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Abstract

We consider general queueing models of the (G/G/1) type with service times controlled by the busy period. For f
control mechanisms driving the system to very high traffic load, it is shown the busy period probability density exhibits a
−3

2 power law which is a typical mean field behavior of SOC models.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The avalanches occurring in extremal models
hibiting self-organized criticality (SOC) (the paradi
matic example being the Bak–Sneppen (BS) mo
are defined from the value of a global minimal nu
berfmin(s) as a function of times. Then for any value
of the auxiliary parameterf0, anf0 avalanche of size
S is defined as a sequence ofS − 1 successive even
with fmin(s) < f0 confined between two events havi
fmin(s) � f0. Accordingly, an avalanche is a stocha
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tic process in which the numbersfi < f0 play the role
of active particles that are randomly created or an
hilated. Hence, the avalanche ends when there ar
particles left in the system. Clearly, the time axis is
vided into a series of avalanches. In the BS mode
exists a critical valuefc for which the creation of par
ticles is marginally balanced by their annihilation a
avalanches of all sizes can happen.

Consider now a queueing systems (QS) which c
sists of random arrival of customers to a server. E
customer requires a random service time and the
tem is equipped with a waiting room of unlimite
capacity. Here also the time axis can be divided
successive cycle times (CT), a CT being the sum
a busy period (BP) (i.e., the time interval separ
ing two successive instants where the server is st
ing) and an idle period (i.e., periods during whi
the server is starving). In QS, the role of thef0 pa-
.
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rameter in the extremal models will now be play
by the traffic loadρ ∈ [0,1] ⊂ R. The traffic load
measures the ratio between the arrival and the
vice rates and the limiting regime, characterized
ρ → 1, is well-known to lead to a diverging pop
lation in the waiting room and BP of all sizes c
be realized. In a situation where the traffic loadρ is
tuned (and approaches unity from below) by the
namics of the system itself, the basic elements
a SOC model are present. This is the construc
that we adopt in the present Letter where a cl
of controlled QS is studied in the heavy traffic (i.
ρ ≈ 1) regime. The fact that QSs do play a ro
in SOC models should not come as a surprise.
deed, the dynamics of the general QS is equiva
to a continuous time, generally non-Markovian, ra
dom walk with a reflecting boundary at the orig
(i.e., the empty queue state). Accordingly, the dyna
ics can be described by master equations an appr
already adopted by [1] in their study of mean-fie
behavior of SOC. Recently the role played by Q
in the context of SOC has been pointed out in [
In this paper, the authors introduce the discrete t
queueing model with Bernoulli arrivals and gene
service processes with an infinite number of para
servers. They use this model to describe the dyn
ics of the avalanches in the sandpile model. Here,
shall consider the general class of continuous time
for which the arrival and service random proces
have finite two first moments but are otherwise ar
trary.

2. Basic model

Let us consider a queueing system (QS) formed
customers arriving to a server. The waiting custom
are stored in a waiting room with a capacity assum
to be unlimited. The time between successive arriv
ta and the service timets are independent rando
variables with cumulative distribution (CDF) give
respectively, byA(x) andB(x), i.e.,

Prob{0 � ta � x} =A(x),

(1)Prob{0 � ts � x} = B(x).
We assume that the CDFsA(x) and B(x) admit
moments to any orders and write the averages as:

1

λ
=

∞∫
0

x dA(x),
1

µ
=

∞∫
0

x dB(x), ρ = λ

µ
,

with ρ ∈ [0,1] ⊂ R being the traffic load parameter.

Remark (concerning the notation). Models using QS
are very common in telecommunication and prod
tion engineering. Their ubiquitous presence called
a standardized notation which was introduced in
This notation characterizes the basic elements fo
ing the “anatomy” of a QS. In the simplest setting,
the one used in this Letter, one has a single ser
an infinite capacity waiting room and the stoch
tic processes (SP) characterizing the customer arr
(i.e., the CDFA(x) and the SP characterizing the s
vice time (i.e., the CDFB(x)). For this simple set
ting, the standard notation will be A/B/1 (i.e., arriv
CDF/service CDF/Nb of servers). Using this notatio
one usually classifies QSs according to general
namical behaviors. Accordingly, when both theA(x)
and B(x) are exponential CDF, one usually writ
M/M/1 to indicate that the underlying processes
Markovian (M stands for Markov). ForA(x) being an
exponential CDF and forB(x) a general CDF, the no
tation is M/G/1 to indicate that only the arrivals follo
a Markov process. In the case when bothA(x) and
B(x) are general CDF, the notation will be G/G/1 (
standing here for general).

