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Abstract

We consider general queueing models of the (G/G/1) type with service times controlled by the busy period. For feedback
control mechanisms driving the system to very high traffic load, it is shown the busy period probability density exhibits a generic
—%’ power law which is a typical mean field behavior of SOC models.
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1. Introduction tic process in which the numbefs < fp play the role
of active particles that are randomly created or anni-
The avalanches occurring in extremal models ex- hilated. Hence, the avalanche ends when there are no

hibiting self-organized criticality (SOC) (the paradig- pgrticlgs left in the system. Clearly, the time axis is di—.
matic example being the Bak—Sneppen (BS) model) vided into a series of avalanches. In the BS model, it
are defined from the value of a global minimal num- exists a critical valugf, for which the creation of par-
ber fmin(s) as a function of time. Then for any value ticles is marginally balanced by their annihilation and
of the auxiliary parametefy, an fo avalanche of size ~ avalanches of all sizes can happen. _

S is defined as a sequence®f- 1 successive events ~ Consider now a queueing systems (QS) which con-
With fmin(s) < fo confined between two events having  SIStS of random arrival of customers to a server. Each

fmin(s) > fo. Accordingly, an avalanche is a stochas- customer requires a random service time and the sys-
tem is equipped with a waiting room of unlimited
capacity. Here also the time axis can be divided by
U Partially supported by FCT (Portugal) at CCM University of ~ successive cycle times (CT), a CT being the sum of
Madeira. _ a busy period (BP) (i.e., the time interval separat-
Corresponding author. ing two successive instants where the server is starv-
E-mail addressmax.hongler@epfl.ch (M.-O. Hongler). . . . . . . .
ing) and an idle period (i.e., periods during which

1 Partially supported by the Fonds National Suisse pour la . :
Recherche. the server is starving). In QS, the role of tlfig pa-
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rameter in the extremal models will now be played We assume that the CDF4(x) and B(x) admit
by the traffic loadp € [0, 1] ¢ R. The traffic load moments to any orders and write the averages as:

measures the ratio between the arrival and the ser- 00 00

i imiti i i 1 1 A
vice rates and the limiting regime, characterized by 1 _ /di(x), 1 =/de(x), P
o — 1, is well-known to lead to a diverging popu- X m
lation in the waiting room and BP of all sizes can ~ © 0 _

be realized. In a situation where the traffic loads with p € [0, 1] C R being the traffic load parameter.

tuned (and approaches unity from below) by the dy-

namics of the system itself, the basic elements for Remark (concerning the notatignModels using QS

a SOC model are present. This is the construction are very common in telecommunication and produc-
that we adopt in the present Letter where a class tion engineering. Their ubiquitous presence called for
of controlled QS is studied in the heavy traffic (i.e., & standardized notation which was introduced in [3].
p ~ 1) regime. The fact that QSs do play a role This notation characterizes the basic elements form-
in SOC models should not come as a surprise. In- INg the “anatomy” of a QS. In the simplest setting, as
deed, the dynamics of the genera] QS is equiva|ent the one used in this Letter, one has a single server,
to a continuous time, generally non-Markovian, ran- an infinite capacity waiting room and the stochas-
dom walk with a reflecting boundary at the origin tic processes (SP) characterizing the customer arrivals
(i.e., the empty queue state). Accordingly, the dynam- (i-e., the CDFA(x) and the SP characterizing the ser-
ics can be described by master equations an approactvice time (i.e., the CDFB(x)). For this simple set-
a|ready adopted by []_] in their Study of mean-field ting, the standard notation will be A/B/1 (i.e., arrival
behavior of SOC. Recent|y the role p|ayed by Qs CDF/service CDF/Nb of Servers). USiﬂg this notation,
in the context of SOC has been pointed out in [2]. one usually classifies QSs according to general dy-
In this paper, the authors introduce the discrete time namical behaviors. Accordingly, when both thex)
queueing model with Bernoulli arrivals and general and B(x) are exponential CDF, one usually writes
service processes with an infinite number of parallel M/M/1 to indicate that the underlying processes are
servers. They use this model to describe the dynam- Markovian (M stands for Markov). Fot (x) being an

