =∞;

(iii) T1 =∞ and T2 ¡∞:

• It is possible to show that, for an initial condition19
(x1; x2; i)∈+′, if alternative (i) holds then, it exists a
7nite time T ¡∞, such that: (X1(T ); X2(T ); i(T ))∈+:21
This rules out the possible occurrence of alternative (i)
in the optimal policy.23

• We can prove that the alternatives (ii) and (iii) both imply
that ∃T ¡∞ after which, the optimal policy does not25
command to switch anymore. To complete the proof, we
invoke the fact that: “Any policy that switches an in8nite27
number of times on a 8nite horizon incurs an in8nite
cost, which cannot be possibly optimal.”29

Sketch of the proof of Proposition 2. Introduce the follow-
ing de7nitions:

31
• -1

n = {(x1; x2; 1)∈R2 × {1; 2} | the optimal policy
commands to switch immediately from project 1 to 2 and33
then commands to switch exactly n times}, n=0; 1; 2; : : :
(Fig. 4).35

• -2
n = {(x1; x2; 2)∈R2 × {1; 2} | the optimal policy com-

mands to switch immediately from project 2 to 1 and then37
commands to switch exactly n times}, n=0; 1; 2; : : : (Fig.
5).39

• Write i for the project initially engaged and Ui for the
disengaged project.41

To prove Proposition 2, we can construct the two func-
tions ỹ(x1) and x̃(x2) 7rst on -i

0 with i=1; 2, then iteratively43
on -i

n, n= 1; 2; : : : as follows:
Calculate the diAerence of the global reward expected45

when one among the two following alternative policies is

Fig. 4. In dashed lines, two diAerent policy starting at initial condition
(x1; x2; 1).

used:
47

(i) Switch initially from project i to project Ui and then
continue optimally. 49

(ii) Continue to engage project i during a time �¿ 0, then
switch from project i to project Ui and 7nally continue 51
optimally.

This shows that:
53

(a) If the point (x1; x2; 1) belongs to -1
n. Then, ∃ỹ(x1) such

that, ∀z ∈ ]−∞; ỹ(x1)], we have (x1; z; 1)∈-1
n. More- 55

over, ∀(x1; z′; 1) with z′ ¿ỹ(x1), we have (x1; z′; 1) 
∈
-1

n. 57
(b) If the point (x1; x2; 2) belongs to -2

n. Then, ∃x̃(x2) such
that, ∀z ∈ ]−∞; x̃(x2)], we have (x1; z; 2)∈-2

n. More- 59
over, ∀(x1; z′; 2) with z′ ¿x̃(x2), we have (x1; z′; 2) 
∈
-2

n. 61

The assertion (a) and (b) imply the existence of the func-
tion ỹ(x1) and x̃(x2). 63

Sketch of the proof of Proposition 3. Remember that only
the engaged project yields a reward. In addition, the disen- 65
gaged one remains “frozen” and does not yield any reward.
When starting at A = (x1; x2; 1), the optimal policy com- 67
mands to immediately switch from project 1 to 2. That is to
say, when starting at A, the expected reward gained by en- 69
gaging project 1, is less attractive that the expected reward
gained by engaging project 2. 71
With hi(x) i = 1; 2 decreasing (see Eq. (5)), it follows

that the expected reward gained by engaging project 1, prior 73
to any switch, at B= (x′1; x2; 1) with x′1 ¿x1 is smaller than
the expected reward given by engaging project 1 at A = 75
(x1; x2; 1). On the other hand, as x2 is common to both A
and B, the expected reward gained by engaging project 2, 77
prior to any switch, is identical for both A and B. Hence, if
the decision is to switch from project 1 to 2 at position A, 79
the same switching decision has to be taken when starting
at position B. 81
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Remark. Note from Fig. 3 that the optimal switching curves1
SO1→2 and SO2→1 are indeed monotonously increasing.
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