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We describe collaboration networks consisting of research projects funded by the European Union �EU� and
the organizations involved in those projects. The networks are substantial in terms of size, complexity, and
potential impact on research policies and national economies in the EU. In empirical determinations of the
network properties, we observe characteristics similar to those of other collaboration networks, including
scale-free degree distributions, small diameter, and high clustering. We present some plausible models for the
formation and structure of networks with the observed properties.
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I. INTRODUCTION

Real-world network analysis has recently become a major
research topic, following the landmark work of Watts and
Strogatz �1�. Most prominent are perhaps the investigations
of the structure of the World Wide Web, the network of in-
ternet routers, and certain social networks like citation net-
works. On the theoretical side, one tries to understand the
mechanisms of formation of such networks and to derive
statistical properties of the networks from the generating
rules. On the rigorous mathematical side, there are only a
few results for specific models, indicating the difficulty of a
purely mathematical approach �for a survey of recent results
in this direction, see �2��. Thus, the main approach is to use
some mean field assumption to get relevant information
about the corresponding graphs. Although it is not clear
where the limits of this approach lie, in many cases the re-
sults match well with numerical simulations and empirical
data. Several useful reviews of recent research in networks
are available, such as �3�.

In this paper, we study a particular collaboration network.
Its vertices are research projects funded by the European
Union �EU� and the organizations involved in those projects.
In total, the database contains over 20 000 projects and
35 000 participating organizations. The network shows all
the main characteristics known from other complex network
structures, such as scale-free degree distribution, small diam-

eter, high clustering, and assortative vertex correlations.
Besides the general interest in studying a new, real-world

network of large size and high complexity, the study could
have a significant economic impact. Improving collaboration
between actors involved in innovation processes is a key
objective of current science, technology, and innovation
policy in industrialized countries. However, little is known
about what kind of network structures emerge from such
initiatives. Moreover, it is quite likely that network structure
affects network functions such as knowledge creation,
knowledge diffusion, and the collaboration of particular
types of actors. Presumably, this is determined by both en-
dogenous formation mechanisms and exogenous framework
conditions. In order to progress in our understanding, it is
therefore essential to have sound statistics on the structure of
networks we observe and to develop plausible models of
how these are formed and evolve over time.

The model networks we use to compare with the empiri-
cal data are random intersection graphs, a natural framework
for describing projections of bipartite graphs. Discrete inter-
section graphs similar to the ones we use were first discussed
in �4�. We extend and refine the construction from �4� to be
more applicable to real-world graphs.

Perhaps the most important finding from our model ap-
proach is the strong determination of the real network struc-
ture by the degree distribution. That is, most statistical prop-
erties we measure in the EU research project networks are
the ones observed in a typical realization of a uniform
weighted random graph model with given �bipartite� degree
distribution as in the EU networks. Since this distribution is
characterized by two exponents—one for each partition—we
have essentially only four parameters �size, edge number,
and exponents� which are needed to describe the entire net-
work. This tremendous reduction of complexity indicates
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that only a few basic formation rules are driving the network
evolution.

In Sec. II, we describe the preparation of the data on the
EU research programs. We present empirical determination
of the network properties in Sec. III, followed by an expla-
nation of these properties using a random intersection graph
model in Sec. IV. Finally, in Sec. V, we summarize the key
results and consider implications of the network properties
on EU research programs.

II. THE DATA SET

In this work, we study research collaboration networks
that have emerged in the European Union’s successive four-
year Framework Programs �FPs� on Research and Techno-
logical Development. Since their inception in 1984, six FPs
have been launched, on the first four of which we have com-
prehensive data. FPs are organized in priority areas, which
include information and communication technologies �ICTs�,
energy, industrial technologies, life sciences, environment,
transportation, and a number of additional activities. In line
with economic structural change, the main thematic focus of
the FPs has shifted somewhat over time from energy and
industrial technologies to the application of ICTs and life
sciences. The majority of funding activities are aimed at
stimulating research partnerships between firms, universities,
research organizations, governmental actors, nongovernmen-
tal organizations, lobby groups, etc. Since FP4, the scope of
activities has been expanded to also cover training, network-
ing, demonstration, and preparatory activities �for details, see
Ref. �5��. In order to keep our data set compatible over the
different FPs, we have excluded the latter set of projects
from FP4 and focus only on collaborative research projects
�see Table I�.

In order to receive funding, projects in FP1–FP4 had to
comprise at least two organizations from at least two mem-
ber states. We have retrieved data on these projects from the
publicly available Community Research and Development
Information Service �CORDIS� projects database �6�. This
database contains information on all funded projects as well
as a reasonably complete listing of all participating organi-
zations.

The raw data on participating organizations are rather in-
consistent. Apart from incoherent spelling in up to four lan-
guages per country, organizations are labeled inhomoge-
neously. Entries may range from large corporate groupings,
such as Siemens, or large public research organizations, like
the Spanish CSIC, to individual departments or laboratories,
and are listed as valid at the time the respective project was
carried out. Among heterogeneous organizations, only a sub-
set contains information on the unit actually participating or
on geographical location. Information on older entries and
the substructure of firms tends to be less complete.

Because of these difficulties, any automatic standardiza-
tion method akin to the one utilized by Newman �7� is inap-
propriate to this kind of data. Rather, the raw data have to be
cleaned and completed manually, which is an ongoing
project at ARC Systems Research. The objective of this work
is to produce a data set useful for policy advice by identify-
ing homogeneous, economically meaningful organizational
entities. To this end, organizational boundaries are defined by
legal control and entries are assigned to the respective orga-
nizations. Resulting heterogeneous organizations, such as
universities, large research centers, or conglomerate firms are
broken down into subentities that operate in fairly coherent
areas of activity, such as faculties, institutes, divisions, or
subsidiaries. These can be identified for a large number of
entries, based on the available contact information of partici-
pants, and are comparable across organizations.

