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Abstract

In this paper we study the solution of a class of stochastic convolution-
type heat equations with nonlinear drift. For general initial condition
and coefficients we prove existence and uniqueness using the charac-
terization theorem and Banach’s fixed point theorem. We also give an
implicit solution which is a well defined generalized stochastic process
in a suitable distribution space. Finally we investigate the continuous
dependence of the solution on the initial data as well as the depen-
dence on the coefficient.
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1 Introduction

This paper is inspired by the articles of Ouerdiane et al. [1], [2] and more
recently [3] in which certain (linear) stochastic convolution equations are
treated within the framework of convolution calculus. The present work ex-
tends the work in [1] and [3], namely we allow non-linearities in the equation.
Our method is an extension of the ideas in [1] where the combination of the
Laplace transform with the classical fixed point theorems and the so-called
characterization theorems (see [4], [5] and references quoted there) which
serve to reverse the Laplace transform.

We consider the following class of Cauchy problems
∂
∂t

Xt(ω, x) = a∆Xt(ω, x) + Vt(ω, x) ∗Xt(ω, x) + H(Xt(ω, x))

X0(ω, x) = f(ω, x),
(1)

where a ∈ R+, t ∈ [0,∞) is the time parameter, x = (x1, . . . , xr) ∈ Rr

is the spatial variable, r ∈ N, and ∆ =
∑r

i=1
∂2

∂x2
i

is the Laplacian in the

generalized sense on Rr, ω = (ω1, . . . , ωd) is the stochastic vector variable
in the tempered Schwartz distribution space S ′d := S ′(R, Rd), d ∈ N, and
∗ is the convolution product between generalized functions on F ′

θ(S
′
d × Rr).

The drift H : F ′
θ1

(S ′d ×Rr) → F ′
θ2

(S ′d ×Rr) is (possibly non-linear) mapping
of the solution Xt. For a more precise formulation of the problem we refer
to Section 4. We prove existence and uniqueness results for these Cauchy
problems under various conditions of Lipschitz type on the non-linearity H.
Hence, after applying the Laplace transform to the Cauchy problem, we use
the contraction method to apply the Banach’s fixed point theorem. This is
accomplished on various spaces of holomorphic functions which are images of
generalized random variables under the Laplace transform. As in the earlier
works by Ouerdiane et al. [1] we allow general potentials Vt as well as initial
conditions f . We would like to mention also the works of Benth et al. [6],
Deck [7], [8] and Potthoff et al. [9] for related works in the framework of
white noise analysis and references therein.

The paper is organized as follows. In Section 2 we provide the mathemat-
ical background needed to solve the Cauchy problem stated above, namely
spaces of test and generalized functions and the characterization theorem of
generalized functions. In Section 3 we introduce the definition of convolution
product and some of its properties. In Section 4 we combine the convolu-
tion calculus and the characterization theorem in order to find an implicit
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solution of the problem. To this end we need to introduce an appropriate
Banach space of entire functions and apply Banach’s fixed point theorem. All
conditions on the coefficients and the drift term are stated in this section.
Finally, as a by-product of our method in Section 5 we study the continuous
dependence of the solution on the initial data f as well as on the drift term
H.

2 Preliminaries

In this section we introduce the framework need later on. We start with a
real Hilbert space H = L2(R, Rd)⊕Rr, d, r ∈ N with scalar product (·, ·) and
norm | · |. More precisely, if (f, x) = ((f1, . . . , fd), (x1, . . . , xr)) ∈ H, then the
Hilbertian norm of (f, x) is given by

|(f, x)|2 :=
d∑

i=1

∫
R

f 2
i (u)du +

r∑
i=1

x2
i = |f |2L2(R,Rd) + |x|2Rr .

Let us consider the real nuclear triplet

M′ = S ′(R, Rd)⊕ Rr ⊃ H ⊃ S(R, Rd)⊕ Rr = M. (2)

The pairing 〈·, ·〉 betweenM′ andM is given in terms of the scalar product in
H, i.e., 〈(ω, x), (ξ, y)〉 := (ω, ξ)L2(R,Rd)+(x, y)Rr , (ω, x) ∈M′ and (ξ, y) ∈M.
Since M is a Fréchet nuclear space, then it can be represented as

M =
∞⋂

n=0

Sn(R, Rd)⊕ Rr =
∞⋂

n=0

Mn,

where Sn(R, Rd)⊕Rr is a Hilbert space with norm square given by |·|2n+|·|2Rr ,
see [10] and references therein. We will consider the complexification of the
triple (2) and denote it by

N ′ ⊃ Z ⊃ N , (3)

whereN = M+iM and Z = H+iH. OnM′ we have the standard Gaussian
measure γ given by Minlos’ theorem via its characteristic functional for every
(ξ, p) ∈M by