ics of the avalanches in the sandpile model. Here, we €xponential CDF and foB(x) a general CDF, the no-
shall consider the general class of continuous time QS tation is M/G/1 to indicate that only the arrivals follow
for which the arrival and service random processes @ Markov process. In the case when bethx) and

have finite two first moments but are otherwise arbi- B(x) are general CDF, the notation will be G/G/1 (G
trary. standing here for general).

As it is common in QS theory, we now define
the busy period(BP) to be the random variablg
2. Basic model characterizing the time interval which begins with the
arrival of a customer to the idle server and ends when

Let us consider a queueing system (QS) formed by the server next become idle. We will write:

customers arriving to a server. The waiting customers G(x) = Prob0 < U < x},
are stored in a waiting room with a capacity assumed _
to be unlimited. The time between successive arrivals g(x)d.x = Prolx < U Sx +dx}. . . _
t, and the service time, are independent random Consider the evolution of the QS dUrlng a time hori-
variables with cumulative distribution (CDF) given, zonT. The time intervall' can be divided into succes-
respective|y, byq(x) andB(x), i_e_, sive CyCle times (CT;}C with k = 1, 2, 3, . M, with

M such thaly"¥ & < T andy M %'g > T and

Probf0 <1, < x} = A(x), Ek =Ur + Ir.
Here I, denotes theth idle period starting directly
Probf0 <, <x} = B(x). (1) after the end of théth BP.
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Construction of a controlled queueing system (CQS)

The QS is now equipped with self-regulating
mechanismvhich adapts the service ratg. 1 offered
during the(k + 1)th CT by taking into account the
length of thekth BP, namely,U;. The tuning is
somehow a “natural” one, that is to salye shorter the
observed length of theh BP, the stronger the server’s
availability is reduced during th€k + 1)th CT. To

mathematically incorporate these qualitative features,

we shall write fork =1,2, ..., M:

px =minfue—1, 2 + ¢ (Ur-1)},

no=r+¢0) >x1>0, (2)

with ¢ (x) being a monotonously decreasing, positive,
function such that:

¢ (0) = const> 0. 3)
Using Egs. (2) and (3), the traffic intensity of the QS
fulfills:

A A

Pk=—"=—
e minfug_1, A + ¢ (Ur—1)}

A A
Mi+1 Minfug, A + ¢ (Up)}

In view of Egs. (2), (3) and (4), the traffic loag} of
the CQS remains constant during th CT andpx

is increasing a increases. With the choice given in
Eq. (2), the QS modifies itself its traffic load and fbr
long enough, Eg. (3) implies:

lim ¢(x) -0,

< Pk+1

lim pr =1 (almost surely. (5)

k— 00

The actualization of the service raje, given by
Eq. (2) does play a similar role as the tuning of the
relaxation probability in the self-organized branching
process (SOBP) studied by [4]. It is important to
emphasize that for the CQS model the critical regime
reached when the traffic load— 1, does not depend
on an external tuningput rather it is controlled bthe
dynamics of the system itselthis is one of the key
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2.1. The M/G/1 queue

First, we focus on the M/G/1 QS for which we
have Poisson arrival (i.e4(x) = 1 — exp{—Ax}) and
a general CDFB(x) for the service times. It is well
known that for M/G/1 QS, the BP solves a functional
equation (also known as the Takacs equation) [7,8]:

(6)

Jo e7* x

G*(s) = B*(s + A — AG*(s)),

with G*(s) = 5~ e** dG(x) andB*(s) =
dB(x).