The case of the French Centre National de la Recherche
Scientifique �CNRS�, the most active participant in the EU
FPs, may serve as an illustration. First, 785 separate entries
were summarized under a unique organizational label. Next,
these 785 entries were broken down into the eight areas of
research activity in which CNRS is currently organized.
Based on available information on participating units and
geographical location, 732 of the 785 entries could be as-
signed to one of these subentities. For the remaining 53 en-
tries, the nonspecific label CNRS was used.

Comparable success rates were achieved for other large
public research organizations and universities. Due to scarcer
information, firms could not be broken down at a comparable
rate. Moreover, due to resource constraints, standardization
work has focused on the major players in the FPs. Organiza-
tions participating in fewer than a total of 30 projects in

TABLE I. FP1–FP4 total budget and number of funded projects. The smaller average funding per project
and organization in FP4 is an artifact as it involves a large number of scholarships and the like, which are
smaller than research projects �however, we cannot isolate the bias created�.

Framework Program Budgeta No. of P
Million
Euros/P

No. of
�P�1�b

No. of
O

Million
Euros/O

FP1 �1984–1988� 3.8 3283 1.15 1696 2500 1.52

FP2 �1987–1991� 5.4 3885 1.39 3013 6135 0.88

FP3 �1990–1994� 6.65 5294 1.25 4611 9615 0.69

FP4c �1994–1998� 13.3 15061 �9087� 0.88 11374 �8039� 20873 0.64

aBillion Euros.
bProjects with more then one participating organization.
cResearch and development projects listed in parentheses. The number excludes all projects devoted to
preparatory, demonstration, and training activities.
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FP1–FP4 have not been broken down yet. Due to these limi-
tations in processing the data, we cannot rule out the possi-
bility of a bias in analyzing our data. However, we have run
all the reported analyses with the undivided organizations
and have obtained qualitatively similar results, apart from
different extreme values, e.g., maximum degree.

Table I displays information on the present data set, which
contains information on a total of 27 758 projects, carried out
over the period 1984–2004. It shows that the total budget as
well as number of funded projects has increased dramatically
from FP1 to FP4. Moreover, it provides a rough measure on
the completeness of the available data. For a sizable number
of projects, the CORDIS project database lists information
only on the project coordinator. This is due to the age of the
data and inhomogeneous disclosure policies of different units
at the European Commission. Comparing the number of
projects containing information on more than one participant
with the total number of projects funded in each FP shows
that the data are fairly complete as of FP2.

The facts that FP1 was the first program launched and that
the available data are rather incomplete make it exceptional
in many respects. We therefore focus our analyses on FP2–
FP4 and only give graph characteristic values for FP1 to
indicate the difference from the networks created by the sub-
sequent FPs.

III. THE NETWORK STRUCTURE

In this section, we present the basic properties of the net-
work structure for projects and organizations in the first four

EU Framework Programs. We consider both graphs as inter-
section graphs �4�, each being the dual of the other, which,
for our purposes, is generally more convenient than the usual
bipartite-graph point of view. The vertices of an intersection
graph are given by an enumerated collection of sets with
elements from a given fixed base-set, while the edges are
defined via an intersection property �edge � nonempty inter-
section of two sets�. The sets need not be distinct.

We denote by P= �P1 ; . . . ; PM� the family of projects and
by O= �O1 ; . . . ;ON� the family of organizations. Projects are
understood as labeled sets of organizations and organizations
as labeled sets of projects. The corresponding intersection
graphs are denoted by GP and GO; we will also use the terms
P graph and O graph for them. The size �x� of a vertex x from
GP or GO is the cardinality of the set corresponding to the
vertex; in the picture of bipartite graphs, the size is just the
degree of the vertex. In Tables II and III, we give some basic
parameters measured on the P and O graphs from the four
Framework Programs. Since the degree distribution for P
graphs is a superposition of two power-law distributions �one
for small degree values and one for large values�, we give the
corresponding values for the exponents parenthetically. The
clustering coefficients shown are defined �following �1�� as
follows. Assume that vertex v has dv neighbors; potentially,
dv�dv−1� /2 edges could exist between those neighbors,
forming triangles. Define an auxiliary, vertex-specific clus-
tering coefficient Cv as the ratio of the number of those tri-
angles actually formed to the number of triangles that poten-
tially could be formed. The clustering coefficient for the

TABLE II. Basic network properties of FP1–FP4 organizations projection.

Graph characteristic FP1 FP2 FP3 FP4

No. of vertices N 2500 6135 9615 20873

�N for largest component� �2038� �5875� �8920� �20130�
N outside largest component 462 260 695 743

No. of edges M 9557 64300 113693 199965

�No. of edges M largest component� �9410� �64162� �113219� �199182�

Mean degree d̄ 7.65 20.96 23.65 19.16

�d̄ largest component� �9.23� �21.84� �25.39� �19.79�

Maximal degree dmax 140 386 648 649

Mean triangles per vertex � 22.90 169.70 244.91 146.04

�� largest component� �27.97� 177.16 263.84 151.26

Maximal triangle number 966 5295 15128 10730

Cluster coefficient C̄ 0.57 0.72 0.72 0.79

�C̄ largest component� �0.67� �0.74� �0.75� �0.81�

Number of components 369 183 455 467

Diameter of largest component 9 7 9 10

Mean path length � of largest component 3.70 3.27 3.32 3.59

Exponent of degree distribution −2.1 −2.0 −2.0 −2.1

Variance of degree exponent 0.4 0.3 0.3 0.3

Exponent of organization size distribution −2.1 −1.9 −1.7 −1.8

Variance of size exponent 0.5 0.3 0.5 0.3

Mean no. of projects per organization E��O � � 2.40 4. 87 5.6 6.24

Maximal size �max�O�� 130 82 138 172
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network as a whole is just the average of Cv over all vertices
in the graph.