Cµ(ξ, p) =

∫
M′

exp(i〈(ω, x), (ξ, p)〉)dµ((ω, x)) = exp(−1

2
(|ξ|2 + |p|2)).
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In order to solve the Cauchy problem (1) we need to introduce an appropriate
space of generalized functions for which we follow closely the construction in
[11]. Let θ = (θ1, θ2) : R2

+ → R+, (t1, t2) 7→ θ1(t1) + θ2(t2) where θ1, θ2 are
two Young functions, i.e., θi is a continuous, convex, increasing, θi(0) = 0

and limt→∞
θi(t)

t
= ∞, i = 1, 2. For every pair m = (m1, m2) where m1, m2

are strictly positive real numbers, we define the Banach space Fθ,m(N−n),
n ∈ N by

Fθ,m(N−n) := {f : N−n → C, entire, |f |θ,m,n = sup
z∈N−n

|f(z)| exp(−θ(m|z|−n)) < ∞},

where for each z = (ω, x) we have θ(m|z|−n) := θ1(m1|ω|−n) + θ2(m2|x|).
Here |ω|−n is the norm in the dual space S ′n(R, Rd) =: S−n(R, Rd). Now
we consider as test function space as the space of entire functions on N ′ of
(θ1, θ2)-exponential growth and minimal type given by

Fθ(N ′) =
⋂

m∈(R∗
+)2,n∈N0

Fθ,m(N−n),

endowed with the projective limit topology. We would like to construct the
triplet of the complex Hilbert space L2(M′, µ) by Fθ(N ′). To this end we
need to add a condition on the pair of Young functions (θ1, θ2). Namely,

limt→∞
θi(t)
t2

< ∞, i = 1, 2. This is enough to obtain the following Gelfand
triplet

F ′
θ(N ′) ⊃ L2(M′, µ) ⊃ Fθ(N ′), (4)

where F ′
θ(N ′) is the topological dual of Fθ(N ′) with respect to L2(M′, µ)

endowed with the inductive limit topology which coincides with the strong
topology since Fθ(N ′) is a nuclear space, see [12] for more details on this
subject. We denote the duality between F ′

θ(N ′) and Fθ(N ′) by 〈〈·, ·〉〉 which
is the extension of the inner product in L2(M′, γ).

Remark 2.1 For every entire function f : N ′ → C we have the Taylor
expansion

f(z) =
∑
k∈N2

0

〈z⊗k, fk〉,

where z⊗̂k ∈ N ′⊗̂k. This allowed us to identify each entire function f with the
corresponding Taylor coefficients ~f = (fk)

∞
k=0. The mapping f 7→ T (f) = ~f

is called Taylor series map.
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Using the mapping T we can construct a topological isomorphism between
the test function space Fθ(N ′) and the formal power series space Fθ(N )
defined by

Fθ(N ) =
⋂

m∈(R∗
+)2,n∈N0

Fθ,m(Nn), (5)

where

Fθ,m(Nn) :=

~f = (fk)k∈N2
0
, fk ∈ N ⊗̂k

n | |~f |2 :=
∑
k∈N2

0

θ−2
k m−k|fk|2n < ∞

 ,

here θ−2
k = θ−2

1,k1
θ−2
2,k2

, with θi,ki
:= infu>0

exp(θi(u))

uki
, i = 1, 2. In the case

where θ(x) = x2, then Fθ,1(Nn) is nothing than the usual Bosonic Fock space
associated to Nn, see [10] for more details.

In applications it is very important to have the characterization of gener-
alized functions from F ′

θ(N ′). This will be done in Theorem 2.2 with the help
of the Laplace transform. Therefore, let us first define the Laplace transform
of an element in F ′

θ(N ′). For every fixed element (ξ, p) ∈ N we define the
exponential function exp((ξ, p)) by

N ′ 3 (ω, x) 7→ exp(〈ω, ξ〉+ (p, x)). (6)

It is not hard to verify that for every element (ξ, p) ∈ N exp((ξ, p)) ∈ Fθ(N ′).
With the help of this function we can define the Laplace transform L of a
generalized function Φ ∈ F ′

θ(N ′) by

Φ̂(ξ, p) := (LΦ)(ξ, p) := 〈〈Φ, exp((ξ, p))〉〉. (7)

The Laplace transform is well defined because exp((ξ, p)) is a test function.
In order to obtain the characterization theorem we need to introduce another
space of entire functions onN with θ∗-exponential growth and arbitrary type,
where θ∗ is another Young function (called polar functions associated to θ)
defined by

θ∗(x) := sup
t>0

(tx− θ(t)).