To unveil the analogies between the queueing
models and the branching processes, it is instructive
to derive functional Eq. (6). Following the derivation
given in [8], we condition on two events: (i) the
duration of the service of the initiating customer (call
it the ancestor) and (ii) the number of new arrivals
A during the service time of the ancestor. Given that
v =x and A = n, thenn sub-busy period%y, ..., T,
are generated by the descendants and

T'=x+T+T+ --+T,.

Since theT;’s are independent and identically distrib-
uted and are also independentofve have:

]E{efsr | v=ux,A =n}
— ]E{efsx}]E{efs(T1+~-~+Tn)} — X [G*(S)]n,

whereE{p | g1, g2} stands for the conditional expec-
tation of p giveng1 andgs.
Now, we can write:

]E{e_ST | v :x}
o0
= ZE{e‘ST | v=ux,A :n} ProHA =n].
n=0

By definition of the M/G/1 QS,

e*)\.x

and hence:

]E{e—sT | v :x} — e—[s—&-A—AG*(s)]x.

Finally, the result given in Eqg. (6) follows directly by

features governing SOC systems. In the sequel, we noting that:

shall show that for asymptotic times (i.e., for> c0),
the BP probability density (x) of the CQS, exhibits
the—% critical exponent characterizing the mean-field
behavior of SOC as it is discussed in, e.g., [1,4-6].

]E{e*sr} /dB(x)E{eiST | v =x}
0
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o
:/dB(x)e_[”)‘_)‘G*(s)]x.
0
Successive differentiations of Eq. (6) yield [9]:
1 b»®@
U)y=—"——, (U= :
n(ld—p) S 1-p)3
»® b@12
<U3 = 4 A - 5’
1-p 1-p
b »2p3) b3
V)= s 10 152
1-p (1-p) (1-p)
whereb™ m =2 3, ..., is themth moment ofB(x),

(remember thak! := 1/1). As from Eq. (5), we have
that limg— o~ px — 1 all moments ofG(x) diverge

in this limiting traffic regime. This is the typical
signature of a SOC behavior. For the Markovian
case characterized B(x) = 1 — exp{—ux} (i.e., the
M/M/1 queue), Eqg. (6) can be solved in a closed form
and we obtain [7]:

=+ (2. /N
g(x)dx=\/%e LX2ZVAR)

X

@)

with I1 being a Bessel function. Using the asymptotic
expansion:

Z

N2z
Eq. (7) takes the form:

exp{—n(l— /p)%x}

1 3/2 :

1
(7)) >~ + 0(—) for z — oo,
Z

g(x) ~ const

Hence, forp — 1, we observe that
-3/2.

(8)
Hence, the probability densig(x) of the BP exhibits
the —% power law typical for the mean field behavior
of SOC [1,4-6]. Let us now show that this behavior
also holds when general QS are considered.

g(x) ~const x

2.2. The G/G/1 queue in heavy traffic regimes

Let us now consider general distributioAgr) and
B(x) with finite two first moments (i.e., G/G/1 QS).

For this type of dynamics, it has been established [10]

that in the heavy traffic regime (i.eg — 1), the
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BP probability densityg(x) can be written as, see
Eq. (3.10) in [10]:

b 1 x(1— ,0)2}

x)dx >~ expy — dx 9
stz = el -1 ©
with:
d=C2+C?,

1 2
b whenCy # 1,

T 1-(C2— Dh(p. CZ,C?)

with C2,C2 being the square of the coefficient of
variation of the distributiong (x), respectivelyB(x).
The functionsi(p, C2, C?) read as [10]:

1+C2+ pC?

h(p, C2, C?
(0-Ca- C) = T =1 ¥ pPacz+ ¢

N

whenC? < 1,

4p
T CZ+ p2(4C2+ C2)
whenC? > 1.

h(p.Cz. C?)

N

Observe that for thep — 1 limit, Eq. (9) exhibits
the —g power law showing that the general class of
controlled G/G/1 models does exhibit the SOC mean-
field exponent.
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