As expected, FP1–FP4 are of small-world type: high clus-
tering coefficient and small diameter of the giant component.
There is a slight increase in the clustering coefficient of the
O graphs from FP1 to FP4, indicating a stronger integration
among groups of collaborating organizations. This is also
reflected in the mean organization size which increases from
2.4 to 6.2. There is an interesting jump in the P graph mean
degree values and the mean triangle numbers between FP1
and FP2 and between FP2 and FP3. The maximal degrees of
the O graphs are high in comparison with the mean degrees,
which is a consequence of the power-law degree structure.
For the P graphs, the gap between mean and maximal degree
is less pronounced.

More information is contained in the statistical properties
of the relevant distributions. The numerical data strongly in-
dicate that the size distributions follow power laws. Also, the
O graph degree distribution is of power-law type, while the
project-graph degree distribution is a superposition of two
scale-free distributions, one dominating the distribution for
small degree values �up to 100� and one relevant for the large
degree values. We discuss these properties at greater length
in the following sections.

A. Size distributions

The size distributions are the basic distributions for the
EU networks since, as will be shown in Sec. IV B, a typical

sample from the random graph space with fixed size distri-
butions as in FP2–FP4 will have similar statistical properties
to FP2–FP4. This strongly suggests that there is essentially
no additional correlation in the data once the size distribution
is known. Both the O graph and P graph size distributions
show clear asymptotic power-law distributions for FP1–FP4
�Figs. 1 and 2�. In terms of the corresponding bipartite graph,
these are just the degree distributions of the project and or-

TABLE III. Basic network properties of FP1–FP4 projects projection.

Graph characteristic FP1 FP2 FP3 FP4

No of. vertices N 3283 3884 5528 9087

�N for largest component� �2764� �3662� �5027� �8566�
N outside largest component 519 222 501 521

No. of edges M 51217 94527 202358 348542

�No of. edges M largest component� �50940� �94471� �202306� �348474�

Mean degree d̄ 31.20 48.68 73.20 76.71

�d̄ largest component� �36.86� �51.60� �80.49� �81.36�

Maximal degree dmax 282 387 917 771

Mean triangles per vertex � 774.41 871.19 1970.30 2034.31

�� largest component� 919.53 923.98 2167.05 2158.03

Maximal triangle number 12903 11125 37247 41141

Cluster coefficient C̄ 0.67 0.54 0.44 0.47

�C̄ largest component� �0.75� �0.57� �0.48� �0.50�

Number of components 369 183 455 467

Diameter of largest component 9 7 10 9

Mean path length � of largest component 3.24 2.80 2.72 2.80

Exponent of degree distribution �−0.8,−3.4� �−0.7,−3.3� �−0.6,−3.7� �−0.3,−2.2�
Variance of degree exponent �0.4, 3.6� �0.3, 1.7� �0.3, 1.4� �0.2, 0.6�
Exponent of project size distrbution −3.59 −2.9 −3.4 −4.1

Variance of size exponent 0.6 0.4 0.2 0.3

Mean no. of organizations per project E��P � � 3.15 3.08 3.22 2.71

Maximal size �max�P�� 20 44 73 54

FIG. 1. Distribution of project sizes. The size of a project is
defined as the number of organizations taking part in the project.
The tails of the distributions are power laws; for FP4, we show a
power-law fit to the data with exponent −4.1.
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ganization partitions. While the O graph size distribution is
of power-law type over the whole size range, the P graph size
distribution deviates strongly from the power law for small
size values. In Sec. IV, we give a possible explanation for the
appearance of the power-law distribution for size.

The numerical values for the exponents of the organiza-
tion size distributions from FP2 to FP4 are slightly below 2,
but constant within the error tolerance. This indicates that the
distribution of organizations able to carry out a particular
number of projects has not changed in the three Framework
Programs. A complementary interpretation of this finding is
that the underlying research activities, which we know to
have changed over time, have not altered the mix of organi-
zations participating in a particular number of projects in
each Framework Program. It is further worth noting that the
values of the O graph exponents are close to the critical
value 2; hence the size expectation could diverge for large
graphs �whether the value is really below 2 or not is still
unclear due to the error tolerance�.

The picture is similar for the P graphs, although there are
some differences in the initial behavior �that is, for small
project sizes� and in the exponent value. The value of the
local minima at size 2 decreases from FP2 to FP4. This
points to the existence of an optimal project size within the
regime of the EU FPs. Moreover, the rise in the average
project size indicates that increases in the available funding
from FP2 to FP4 lead to not only more projects, but also
slightly larger projects. This is consistent with recommenda-
tions from evaluation studies and the stated attempts of the
EU commission to reduce its administrative burden. As a
whole, the size distribution for the P graphs in the asymptotic
regime matches well to a power law with exponent around
−3, hence indicating that the mechanisms for coagulation of
organizations into a project did not greatly change from FP2
to FP4.

B. The degree distribution

Since the degree distribution in the projection graphs is
just the distribution of the sizes of the 2-neighborhoods con-

sisting of the sets of next-nearest neighbors in the bipartite
graph, it is not surprising that this quantity is closely con-
nected to the size distribution. In the absence of other special
correlations, it can be shown �see Sec. IV� that the degree
distribution is determined by the size distribution in a rather
simple way; namely, for the case when both size distributions
are scale-free with exponents, say � �O size� and � �P size�,
the P graph degree distribution is a superposition of two
power-law distributions with exponents �−1 �and cutoff
given by the maximal O-size value� and �. An analogous
property holds for the O graph.

In Figs. 3 and 4, we show the degree distributions for the
P and O graphs in a log-log plot. While the organization
graphs for FP2–FP4 show a clear power law, the picture for
the project graphs is more complicated. As previously men-
tioned, the P graph degree distribution shows two different
power laws, one for the initial segment up to degree 150 and
another one for large degrees. Nevertheless, there is still a
widely scattered heavy tail in the degree distribution.