The next characterization theorem is essentially based on the topological
dual of the formal power series space Fθ(N ) defined in (5) and the inverse
Taylor series map T−1, see [4] or [11] for details. In the white noise analysis
framework this theorem is known as Potthoff-Streit characterization theorem,
see [13] [14] for details and historical remarks.
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Theorem 2.2 The Laplace transform is a topological isomorphism between
F ′

θ(N ′) and the space Gθ∗(N ), where Gθ∗(N ) is defined by

Gθ∗(N ) =
⋃

m∈(R∗
+)2,n∈N0

Gθ∗,m(Nn),

and Gθ∗,m(Nn) is the Banach space of entire functions on Nn with the follow-
ing θ-exponential growth condition

Gθ∗,m(Nn) 3 g, |g(ξ, p)| ≤ k exp(θ∗1(m1|ξ|n) + θ∗2(m2|p|)), (ξ, p) ∈ Nn

and norm defined by

|g|θ∗,m,n := sup
z∈Nn

|g(z)| exp(−θ∗(m|z|n)).

3 The Convolution Product ∗
It is well known that in infinite dimensional complex analysis the convolution
operator on a general function space F is defined as a continuous operator
which commutes with the translation operator, see [15]. This notion general-
izes the differential equations with constant coefficients in finite dimensional
case. If we consider the space of test functions F = Fθ(N ′), then we can
show that each convolution operator is associated with a generalized function
from F ′

θ(N ′) and vice-versa, see [16].
Let us define the convolution between a generalized and a test function

on F ′
θ(N ′) and Fθ(N ′), respectively. Let Φ ∈ F ′

θ(N ′) and ϕ ∈ Fθ(N ′) be
given, then the convolution Φ ∗ ϕ is defined by

(Φ ∗ ϕ)(ω, x) := 〈〈Φ, τ−(ω,x)ϕ〉〉,

where τ−(ω,x) is the translation operator, i.e.,

(τ−(ω,x)ϕ)(η, y) := ϕ(ω + η, x + y).

It is not hard to see that Φ ∗ ϕ is an element of Fθ(N ′). Note that the
dual pairing between Φ ∈ F ′

θ(N ′) and ϕ ∈ Fθ(N ′) is given in terms of the
convolution product of Φ and ϕ applied at (0, 0), i.e., (Φ∗ϕ)(0, 0) = 〈〈Φ, ϕ〉〉.

We can generalize the above convolution product for generalized functions
as follows. Let Φ, Ψ ∈ F ′

θ(N ′) be given. Then Φ ∗Ψ is defined as

〈〈Φ ∗Ψ, ϕ〉〉 := 〈〈Φ, Ψ ∗ ϕ〉〉, ∀ϕ ∈ Fθ(N ′). (8)
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This definition of convolution product for generalized functions will be used
on Section 4 in order to solve the heat stochastic equation with non-linear
drift stated in (1). We have the following connection between the Laplace
transform and the convolution product. The simple proof can be seen in [1].

Proposition 3.1 Let (ξ, p) ∈ N be given and consider the exponential func-
tion exp((ξ, p)) defined on (6). Then for every Φ ∈ F ′

θ(N ′) we have

Φ ∗ exp((ξ, p)) = (LΦ)(ξ, p) exp((ξ, p)).

As a consequence of the above proposition and the definition in (8) we
obtain the following corollary which says that the Laplace transform maps
the convolution product in F ′

θ(N ′) into the usual pointwise product in the
function space Gθ∗(N ).

Corollary 3.2 For every generalized functions Φ, Ψ ∈ F ′
θ(N ′)

L(Φ ∗Ψ) = LΦLΨ, (9)

and equality (9) may be taken as an alternative definition of the convolution
product between two generalized functions.

In order to solve the Cauchy problem (1) we need to handle non-linear
functionals K : F ′

θ(N ′) → F ′
λ(N ′) for certain Young functions θ, λ given.

Let g : C → C be an entire function verifying the following growth con-
dition: |g(z)| ≤ C exp(γ(m|z|)), where C, m > 0 and γ is a Young function

which not necessary satisfies the condition limx→∞
γ(x)

x
= ∞. Then for each

Φ ∈ F ′
θ(N ′) the convolution functional g∗(Φ) defined by:

L(g∗(Φ)) = g(LΦ)

belongs to the space F ′
λ(N ′), where λ = (γ ◦ eθ∗)∗, see [5] for the proof.

A typical example of a non-linear functional on F ′
θ(N ′) is K(Φ) = g∗(Φ),

cf. Example 4.7.
In particular if g(z) = exp(z) and γ(x) = x, then the convolution expo-

nential

exp∗(Φ) =
∞∑

n=0

1

n!
(Φ∗)n
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is a well defined element in F ′
λ(N ′), where λ = (eθ∗)∗. The convolution

exponential just defined will be the main object in solving the stochastic
differential equation in (1), cf. (22).