As it is common in QS theory, we now defin
the busy period(BP) to be the random variableU
characterizing the time interval which begins with t
arrival of a customer to the idle server and ends w
the server next become idle. We will write:

G(x)= Prob{0 �U � x},
g(x) dx = Prob{x �U � x + dx}.
Consider the evolution of the QS during a time ho
zonT . The time intervalT can be divided into succes
sive cycle times (CT)ξk with k = 1,2,3, . . . ,M, with
M such that

∑M
k=1 ξk � T and

∑M+1
k=1 ξk > T and

ξk =Uk + Ik.

Here Ik denotes thekth idle period starting directly
after the end of thekth BP.
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Construction of a controlled queueing system (CQS

The QS is now equipped with aself-regulating
mechanismwhich adapts the service rateµk+1 offered
during the(k + 1)th CT by taking into account th
length of the kth BP, namely,Uk . The tuning is
somehow a “natural” one, that is to say:the shorter the
observed length of thekth BP, the stronger the server
availability is reduced during the(k + 1)th CT. To
mathematically incorporate these qualitative featu
we shall write fork = 1,2, . . . ,M:

µk = min
{
µk−1, λ+ φ(Uk−1)

}
,

(2)µ0 = λ+ φ(0) > λ > 0,

with φ(x) being a monotonously decreasing, positi
function such that:

(3)lim
x→∞φ(x)→ 0, φ(0)= const> 0.

Using Eqs. (2) and (3), the traffic intensity of the Q
fulfills:

ρk = λ

µk

= λ

min{µk−1, λ+ φ(Uk−1)} � ρk+1

(4)= λ

µk+1
= λ

min{µk,λ+ φ(Uk)} � 1.

In view of Eqs. (2), (3) and (4), the traffic loadρk of
the CQS remains constant during thekth CT andρk
is increasing ask increases. With the choice given
Eq. (2), the QS modifies itself its traffic load and forT

long enough, Eq. (3) implies:

(5)lim
k→∞ρk = 1 (almost surely).

The actualization of the service rateµk given by
Eq. (2) does play a similar role as the tuning of t
relaxation probability in the self-organized branchi
process (SOBP) studied by [4]. It is important
emphasize that for the CQS model the critical regi
reached when the traffic loadρ → 1, does not depen
on an external tuningbut rather it is controlled bythe
dynamics of the system itself. This is one of the key
features governing SOC systems. In the sequel,
shall show that for asymptotic times (i.e., fork → ∞),
the BP probability densityg(x) of the CQS, exhibits
the−3

2 critical exponent characterizing the mean-fie
behavior of SOC as it is discussed in, e.g., [1,4–6].
2.1. The M/G/1 queue

First, we focus on the M/G/1 QS for which w
have Poisson arrival (i.e.,A(x)= 1 − exp{−λx}) and
a general CDFB(x) for the service times. It is wel
known that for M/G/1 QS, the BP solves a function
equation (also known as the Takacs equation) [7,8

(6)G∗(s)= B∗(s + λ− λG∗(s)
)
,

withG∗(s)= ∫ ∞
0 e−sx dG(x) andB∗(s)= ∫ ∞

0 e−sx ×
dB(x).

To unveil the analogies between the queue
models and the branching processes, it is instruc
to derive functional Eq. (6). Following the derivatio
given in [8], we condition on two events: (i) th
duration of the servicev of the initiating customer (cal
it the ancestor) and (ii) the number of new arriv
A during the service time of the ancestor. Given t
v = x andA = n, thenn sub-busy periodsT1, . . . , Tn
are generated by the descendants and

T = x + T1 + T2 + · · · + Tn.