FIG. 2. Distribution of organization sizes. The size of an orga-
nization is defined here as the number of projects in which it takes
part. The tails of the distributions are power laws; for FP4, we show
a power-law fit to the data with exponent −1.8.

FIG. 3. Degree distribution of projects projection. The distribu-
tiond show a structure formed from the superposition of two power
laws; for FP4, we show a power-law fit to the high-degree data with
exponent −2.2.

FIG. 4. Degree distribution of organizations projection. The tails
of the distributions are power laws; for FP4, we show a power-law
fit to the data with exponent −2.0.
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C. Clustering, correlation, and edge multiplicity

By their construction process, intersection graphs have a
naturally high clustering coefficient, since an organization
which participates in, say, k projects generates a complete
subgraph of order k in the P graph among these projects. If
the probability for an organization to be in more than one
project is asymptotically bound away from zero, it follows
that the P graph �and similarly for the O graph through an
analogous argument� has a nonvanishing clustering coeffi-
cient. In the present study, we focus on the triangle number
��x�, defined as the number of triangles in the �P or O�
graph containing x, as a measure of local clustering. We de-
fine the degree-conditional mean triangle number as �k
ªE���x��d�x�=k��, where d�x� is the degree of vertex x. As
seen in Figs. 5 and 6, we have �k�k for both graph types.

There is a good explanation for this type of behavior in
the framework of intersection graphs �see Sec. IV�. As noted
above, high clustering in intersection graphs is not necessar-
ily an indication of local correlations between vertices. This
is already seen in the case of an Erdös-Renyi random bipar-
tite graph where an edge between any project and organiza-
tion is drawn in an independent, identically distributed �i.i.d.�
fashion with probability p. If P and O are of equal cardinal-
ity N and p= c

N , the expected bipartite degree equals c. For
large N a typical realization of the random graph looks lo-
cally like a tree with branching number c−1. However, for
the projection graphs, we obtain a positive clustering coeffi-
cient that is independent of N, since most projects and orga-
nizations cause complete graphs of order c and a typical
vertex is therefore a member of order c cliques, each of
order c.

A better indication for the presence of correlations is
given by the so-called multiplicity of edges. For a link be-
tween two organizations or projects it is sufficient to have
just one project or organization, respectively, in common, but

of course there could be more. Given an edge x�y, we de-
fine m�x ,y�ª �x�y�−1 and call it the multiplicity of the
edge. As will be discussed in the next section, random inter-
section graphs without local search rules can nevertheless
admit a high edge multiplicity. In Figs. 7 and 8, the multi-
plicity distribution is shown for P and O graphs of FP2–FP4.
There is an almost perfect power-law behavior with exponent
4.3. Note that positive multiplicity in the projection graphs
translates in the bipartite graph picture into the presence of
cycles of length 4. The presence of exceptionally high mul-
tiplicity in the P graphs may be caused by memory effects
due to prior collaborative experience. Also, a greater edge

FIG. 5. Relation between degree and number of triangles in the
projects projection. For each degree value, we show the mean num-
ber of triangles, conditioned on the vertices with the given degree.
For low degree values, a strong linear relationship is observed, but
the strength of the relationship weakens with high degrees. Here,
we show only the data for FP4 for comprehensibility; similar results
hold for the other Framework Programs.

FIG. 6. Relation between degree and number of triangles in the
organizations projection. For each degree value, we show the mean
number of triangles, conditioned on the vertices with the given
degree. For low degree values, a strong linear relationship is ob-
served, weakening slightly with higher degrees �compare with Fig.
5�. Here, we show only the data for FP4 for comprehensibility;
similar results hold for the other Framework Programs.

FIG. 7. Distribution of edge multiplicities in the projects projec-
tion. An almost perfect power-law distribution is observed for all
Framework Programs. The multiplicity is strongly indicative of cor-
relations in the edge formation rules, possibly caused by memory
effects due to prior collaborative experiences amongst the partici-
pating organizations or by the fact that organizations are active in a
wider set of complementary activities.
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multiplicity may result from the fact that organizations are
active in a wider set of complementary activities. In this
case, intraorganizational links and knowledge flows may also
be of importance, as the search for potential partners may be
influenced by the collaboration behavior of other actors
within an organization. Such effects should be detectable
from a fine structure analysis of the time evolution of the
corresponding graphs.

D. Diameter and mean path length

There is essentially no difference in the diameter value of
the largest component in the four Framework Program net-
works. A classical random graph of the same size and the
same edge number would have a diameter about logd̄N,

where N is the number of vertices and d̄ is the average de-
gree of the vertices. The mean path length is about one-third
of the diameter and shows a slightly higher variation be-
tween the different framework programs. It is well known
that the expected path length in random graphs with a scale-
free degree distribution and exponent less than 3 is essen-
tially independent of the graph size �the diameter of the larg-
est component still increases in N but only as log logN�. The
same holds for random intersection graphs with power-law
size and degree distributions. Since the O graphs seem to fall
into that class, the almost constant diameter and path length
is not surprising. Although the P graphs do not show an
asymptotic power-law structure for the degree, there is a
strong increase in the edge density from FP2 to FP4, keeping
the diameter of the largest component almost fixed.

IV. A RANDOM INTERSECTION GRAPH MODEL

Intersection graphs are a natural framework for networks
derived from a membership relation, such as citation net-
works, actors networks, or networks reflecting any other kind
of cooperation. As previously mentioned, intersection graphs
by construction have a high clustering coefficient. As ex-

plained below, the clique distribution of a random intersec-
tion graph is almost given by the size distribution of the dual
graph.