If g(z) =
∑n

k=0 gkz
k is a polynomial of order n ∈ N, then the correspond-

ing convolution functional g∗(Φ) =
∑n

k=0 gk(Φ
∗)k is clearly an element in

F ′
θ(N ′), whenever Φ ∈ F ′

θ(N ′). This follows from the fact that F ′
θ(N ′) is

topological isomorphic to Gθ∗(N ) via Laplace transform (cf. Theorem 2.2)
and because Gθ∗(N ) is an algebra. Notice that the corresponding functional
K(Φ) = g∗(Φ) is a mapping from F ′

θ(N ′) into itself.

4 Stochastic heat equation with non-linear

drift

4.1 Generalized F ′
θ(N ′)-valued stochastic processes

A one parameter generalized stochastic process with values in F ′
θ(N ′) is a

family of distributions {Φt, t ∈ I} ⊂ F ′
θ(N ′), where I is an interval from R,

without loss generality we may assume that 0 ∈ I. The process Φt is said
to be continuous if the map t 7−→ Φt is continuous. In order to introduce
generalized stochastic integrals, we need the following result proved in [17].

Proposition 4.1 Let (Φn)n∈N be a sequence of generalized functions on F ′
θ(N ′).

Then the following two conditions are equivalent:

1. The sequence (Φn)n∈N converges in F ′
θ(N ′) strongly.

2. The sequence (Φ̂n = L(Φn))n∈N of Laplace transform of (Φn)n∈N satis-
fies the following two conditions:

(a) There exists p ∈ N and m ∈ (R∗
+)2 such that the sequence (Φ̂n)n∈N

belongs to Gθ∗,m(Np) and is bounded in this Banach space.

(b) For every point z ∈ N , the sequence of complex numbers (Φ̂n(z))∞n=0

converges.

Let {Φt}t∈I be a continuous F ′
θ(N ′)-process and put

Φn =
t

n

n−1∑
k=0

Φ tk
n
, n ∈ N∗ := N\{0}, t ∈ I.
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It is easy to prove that the sequence (Φ̂n) is bounded in Gθ∗(N ) and for every
ξ ∈ N , p ∈ Cr (Φ̂n(ξ, p))n converges to

∫ t

0
Φ̂s(ξ, p)ds. Thus we conclude by

Proposition 4.1 that (Φn) converges in F ′
θ(N ′). We denote its limit by∫ t

0

Φsds := lim
n→∞

Φn in F ′
θ(N ′).

The following result is widely used in this remaining of this paper, the
proof is given in [1].

For a given continuous generalized stochastic process Xt we define the
generalized function

Yt(x, ω) =

∫ t

0

Xs(x, ω)ds ∈ F ′
θ(N ′) (10)

by

L
(∫ t

0

Xs(x, ω)ds

)
(ξ, p) :=

∫ t

0

LXs(p, ξ)ds. (11)

Moreover, the generalized stochastic process Yt(x, ω) is differentiable in F ′
θ(N ′)

and we have ∂
∂t

Yt(x, ω) = Xt(x, ω).

4.2 Existence and uniqueness of solution

We are now ready to solve the Cauchy problem
∂
∂t

Xt(ω, x) = a∆Xt(ω, x) + Vt(ω, x) ∗Xt(ω, x) + H(Xt(x, ω))

X0(ω, x) = f(ω, x).
(12)

The different terms in (12) are as follows: a is a constant, ∆ is the Laplacian
in the generalized sense with respect to the spatial variable x ∈ Rr, H is a
non-linear mapping H : F ′

β(N ′) → F ′
λ(N ′), where the solution Xt of (12)

belongs to F ′
β(N ′). The initial conditions f and the generalized stochastic

process Vt verify the following growth condition: there exists m > 0, n ∈ N
and Kf , KV > 0 such that

|V̂s(ξ, p)| ≤ KV β∗(m|(ξ, p)|n), (13)

|f̂(ξ, p)| ≤ Kfβ
∗(m|(ξ, p)|n). (14)
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It is clear that by Theorem 2.2 the above conditions implies that f and Vt

belongs to an appropriate space of generalized functions, namely F ′
θ(N ′),

where θ = (log(1 + β∗))∗.
We prove the existence and uniqueness result for the Cauchy problem

under certain assumptions on the non-linear term H, see (H1) and (H2)
below. That is, we consider mappings t 7→ Xt from [0, T ] into F ′

β(N ′).
We have to discuss the continuity and differentiability properties of these
mappings. Assume that for any ϕ ∈ Fβ(N ′) the mapping t 7→ 〈Xt, ϕ〉 has
derivative at t and this expression is linear and continuous in ϕ ∈ Fβ(N ′).
Then the corresponding element in F ′

β(N ′) is denoted by ∂
∂t

Xt.
We apply the Laplace transform to (12) and obtain

∂
∂t

X̂t(ξ, p) = ap2X̂t(ξ, p) + V̂t(ξ, p)X̂t(ξ, p) + Ĥ(Xt)(ξ, p)

X̂0(ξ, p) = f̂(ξ, p).