Since theTi ’s are independent and identically distri
uted and are also independent ofx, we have:

E
{
e−sT

∣∣ v = x,A= n
}

= E
{
e−sx

}
E
{
e−s(T1+···+Tn)

} = e−sx
[
G∗(s)

]n
,

whereE{p | q1, q2} stands for the conditional expe
tation ofp givenq1 andq2.

Now, we can write:

E
{
e−sT

∣∣ v = x
}

=
∞∑
n=0

E
{
e−sT

∣∣ v = x,A= n
}

Prob[A= n].

By definition of the M/G/1 QS,

Prob[A= n] = (λx)n

n! e−λx

and hence:

E
{
e−sT

∣∣ v = x
} = e−[s+λ−λG∗(s)]x.

Finally, the result given in Eq. (6) follows directly b
noting that:

E
{
e−sT

} =
∞∫

0

dB(x)E
{
e−sT

∣∣ v = x
}
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5)
=
∞∫

0

dB(x) e−[s+λ−λG∗(s)]x.

Successive differentiations of Eq. (6) yield [9]:

〈U〉 = 1

µ(1− ρ)
,

〈
U2〉 = b(2)

(1− ρ)3
,

〈
U3〉 = b(3)

(1− ρ)4
+ 3λ

[b(2)]2
(1− ρ)5

,

〈
U4〉 = b(4)

(1− ρ)5
+ 10λ

b(2)b(3)

(1− ρ)6
+ 15λ2 [b(2)]3

(1− ρ)7
,

...

whereb(m),m= 2,3, . . . , is themth moment ofB(x),
(remember thatb1 := 1/µ). As from Eq. (5), we have
that limk→∞ ρk → 1 all moments ofG(x) diverge
in this limiting traffic regime. This is the typica
signature of a SOC behavior. For the Markov
case characterized byB(x)= 1 − exp{−µx} (i.e., the
M/M/1 queue), Eq. (6) can be solved in a closed fo
and we obtain [7]:

(7)g(x) dx =
√
µ

λ

e−(λ+µ)xI1(x2
√
λµ)

x
dx,

with I1 being a Bessel function. Using the asympto
expansion:

I1(z)� ez√
2πz

+O

(
1

z

)
for z→ ∞,

Eq. (7) takes the form:

g(x)� const· exp
{−µ(1− √

ρ )2x
}

x3/2
.

Hence, forρ → 1, we observe that

(8)g(x)� const· x−3/2.

Hence, the probability densityg(x) of the BP exhibits
the−3

2 power law typical for the mean field behavi
of SOC [1,4–6]. Let us now show that this behav
also holds when general QS are considered.

2.2. The G/G/1 queue in heavy traffic regimes

Let us now consider general distributionsA(x) and
B(x) with finite two first moments (i.e., G/G/1 QS
For this type of dynamics, it has been establish
that in the heavy traffic regime (i.e.,ρ → 1), the
BP probability densityg(x) can be written as, se
Eq. (3.10) in [10]:

(9)g(x) dx � b√
2πd

1√
x3

exp

{
−x(1− ρ)2

2d

}
dx

with:

d = C2
a +C2

s ,

b = 1

1− (C2
a − 1)h(ρ,C2

a ,C
2
s )

whenC2
a �= 1,

with C2
a ,C

2
s being the square of the coefficient

variation of the distributionsA(x), respectively,B(x).
The functionsh(ρ,C2

a ,C
2
s ) read as [10]:

h
(
ρ,C2

a ,C
2
s

) = 1+C2
a + ρC2

s

1+ ρ(C2
s − 1)+ ρ2(4C2

a +C2
s )

whenC2
a � 1,

h
(
ρ,C2

a ,C
2
s

) = 4ρ

C2
a + ρ2(4C2

a +C2
s )

whenC2
a > 1.

Observe that for theρ → 1 limit, Eq. (9) exhibits
the −3

2 power law showing that the general class
controlled G/G/1 models does exhibit the SOC me
field exponent.
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