A. Random intersection graphs with given size distribution

One of the simplest random intersection models is con-
structed in the following way. Knowing the size of a set to be
constructed, we generate a random subset from a finite base
set X= �a1 ,a2 , . . . ,aN� of N elements, such that each set ele-
ment is drawn i.i.d. uniformly from X. These subsets consti-
tute the vertices of a random graph. Edges are defined via the
set intersection property, namely, we have an edge between i
and j �denoted by i� j� if and only if the associated subsets
Ai and Aj have nonempty intersection �to compare with ear-
lier sections, A stands here for either projects sets P or orga-
nization sets O�. The size �cardinality� of the subsets is either
itself a random variable drawn i.i.d. from a probability dis-
tribution ��k� or given by a list Dkª ��Ai : �Ai�=k�� �where for
each i a conditional random choice is made to which size
class it belongs�. For the latter case, we define again ��k�
ª

Dk

M where M is the total number of sets to be formed.
Since we want to compare the model with the EU collabo-

ration networks, we are mainly interested in the situation
when � is an asymptotic power-law distribution

��k� =
1

k�+o�1� , � � 2. �1�

This assumption is also reasonable for many other applica-
tions where vertices are formed from a base set of elements.
To obtain an interesting limiting random graph space, we
further assume that the number of chosen subsets is C1N
where C1 is neither too large nor too small �for FP2–FP4 we
have about twice as many organization as projects, hence C1
is either 2 or 0.5�.

A basic quantity for the analysis of intersection graphs is
Pk,l�N�, the conditional edge probability given the size of two
subsets:

Pk,l�N� ª Pr�i � j��Ai� = k and �Aj� = l� �2�

=Pr�Ai � Aj � � ��Ai� = k and �Aj� = l� �3�

=1 −
	N − k

l



	N

l

 �4�

=1 −
�N − k�!�N − l�!
N!�N − k − l�!

�5�

=1 −
�N − k��N − k − 1� ¯ �N − k − l + 1�

N�N − 1��N − 2� ¯ �N − l + 1�
. �6�

Using the condition lk�N, we obtain

FIG. 8. Distribution of edge multiplicities in the projects projec-
tion. An almost perfect power-law distribution is observed for all
Framework Programs. As with the P graphs in Fig. 7, the high
multiplicities are indicative of correlations in the edge formation
rules.
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With this result, we can easily calculate the conditional de-
gree distribution for a vertex of given size. First, we estimate
the conditional subdegree distribution �l�k ,m� with respect
to a given group of vertices of size m. Here, the subdegree
dm�i� of a vertex i is defined as the number of edges i has
with vertices of size m. Clearly, the subdegrees are related to
the degree d�i� through d�i�=�mdm�i�. We have

�l�k,m� ª Pr�dm�i� = k��Ai� = l� �10�

=�
G

Pr���j��Aj� = m�� = G�	G

k



��ml

N
+ o	 1

N

k�1 −

ml

N
+ o	 1

N

G−k

. �11�

The probability that a randomly chosen vertex j has size m
equals, by assumption, C2 /m�+o�1� with the normalization
constant C2 defined by 1=�mC2 /m�+o�1�. We therefore obtain

�l�k,m� = lim
N→	�C1N

C2

m�

k
��ml

N
+ o	 1

N

k

��1 −
ml

N
+ o	 1

N

C1NC2/m�−k

, �12�

which converges to a Poisson distribution

�l�k,m� =
c�m�k

k!
e−c�m� �13�

with c�m�=m1−�lC1C2. Since the distribution �l�k� of the
degree of vertices i with �Ai�= l is the convolution of the
Poisson distributions �l�k ,m�, we obtain again a Poisson dis-
tribution for �l�k�:

�l�k� =
cl

k

k!
e−cl �14�

with cl=�mc�m�= lC3, where C3=�mm1−�C1C2 is a well-
defined constant since ��2.

The total degree distribution ��k� remains to be estimated.
In �8�, conditions were given describing when a superposi-
tion of Poisson distributions results in a scale-free distribu-

tion. Specifically, we get the following asymptotic estimate:

��k� = �
m

��m�
�mC3�k

k!
e−mC3 �15�

=�
m

1

m�+o�1�
�mC3�k

k!
e−mC3. �16�

The main contribution to ��k� comes from a rather small
interval of m values, called Iess�k�. This interval has the prop-
erty that for m� Iess�k�, the expectation E�d�i���Ai�=m� is of
order k. The exponential decay of the Poisson distribution
guarantees that the remaining parts of the sum become arbi-
trarily small for large k. It is important that the constant cl
has a linear l dependence since an l proportionality with
exponent larger than 1 would force the degree distribution to
have gaps due to a lack of overlap of the individual Poisson
distributions. We therefore obtain for the degree distribution
a power law with the same exponent � as in the size distri-
bution.

Although the intersection model gives a power-law degree
distribution when the size distribution is already of power-
law type, we will not obtain a power-law distribution for the
size on the dual graph unless additional assumptions are
made on the set formation rules. It is easy to see that the size
distribution on the dual graph is asymptotically Poisson.

Since Pr��x�=k��� M
k

��E��A��

N
�k�1−

E��A��

N
�M−k

and E��A�� con-
verges as well as M

N for M ,N→	, we obtain in the limit a
Poisson distribution. Nevertheless, the degree distribution on
the dual graph still admits a scale-free part induced by the
scale-free size distribution of the intersection graph. We will
not discuss many of the details, but instead provide a simple
estimation for the lower bound on the number of elements ai
with d�ai�=k. Namely, the number of elements ai which are
members of sets Aj with �Aj�=k is for large k and M ,N
k
about kM�const

k� = N�const
k�−1 . Since d�ai��k for ai�Aj with

�Aj�=k, we obtain const
k�−2 as a lower bound on the density of

elements ai with degree greater than or equal to k �note that
we assumed ��2�. This estimate holds of course only up to
the maximal size value k, which is in the range of the power
law distribution for the set sizes �Ai�. For larger k values there
is a rapid exponential decay.