(15)

Consider the subspace Uβ∗,m,n of continuous Gβ∗(N )-valued functions on
[0, T ] for which the following norm

‖u‖β∗,m,n := sup
t∈[0,T ],z∈Nn

|u(t, z)|τ(t, z)

is finite. The weight function τ is defined for certain C > 0 by

τ(t, z) :=
exp(−tC(β∗(m|z|n))

1 + β∗(m|z|n)
.

We may adapt the proof of Proposition 3 in [6] to see that (Uβ∗,m,n, ‖·‖β∗,m,n)
is a Banach space.

Remark 4.2 Each u ∈ Uβ∗,m,n satisfies the following bound

|u(t, z)| ≤ ‖u‖β∗,m,n exp(tC(β∗(m|z|n))(1 + β∗(m|z|n))

≤ ‖u‖β∗,m,n exp((1 + Ct)β∗(m|z|n)).

Using the properties of Young functions if m′ = (1 + CT )m then we have

(1 + CT )β∗(m|z|n) ≤ β∗(m′|z|n).

Therefore, u ∈ C([0, T ],Gβ∗(N )) and hence there exists Φu ∈ C([0, T ],F ′
β(N ′)),

such that (LΦu(t))(z) = u(t, z).
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In order to obtain the solution of (15) we need the following assumptions:
let h be defined by

(hu)(t, ξ, p) := LH(L−1u(t))(ξ, p), u ∈ C([0, T ];Gβ∗(N ))

which satisfies the following two conditions: for any u, v ∈ C([0, T ];Gβ∗(N ))

(H1) there exists m ∈ (R∗
+)2, n ∈ N0 and Kh > 0 such that

|(hu)(t, ξ, p)− (hv)(t, ξ, p)| ≤ Kh(β
∗(m|(ξ, p)|n))|u(t, ξ, p)− v(t, ξ, p)|.

(H2) |(hu)(t, ξ, p)| ≤ Kh(β
∗(m|(ξ, p)|n))(1 + |u(t, ξ, p)|).

With this notation the system (15) becomes
∂
∂t

X̂t(ξ, p) = ap2X̂t(ξ, p) + V̂t(ξ, p)X̂t(ξ, p) + h(X̂)(t, ξ, p)

X̂0(ξ, p) = f̂(ξ, p).

. (16)

To solve the equation in (16) we proceed as follows. We define the following
operator Γ on C([0, T ];Gβ∗(N )), as follows

(Γu)(t, ξ, p) = f̂(ξ, p) +

∫ t

0

ap2u(s, ξ, p)ds +

∫ t

0

V̂s(ξ, p)u(s, ξ, p)ds

+

∫ t

0

(hu)(s, ξ, p)ds. (17)

Proposition 4.3 Under the assumptions (H1) and (H2) the operator Γ is
a strict contraction on Uβ∗,m,n.

Proof. First of all let us show that Γ maps Uβ∗,m,n into itself. Let u ∈ Uβ∗,m,n

be given, then it is easy to see that (Γu)(t, ·, ·) is an entire function on Nn.
We can estimate (17) as follows:

|(Γu)(t, ξ, p)| ≤ |f̂(ξ, p)|+
∫ t

0

|a|p2|u(s)(ξ, p)|ds +

∫ t

0

|V̂s(ξ, p)||u(s)(ξ, p)|ds

+

∫ t

0

|(hu)(s, ξ, p)|ds.
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We estimate each term of the right hand side of the above equality using the
hypothesis on f , Vt in (13), (14) and (H2) as

|f̂(ξ, p)| = Kfβ
∗(m|(ξ, p)|n),∫ t

0

|a|p2|u(s, ξ, p)|ds ≤ Kβ∗(m|(ξ, p)|n)

∫ t

0

|u(s, ξ, p)|ds∫ t

0

|V̂s(ξ, p)u(s, ξ, p)|ds ≤ KV β∗(m|(ξ, p)|n)

∫ t

0

|u(s, ξ, p)|ds∫ t

0

|(hu)(s, ξ, p)|ds ≤ Khβ
∗(m|(ξ, p)|n)

∫ t

0

(1 + |u(s, ξ, p)|)ds.

In the second estimate we have used the fact that limx→∞
β(x)
x2 < ∞ which

implies that β(x) ≤ cx2, c > 0. Then it follows that β∗(x) ≥ c′x2, c′ > 0.
Putting all this together we obtain the following estimate for |(Γu)(t, ξ, p)|:

|(Γu)(t, ξ, p)| ≤ (Kf + TKh)β
∗(m|(ξ, p)|n)

+K̃β∗(m|(ξ, p)|n)

∫ t

0

|u(s, ξ, p)|ds, (18)

where K̃ = K +KV +Kh. Taking into account that u ∈ Uβ∗,m,n and the fact
that ∫ t

0

exp(sC(β∗(m|(ξ, p)|n))ds ≤ exp(tC(β∗(m|(ξ, p)|n))

C(β∗(m|(ξ, p)|n)

we arrive at

|(Γu)(t, ξ, p)| ≤ (Kf + TKh)τ
−1(t, ξ, p) +

K̃

C
‖u‖β∗,m,n τ−1(t, ξ, p).

Hence if we take K ′ := max
{

Kf + TKh,
K̃
C

}
we have ‖Γu‖β∗,m,n ≤ K ′(1 +

‖u‖β∗,m,n). This shows that Γ maps Uβ∗,m,n on itself. Now we proceed in
order to prove that Γ is a contraction on Uβ∗,m,n.

|Γu(t, ξ, p)− Γv(t, ξ, p)| ≤
∫ t

0

|a|p2|u(s, ξ, p)− v(s, ξ, p)|ds

+

∫ t

0

|V̂s(ξ, p)||u(s, ξ, p)− v(s, ξ, p)|ds

+

∫ t

0

|(hu)(s, ξ, p)− (hv)(s, ξ, p)|ds.

12



Using the same estimates as before we obtain

|Γu(t, ξ, p)− Γv(t, ξ, p)| ≤ K̃

C
‖u− v‖β∗,m,n τ−1(t, ξ, p).

This implies that

‖Γu− Γv‖β∗,m,n ≤
K̃

C
‖u− v‖β∗,m,n .

It is obvious that we can choose C (e.g., C = 2K̃) such that Γ becomes a
contraction on Uβ∗,m,n.

It follows from Banach’s fixed point theorem that Γ has a unique fixed
point Y· ∈ Uβ∗,m,n which is the solution of (16) given by

Yt(ξ, p) = f̂(ξ, p)+

∫ t

0

ap2Ys(ξ, p)ds+

∫ t

0

V̂s(ξ, p)Ys(ξ, p)ds+

∫ t

0

(hY )(s, ξ, p)ds.

(19)
By Remark 4.2 there is a unique X ∈ C([0, T ],F ′

β(N ′)) such that (LXt)(ξ, p) =
Yt(ξ, p). But we also know that the Laplace transform commutes with the in-
tegral (cf. 10 and 11). Therefore, by Theorem 2.2 equation (19) is equivalent
to

Xt = f +

∫ t

0

a∆Xsds +

∫ t

0

Vs ∗Xsds +

∫ t

0

H(Xs)ds. (20)

On the other hand, we can show that Xt is weakly continuously differ-
entiable in t, the proof is an easy adaption of the proof given in [18] with
θ∗(x) = x2. Hence taking derivative of equality (20) with respect to t we ob-
tain that Xt is the solution of the Cauchy problem (12). In order to write Xt

implicitly we may solve (19) with respect to Yt(·, ·) by the classical methods
of differential equations and obtain

Yt(ξ, p) = f̂(ξ, p) exp

(
ap2t +

∫ t

0

V̂s(ξ, p)ds

)
+

∫ t

0

exp

(∫ t

s

(ap2 + V̂r(ξ, p))dr

)
Ĥ(Ys)(ξ, p)ds. (21)

We summarize in the following theorem.
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Theorem 4.4 Under assumptions (H1), (H2) the Cauchy problem (12)
has a unique continuous solution Xt which is a generalized F ′

β(N ′)-valued
stochastic process. The implicit solution Xt is obtained by applying L−1 to
equation (21) and reads as

Xt(ω, x) = f(ω, x) ∗ exp∗
(∫ t

0

Vs(ω, x)ds

)
∗ γ2at (22)

+

∫ t

0

exp∗
(∫ t

s

Vr(ω, x))dr

)
∗ γ2a(t−s) ∗H(Xs)(ω, x)ds,

where γσ is the Gaussian measure on Rrwith variance σ.

Remark 4.5 1. The existence of the solution in (22) of course supposes
that the potential V is such that

|V̂s(z)| ≤ l(s)β∗(m|z|n),

where l ∈ L1([0, T ]). In this way we do not need the continuity of the
stochastic process [0, T ] 3 t 7→ Vt ∈ F ′

β(N ′).

2. The above scheme also applies with minor changes for time dependent
coefficient a(t) such that a ∈ L1([0, T ]), a > 0.