The last argument clarifies also the situation when one
wants to impose conditions on the size distribution and the
dual size distribution. Without going into the details of the
rather involved analysis, we simply state that the resulting
degree distribution is given by a superposition of the size
distibution and the dual size distribution �the last one enters
with an exponent reduced by 1�. This explains essentially the
picture for the degree distribution for the P graph.

Finally, we consider the mean triangle �conditioned on the
degree� degree dependence, which shows a clear linear be-
havior in the empirical data. We argue that this is again a
consequence of the power-law distribution for the size. First
observe that a size k element ai�Aj induces a k−1 complete
subgraph on the neighborhood vertices of Aj. Furthermore,
each maximal k clique in which Aj is a member generates
�k−1��k−2� /2 triangles for Aj. Since the size distribution of
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the elements ai is Poisson with expectation of, say, c and the
degree of Aj is proportional to the size �Aj�, we obtain for the
conditional expected number of triangles �k given the de-
gree k:

�k ª E�number of triangles containing A�d�A� = k�

�
c2

2
const � k . �17�

In deriving Eq. �17�, we used the facts that with high prob-
ability the size of the intersection between two sets Ai and Aj
has cardinality 1 �conditioned on the two sets having a non-
empty intersection� and that the Poisson distribution has an
exponentially decaying tail.

B. A Molloy-Reed version of random intersection graphs and
a Bernoulli-type model

We sketch the construction of random intersection graphs
with given size distribution � and size distribution � on the
dual. The two distributions are not independent but must
satisfy the condition �ii��i�=�ii��i�. There are further re-
strictions on the maximal size in order to get a reasonable
random graph model. Note that the problem is equivalent to
the construction of a random bipartite graph given the degree
sequence on the two partitions. The approach we follow is a
variation of the graph construction algorithm usually attrib-

uted to Molloy and Reed �9� �actually given earlier by Bol-
lobás �10��.

Assign first to each set A and each element a from the
base set a random size value according to the given distribu-
tions � and �. Let Dk be the resulting set of elements ai with
size k. Replace each element from Dk by k virtual elements
ai,l , l=1,2 , . . . ,k and form a new base set X� with all the
virtual elements. The set formation process for the sets �Ai� is
now the same as in the previous section except that each
chosen virtual element ai,l will be removed from X� when it
was selected first into a set. After the sets are constructed we
identify the virtual elements back into the original ones, re-
move multiple and self-links, and define the corresponding
set graph in the usual way.

By construction the resulting size distribution on the dual
graph will be given by � as long as the probability of choos-
ing two virtual elements ai,l and ai,m �corresponding to the
same element ai� is sufficiently small. To ensure this one has
to impose restrictions on the maximal size values. It is not
difficult to show that the correlation between the size of A
and the size of an element a is multiplicative. In case of a
linear relation between the number of sets N and the number
of elements M we have

Pr�a � A��A� = k and �a� = l� �
const

N
kl . �18�

To see this observe that

Pr�a � A��A� = k and �a� = l� = 1 − Pr�among the k choices to generate A is no virtual a element� �19�

=1 −
M* − l

M*

M* − 1 − l

M* − 1
¯

M* − k − l + 1

M* − k + 1
�20�

with M* being the number of virtual elements. The last for-
mula has the same structure as the expression for the pairing
probability in the previous section, hence we get, for
lk�M* and bounded first moments of the � distribution,
the claimed multiplicative correlation. We note that there is
also a variant of the Molloy-Reed construction which
produces an additive size-size correlation such that
Pr�a� �A��A�=k and �a�= l�� const

N �k+ l� holds �see �11� for
details of the algorithm�.

We next present a simulation-based comparison of the
multiplicative and additive Molley-Reed model with the FP4
network. The input size distributions for the Molloy-Reed
simulations are the same as in FP4. For completeness we
also include the simulation results based on the simple ran-
dom intersection graph model defined in the previous sec-
tion. To make clear which size distribution is given in that
case we use the notation P model �O model� for the intersec-
tion graph with fixed P �O� size distribution and denote by
PO model the corresponding Molloy-Reed graphs since both
size distributions are fixed therein. Figures 9 and 10 show the

degree distribution for the O and P graphs. There is excellent
agreement between the real FP4 network projections and
typical samples of the multiplicative Molloy-Reed model
over the whole range of degree values. This is quite remark-
able since a considerable bias from the almost independence
of the Molloy-Reed model should be visible in the degree
distributions. The fact that there is no deviation between the
degree distributions indicates that the majority of project-
organization alignments is essentially a random process. Fur-
thermore, the additive model reproduces the FP4 P graph
degree distribution only well for large degree values indicat-
ing that the correlation is indeed multiplicative.

Two quantities measuring local correlations are the tri-
angle degree dependence and the distribution of edge multi-
plicity introduced earlier. Figure 11 compares the triangle
degree correlation for the O graph. Although the overall pic-
ture is similar �linear dependence up to medium degree�
there is a clear tendency for higher triangle numbers in FP4
for large degree values. Again the multiplicative version
matches better with the data than does the additive model.
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The edge multiplicity—again for the O graphs—is shown in
Fig. 12. The real graph has a considerably smaller value in
the exponent and extends to almost twice as large a maximal
multiplicity value. Nevertheless, both Molloy-Reed models
show a sharp scale-free distribution for the multiplicity. This
is quite surprising, since, naively, one would expect the prob-
ability for positive edge multiplicity to go to zero as N be-
comes large. In summary, one has a strong agreement be-
tween the real data and the multiplicative Molloy-Reed
model �the comparison results for FP2 and FP3 are almost
identical to the situation with FP4 and have therefore not

been depicted here�. Only in the fine structure of clustering
characteristics are some differences observed.

Finally, we briefly outline why, under certain circum-
stances, almost independent models like the Molloy-Reed
one can have a scale-free edge multiplicity distribution. To
keep the discussion as transparent as possible, we study the
question in a pure bipartite Bernoulli model, which can be
thought of as a kind of predecessor to the Cameo model
discussed below.