3. We would like to emphasize that the method of the paper applies also
to the more general problem

∂
∂t

Xt(ω, x) = LXt(ω, x) + H(Xt(x, ω))

X0(ω, x) = f(ω, x),
, (23)

where the operator L has the form

L =
r∑

i,j=1

aij(t, ω, x) ∗ ∂2

∂xi∂xj

+
r∑

i=1

bi(t, ω, x) ∗ ∂

∂xi

+ c(t, ω, x) ∗ ·,

where the coefficients ai,j(t), bi(t), c(t) are F ′
θ(N ′)-valued generalized

stochastic processes. Under the same conditions (H1) and (H2) we
have to assume that the coefficients aij, bi, c have to fulfill the following
assumption: for every i, j ∈ {1, . . . , r}

|âij(t, ξ, p)|+ |b̂i(t, ξ, p)|+ |ĉ(t, ξ, p)| ≤ Kβ∗(m|(ξ, p)|n).

In this case the Laplace transform of the solution of the Cauchy problem
(23) X̂· ∈ Uβ∗,2m,n.
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We now give two examples to illustrate our method.

Example 4.6 1. First consider the linear case: H(Xt) = bXt, b ∈ R.
The Cauchy problem (12) with initial condition f ∈ F ′

θ(N ′) and Vt

F ′
θ(N ′)-valued stochastic process has an explicit solution, see e.g., Propo-

sition 12 in [1] with Vt replaced by Vt +bδ, where δ is the Dirac measure
at 0. In this case the solution Xt belongs to the space F ′

β(N ′), where

β = (eθ∗ − 1)∗.

2. Consider now the convolution polynomial case: H(Xt) =
∑n

k=0 ak(X
∗
t )k,

ak ∈ R, k = 1, . . . , n. Notice that Ĥ(Xt) = H(X̂t) from which follows
that if Xt ∈ F ′

β(N ′), then H(Xt) ∈ F ′
β(N ′). In other words, H maps

F ′
β(N ′) into itself. We can give an explicit relation between β and θ,

namely β = (eθ∗)∗, see Example 4.7 for more details.

Example 4.7 A more general class of non-linearities is obtained as fol-
lows: suppose that f, Vt ∈ F ′

θ(N ′) for a certain fixed Young function θ. Let
g(z) =

∑∞
n=0 gnz

n be an entire function on C verifying the following growth
condition: |g(z)| ≤ C exp(γ(m|z|)), where C, m > 0 and γ is another Young

function which not necessary satisfies limx→∞
γ(x)

x
= ∞. In addition assume

that the non-linear drift term H is given by

H(Xt) = g∗(Xt) =
∞∑

n=0

gn(X∗
t )n.

In this case we can find the distribution space where the solution Xt exists. In
fact, if we suppose that Xt ∈ F ′

β(N ′) for a certain Young function β, then we
can express β in terms of γ and θ. To this end, taking into account equality
(21) we have the following growth condition for Yt: with |z| = |(ξ, p)|n
|Yt(z)| ≤ K1 exp(θ∗(m1|z|) + ap2T + TK2 exp(θ∗(m2|z|)))

+T exp(exp(ap2T + K2 exp(θ∗(m2|z|))))K3 exp(γ ◦ eβ∗(m3|z|)).(24)

If we take β = (γ ◦ eθ∗)∗, then there exists K, m4 > 0 such that,

|Yt(z)| ≤ K exp(γ ◦ eθ∗(m4|z|)).

This proves that the solution Xt of the Cauchy problem (12) is localized in the
distribution space F ′

β(N ′). Notice that the conditions (13) and (14) are auto-
matically satisfied and conditions (H1) and (H2) may be weakness replacing
β∗ by eθ∗ since β∗ > eθ∗.
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5 Properties of the solution

In this section we will investigate the continuous dependence of the solution
(22) on the initial data as well as the dependence on the coefficient H.

Proposition 5.1 Let (fj)j∈N be a sequence in F ′
β(N ′) and f ∈ F ′

β(N ′).

Denote by Xj
t , Xt the corresponding solutions of (12) with initial data fj, f ,

respectively. If fj converges strongly to f in F ′
β(N ′), then Xj

t converges
strongly to Xt in F ′

β(N ′).

Proof. We need to show assertion 1. of that Proposition 4.1. To this end

we first show that there exists m′′ such that for all t ∈ [0, T ] (X̂j
t )j∈N ⊂

Gβ∗,m′′(Nn), and is bounded in that space. Indeed using (18) with X̂j
t replac-

ing u(t) and Proposition 4.3 we have

|X̂j
t (ξ, p)| ≤ (Kf + TKh)β

∗(m|(ξ, p)|n)

+K̃β∗(m|(ξ, p)|n)

∫ t

0

|X̂j
s (ξ, p)|ds.