FIG. 9. Simulated degree distribution for the O graphs. The
empirical FP4 data are the same as in Fig. 3. The PO model takes as
input the empirical organization sizes and project sizes, and ran-
domly pairs an organization to a project using the Molloy-Reed
algorithm described in Sec. IV B. During that pairing, both the mul-
tiplicative and the additive degree-degree correlations produce net-
works that are very similar to the empirical O graph with respect to
the degree.

FIG. 10. Simulated degree distribution for the P graphs. The
empirical FP4 data are the same as in Fig. 4. With respect to the
degree, the Molloy-Reed algorithm with multiplicative degree-
degree correlation produces a network that more closely matches
the empirical P graph than the modified Molloy-Reed algorithm
with additive degree coupling.

FIG. 11. Simulated triangle degree dependence for the O graphs.
The empirical FP4 data are the same as in Fig. 6. With respect to the
mean triangle number �conditioned on the degree�, the Molloy-
Reed algorithm with multiplicative degree-degree correlation pro-
duces a network more similiar to the empirical O graph than the
modified Molloy-Reed algorithm with additive degree coupling.

FIG. 12. Simulated edge multiplicity for the O graphs. The em-
pirical FP4 data are the same as in Fig. 8. The two Molloy-Reed
algorithms are unable to generate networks reproducing the empiri-
cally observed edge multiplicity, in terms of either the exponent or
the absolute numbers; the empirical case has nonrandom features
that a more advanced model needs to imitate. Also shown is a P
model network, in which only the empirical project sizes are taken
as input for random sets of organizations; the organization sizes
automatically form a Poisson-like distribution. The P model has
even smaller edge multiplicities. All models show scale-free edge
multiplicities.
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To each vertex from the O and P partitions �with cardinal-
ity N and M�, we assign a power-law distributed, positive
integer parameter ��P� and �O� with exponents � and �.
That is we partition the P and O vertices into sets
D�ª ��P���P�=���� and Gª � �O��O�=��� such that �D��
=

CPM

�� and �G�=
CON

� where CP and CO are normalization con-
stants. We further assume that M and N are proportional with
Cop=M /N, and put

Pr�P � O� ª
c

N
��P��O� . �21�

In Eq. �21�, c is a free parameter; the ratio c /N regulates the
number of edges realized in the network. It is easily shown
that the expected degree, conditioned on the � or  value, is
proportional to � or , respectively, and therefore the �bipar-
tite� degree distribution on each partition has the same expo-
nent as � or . Note that the maximal � and  values are
given by �max�M1/� and max�N1/�.

Since the edge multiplicity in the projection graph corre-
sponds to the number of paths of length 2 in the bipartite
graph, we define Ek

�P2�
ªE���P , P��: there are exactly k paths

of length 2 between P and P��� and E�P2�
ª�kEk

�P�. For fixed
P and P� with parameters � and �� the expected number of
paths of length 2 between the two vertices is given by

�


c2

N2���2�G� �22�

and therefore the expected total number of 2-paths in the P
partition is

E�P2� = �
�,��

�D���D����


c2

N2���2�G� �23�

= �
�,��

�


COCP
2 M

Cop������−1�−2 . �24�

On the other hand, we have for the probability of an edge
between P and P� in the P-projection graph the estimate

Pr�P � P�� = 1 − �

	1 −

c2

N2���2
�G�

�25�

�1 − exp	− �


COc2���

CopM�−2
 �26�

and hence for the expected total number of edges E

E � �
�,��

CP
2 M2

�������1 − exp	− �


COc2���

CopM�−2
 . �27�

Several cases are now possible. For ��3 and ��2, it is
easy to see that limN→	

E�P2�

E =1 and higher edge multiplicities
have essentially zero probability.

The situation is different if either condition is violated,
since in this case E�P2�−E diverges and can become of the
same order as E. For instance, we obtain for ��3,��2

E�P2� − E � �
�,��

�max CP
2 M2

������ �
k�2

�− 1�k

k!
	�



max COc2���

CopM�−2
k

�28�

� �
�,��

�max const � M2

������ �
k�2

�− 1�k

k!
�const

� ���M3/�−2�k �29�

� �
k�2

const �
�− 1�k

k!
M2/�+k�3/�+2/�−2�. �30�

From the last formula, we see that the expected edge multi-
plicity E�P2�

E −1 can become positive for proper choices of �
and �. We show that E

E�p2� �1 under the above assumptions.
Since

E�P2� = �
�,��

�


COCP
2 M

Cop������−1�−2 �31�

�const � M�1/��2�2−��+1+�1/���3−�� �32�

=const � M4/�+3/�−2 �33�

and

E � �
k�1

const �
�− 1�k+1

k!
M2/�+k�3/�+2/�−2�, �34�

one gets

E

E�P2� � 1 − �
k�2

const �
�− 1�k

k!
M2�k−1�/�+3�k−1�/�−2k

�35�

�1 − const � M−2/�−3/��M2/�+3/� − 1 + o�1��
�36�

=1 − const + o�1� . �37�

Since the involved constant is positive we get the desired
result. A more careful analysis, which will be part of a forth-
coming paper, shows that one also obtains a power law for
the edge multiplicity, as observed in the simulations.

C. Random intersection graphs and the cameo principle

In this section, we give a possible explanation for the
appearance of power laws in the size distribution. In most
models of complex networks with power-law-like degree
distributions, one assumes a kind of preferential attachment
rule, as in the Albert and Barabási model �3�. This makes
little sense in our framework. Instead we make use of the
cameo principle, first formulated in �8�.