From Gronwall’s lemma and the properties of Young’s functions we can find
m′′ such that

sup
j∈N

sup
t∈[0,T ]

|X̂j
t (ξ, p)| ≤ (Kf + TKh)β

∗(m|(ξ, p)|n)

× exp(TK̃β∗(m|(ξ, p)|n))

≤ (Kf + TKh) exp(β∗(m′′|(ξ, p)|n)).

This shows 1-a of Proposition 4.1. Next we prove the convergence of X̂j
t (ξ, p)

for each (ξ, p):

|X̂j
t (ξ, p)− X̂t(ξ, p)| ≤ |(f̂j − f̂)(ξ, p)|+

∫ t

0

|a|p2|X̂j
s (ξ, p)− X̂s(ξ, p)|ds

+

∫ t

0

|V̂s(ξ, p)||X̂j
s (ξ, p)− X̂s(ξ, p)|ds

+

∫ t

0

|(Ĥ(Xj
s )− Ĥ(Xs))(ξ, p)|ds.
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Using the hypothesis (H1) we obtain

|X̂j
t (ξ, p)− X̂t(ξ, p)| ≤ |(f̂j − f̂)(ξ, p)|+ K̃β∗(m|(ξ, p)|n)

×
∫ t

0

|X̂j
s (ξ, p)− X̂s(ξ, p)|ds.

Applying again Gronwall’s inequality it yields

|X̂j
t (ξ, p)− X̂t(ξ, p)| ≤ |(f̂j − f̂)(ξ, p)| exp(TKβ∗(m|(ξ, p)|n)).

Using Proposition 4.1 we conclude the result.

Remark 5.2 It follows from the above proof that if f̂ , ĝ ∈ Uβ∗,m,n, then the
corresponding solutions satisfies∥∥∥X̂(·, ·)(f̂)− X̂(·, ·)(ĝ)

∥∥∥
β∗,m,n

≤ C(β∗, m, n, T )
∥∥∥f̂ − ĝ

∥∥∥
β∗,m,n

,

for a certain constant C(β∗, m, n, T ) > 0 and this says that f̂ 7→ X̂(·, ·)(f̂) is
Lipschitz. Now using the inverse Laplace transform we have the same type
of result for the solution Xt.

The next proposition states that the solution of (22) depends continuously
on the coefficient H. To do this we need the notion of the convergence on
F ′

β(N ′), see [19] for more details.

Definition 5.3 Let Hj, H, j ∈ N be mappings from F ′
β(N ′) onto F ′

λ(N ′).
Then we say (Hj)j∈N converges to H if and only if for each Φ ∈ F ′

β(N ′),
Hj(Φ) converges strongly to H(Φ) in F ′

λ(N ′) in the sense of Definition 4.1.

Proposition 5.4 Let Hj, H, j ∈ N as in Definition 5.3 be given which sat-
isfies (H1) and (H2) with the same constant Kh. Denote by Xj

t , Xt the
corresponding solutions of (12) with initial data f , respectively. If Hj con-
verges to H (in the sense of Definition 5.3), then Xj

t converges strongly to
Xt in F ′

β(N ′).

Proof. As in Proposition 5.1 we need to show assertion 2. of Proposition 4.1.

We also have that there exists m′′ such that for all t ∈ [0, T ] (X̂j
t )j∈N ⊂

Gβ∗,m′′(Nn). Hence we estimate the following difference:
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the

|X̂j
t (ξ, p)− X̂t(ξ, p)| ≤

∫ t

0

|a|p2|X̂j
s (ξ, p)− X̂s(ξ, p)|ds

+

∫ t

0

|V̂s(ξ, p)||X̂j
s (ξ, p)− X̂s(ξ, p)|ds

+

∫ t

0

|(Ĥj(X
j
s )− Ĥj(Xs))(ξ, p)|ds

+

∫ t

0

|(Ĥj(Xs)− Ĥ(Xs))(ξ, p)|ds.

The same procedure as in the proof of the last proposition yields

|X̂j
t (ξ, p)− X̂t(ξ, p)| ≤ K̃β∗(m|(ξ, p)|n)

∫ t

0

|X̂j
s (ξ, p)− X̂s(ξ, p)|ds

+

∫ t

0

|(Ĥj(Xs)− Ĥ(Xs))(ξ, p)|ds.

Using (H2) and the fact that

sup
t∈[0,T ]

|X̂t(ξ, p)| ≤ (Kf + TKh) exp(β∗(m′′|(ξ, p)|n))

it follows from the Lebesgue dominated convergence theorem that∫ T

0

|(Ĥj(Xs)− Ĥ(Xs))(ξ, p)|ds = εj → 0, j →∞.

The result of the proposition follows from the Gronwall inequality.
Combining Proposition 5.1 and Proposition 5.4 we obtain the we obtain

the same convergence result for the solution of the Cauchy problem (12).
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