Before giving an interpretation and motivation we briefly
describe the formal setting. Assign to each project a positive,

NETWORK OF EUROPEAN UNION–FUNDED¼ PHYSICAL REVIEW E 73, 036132 �2006�

036132-11



�-distributed random variable � and to each organization a
positive, �-distributed random variable � �note that, in con-
trast to Sec. IV B, � and � are not the size distributions�. We
assume � and � to be supported on �1,	� and monotone
decreasing as � and � tend to infinity. We also make use
of the notational simplifications ��P�=�(��P�) and ��O�
=����O��. On the bipartite graph, an edge between an orga-
nization O and a project P is then formed with probability

po,p ª
c0

���P�
1

�P
�−��P�

+
c1

���O�
1

�O
�−��O�

, �38�

where c0 and c1 are positive constants, the exponents � and
� are in the interval �0,1�, and all edges are drawn indepen-
dently of one another. We are interested in the properties of
the corresponding random P and O graphs for typical real-
izations of the � and � variables. The word typical is here
understood in the sense of the ergodic theorem, namely, we
assume 1

N�O�−��O����1−�d�¬C0
−1 and 1

M �P�−��P�
���1−�d�¬C1

−1, where N and M are the cardinalities of the
O and P partitions and � and � are such that the integral is
bounded. The above formula reduces then to

po,p ª
c0C0

M���P�
+

c1C1

N���O�
. �39�

The expected conditional size of a vertex is then given by

E��P����P�� =
Nc0C0

C1M���P�
+ c1 �40�

and

E��O����O�� =
Mc1C1

C0N���O�
+ c0. �41�

The interpretation behind the special form of edge prob-
ability in Eq. �39� is the following. The � and � values
describe a kind of attractivity property inherent to projects
and organizations. Thinking in terms of a virtual project for-
mation process either the final set of organizations belonging
to a project P can join the project actively—in which case
the � value of P is important—or the organization more
passively enters the project on the request of organizations
already involved—in which case the attractivity � of the the
corresponding organization is important. The attractivity of
an organization could, for instance, be related to its reputa-
tion, financial strength, or quality of earlier projects in which
the organization was involved. The pairing probability is not
directly based on the � or � values, but rather the relative
frequency of the � or � values: the rarer a property, the more
attractive it becomes. This is the essence of the cameo prin-
ciple.

The parameters � and � can be seen as defining the pro-
pensity to follow the above rule; for � ,�→0 the rule is
switched off and we recover a classical Erdös-Renyi inter-
section graph. In general the values of � and � are them-
selves quenched random variables with their own—usually
unknown—distribution. As shown in �12�, only the maximal

� and � values matter for the resulting degree distribution of
the graphs. We therefore restrict ourselves in the following to
constant values.

Since the conditional expectations of the size values �Eqs.
�40� and �41�� are proportional to �−� and �−�, we have to
estimate their induced distribution. It can be shown �13� that
zª�−���� is asymptotically distributed with density
z−�1+1/�+o�1�� when ���� decays monotonically and faster than
any power law to zero as �→	. When ���� is itself a
power-law distribution with exponent �, the resulting distri-
bution for z will be z−�1+1/�−1/��+o�1��. Therefore, the induced
distribution is always a power law and independent of the
details of �. Applying this result to our model, we obtain
immediately a power-law distribution for the size distribu-
tion on the P and O graphs with exponents depending essen-
tially only on � and �. Due to the edge independence in the
model definition, the resulting degree distributions are again
of power-law type. The cameo ansatz hence generates in a
natural way a bipartite graph, where both projections admit
two of the main features of the FP networks. Furthermore,
we obtain a linear dependence of the mean triangle number
�k on the degree, as in Sec. IV A.

None of the models discussed in Sec. IV can reproduce
scale-free distribution of the edge multiplicity with the same
low exponent as observed in each of the FP networks. It will
be interesting to see whether the inclusion of memory effects
like the “my friends are your friends” principle �14� will
change the picture.

V. CONCLUSIONS

In this paper, we have described research collaboration
networks determined from research projects funded by the
European Union. The networks are substantial in terms of
size, complexity, and economic impact. We observed numer-
ous characteristics known from other complex networks, in-
cluding scale-free degree distribution, small diameter, and
high clustering. Using a random intersection-graph model,
we were able to reproduce many properties of the actual
networks. The empirical and theoretical investigations to-
gether shed light on the properties of these complex net-
works, in particular that the EU-funded research and devel-
opment networks match well with typical realizations of
random graph models characterized by just four parameters:
the size, edge number, exponent of project-projection degree
distribution, and exponent of organization-projection degree
distribution.

In terms of real-world interpretation, the present analysis
yields three major insights. First, based on the fact that the
size distribution of projects did not change significantly be-
tween the Framework Programs, any possible changes in
project formation rules—which we do not know at this
stage—did not affect the aggregate structure of the resulting
research networks. Second, the fact that integration between
collaborating organizations has increased over time, as mea-
sured by the average clustering coefficient, indicates that Eu-
rope has already been moving toward a more closely inte-
grated European Research Area in the earlier Framework
Programs. Finally, the fact that a sizable number of organi-
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zations collaborate more than once in each Framework Pro-
gram shows that there appears to be a kind of robust back-
bone structure in place, which may constitute the core of the
European Research Area.

In terms of application, the present results suggest a num-
ber of extensions. First, it is essential to learn more about the
properties of the vertices in our networks. To what extent can
they be characterized and classified? What kind of structural
patterns emerge if we add this information? Second, we need
to know more about the microstructure of the networks. In
which areas are the networks highly clustered and where
does this clustering come from? What kind of subgroups can
be identified? Third, we need to learn more about where the
observed distribution of edge multiplicity comes from. Fi-
nally, it would be desirable to explicitly include edge weights
into the analysis, as actors who collaborate frequently are
presumably more proximate to each other than actors who

collaborate only once. This may significantly impact the
structural features we are able to observe, as well as the
conclusions we might draw concerning the link between net-
work structure and function.
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