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ABSTRACT. We give a general approach to infinite dimensional non�Gaussian Analysis
which generalizes the work [2] to measures which possess more singular logarithmic
derivative. This framework also includes the possibility to handle measures of Poisson
type.

1. Background and Introduction

White Noise Analysis and—more generally—Gaussian analysis have now
become of age, both date back approximately twenty years, for reviews we refer
to [4, 13]. Essential to both of them is an orthogonal decomposition of the
underlying L2 space—the "chaos" or "Hermite" or "normal" or "multiple
Wiener integral" decomposition.

One extension of this setup has been introduced by Y. M. Berezansky:
Starting from certain field operators he constructs polynomial or orthogonal
decompositions with respect to the spectrum measures which need not necessary
be Gaussian, see e.g., [5].

A different approach was recently proposed by [1]. For smooth prob�
ability measures on infinite dimensional linear spaces a biorthogonal decom�
position is a natural extension of the orthogonal one that is well known in
Gaussian analysis. This biorthogonal "Appell" system has been constructed
for smooth measures by Yu. L. Daletskii [8]. For a detailed description of its
use in infinite dimensional analysis we refer to [2].

Aim of the present work. We consider the case of non�degenerate
measures on co�nuclear spaces with analytic characteristic functionals. It is
worth emphasizing that no further condition such as quasi�invariance of the
measure or smoothness of logarithmic derivatives are required. The point here
is that the important example of Poisson noise is now accessible.

For any such measure µ we construct and Appell system Aµ as a pair
(P^Q^) of Appell polynomials F^ and a canonical system of generalized
functions Q^, properly associated to the measure µ.
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Central results. Within the above framework
• we obtain an explicit description of the test function space introduced in [2]
• in particular this space is in fact identical for all the measures that we

consider
• characterization theorems for generalized as well as test functions are

obtained analogously as in Gaussian analysis [20] for more references see
[19]

• the well known Wick product and the corresponding Wick calculus [20]
extends rather directly

• similarly, a full description of positive distributions (as measures) will be
given.

Finally we should like to underline here the important conceptual role of
holomorphy here as well as in earlier studies of Gaussian analysis (see e.g.,
[32, 30, 19, 20] as well as the references cited therein).

2. Preliminaries

2.1. Some facts on nuclear triples

We start with a real separable Hubert space 3? with inner product ( , •)
and norm | |. For a given separable nuclear space Ji (in the sense of
Grothendieck) densely topologically embedded in 3? we can construct the
nuclear triple

Jf c ̂  c Λ*.

The dual pairing <•,•> of Jf' and Jf then is realized as an extension of the
inner product in 3?

Instead of reproducing the abstract definition of nuclear spaces (see e.g., [33])
we give a complete (and convenient) characterization in terms of projective
limits of Hubert spaces.

THEOREM 2.1. The nuclear Frechet space Jf can be represented as

Λ = Π *P>

where {tffp, p e N} is a family of Hubert spaces such that for all p\, pi e N there
exists p G N such that the embeddίngs 3tfp <�> 3tfpl and 3?p <�»• J 2̂ are of Hίlbert�
Schmidt class. The topology ofjV is given by the projective limit topology, i.e.,
the coarsest topology on Jf such that the canonical embeddings Jf <�* 3?p are
continuous for all p e N.
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The Hilbertian norms on ̂  are denoted by | | . Without loss of
generality we always suppose that V/? e N, Vξ e Jf : \ξ\ < \ξ\p and that the
system of norms is ordered, i.e., | 1̂  < | \q if p < q. By general duality theory
the dual space Λ^' can be written as

jf = y x_p.

with inductive limit topology τind by using the dual family of spaces
{3tf�p := Jtfpip e N}. The inductive limit topology (w.r.t. this family) is the
finest topology on Jf1 such that the embeddings tf�p <— > Jf' are continuous for
all /?eN. It is convenient to denote the norm on tf�p by | \_p. Let us
mention that in our setting the topology τind coincides with the Mackey
topology τ(Jf* ,Jf} and the strong topology β(Jf* , J f } . Further note that the
dual pair <t/F', JO is reflexive if Jf' is equipped with β(N' , J f } . In addition
we have that convergence of sequences is equivalent in β(Λ^', ΛO and the weak
topology σ(tyΓ/,«yΓ), see e.g., [13, Appendix 5].

Further we want to introduce the notion of tensor power of a nuclear
space. The simplest way to do this is to start from usual tensor powers 2tffn,
n e N of Hubert spaces. Since there is no danger of confusion we will preserve
the notation | \p and | \_p for the norms on tffn and 3tf®p respectively.
Using the definition

n := pr lim #fn

one can prove [33] that Jf®n is a nuclear space which is called the nth tensor
power of Jf. The dual space of Jf®n can be written

' = ind lim

Most important for the applications we have in mind is the following
'kernel theorem', see e.g., [4].

THEOREM 2.2. Let ξl , . . . , ξn ι�> Fn(ζ ι , . . . , ξn) be an n�linear form on
which is Jtfp�continuous, i.e.,

k=\

for some p e N and C > 0.
Then for all p' > p such that the embedding i^p : J^p> �̂> j^ is Hilbert�

Schmidt there exists a unique Φ(w) e 'jtf® such that
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and the following norm estimate holds

< C\\i^p\\"HS

using the Hilbert�Schmidt norm of i^p.

COROLLARY 2.3. Let ξ\, . . . , ξn*�>F(ξι, . . . , ξn) be an n�linear form on
which is Jtf*�p�contmuous, i.e.,

k=\

for some p e N and C > 0.
Then for all p' <p such that the embedding ipιp> : J^p^Jfy is Hilbert�

Schmidt there exists a unique Φ(/l) e tfn such that

and the following norm estimate holds

\Φ(n\<C\\ip^\\n

HS.

If in Theorem 2.2 (and in Corollary 2.3 respectively) we start from a
symmetric ^�linear form Fn on JT®n i.e., Fn(ξπι,..., ξπn) = Fn(ξl,..., {„) for
any permutation π, then the corresponding kernel φM can be localized in
tfffn c jtf®n (the nth symmetric tensor power of the Hubert space Jtfpt). For
/i , . . . ,Λ e 3tf let ® also denote the symmetrization of the tensor product

1

where the sum extends over all permutations of n letters. All the above quoted
theorems also hold for complex spaces, in particular the complexified space
ΛC. By definition an element θ e Jf& decomposes into θ = ξ + iη, ξ,η e Jf.
If we also introduce the corresponding complexified Hubert spaces J ,̂c the
inner product becomes

for 0ι, 02 e Jί^jC, 0ι = fi + /ι/ι, 02 = ^2 + "/2> ίι> ^2, ^1^/2 E ^P� τhus we have

introduced a nuclear triple

We also want to introduce the (Boson or symmetric) Fock space Γ(J#') of
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by

Γ(jf) =
n=0

with the convention Jf?0 := C and the Hilbertian norm

«=0

2.2. Holomorphy on locally convex spaces

We shall collect some facts from the theory of holomorphic functions
in locally convex topological vector spaces t (over the complex filed C), see
e.g., [9]. Let &(βn) be the space of n�linear mappings from Sn into C and
&s(δn) the subspace of symmetric n�linear forms. Also let Pn($] denote the
n�homogeneous polynomials on $. There is a linear bijection <£s(£n] B A <— >
A e Pn(£}. Now let ̂  c ̂  be open and consider a function G : ^U — > C.

G is said to be G�hoIomorphic if for all ΘQE<% and for all θ e $ the
mapping from C to C : λ — * G(#o + Λ.0) is holomorphic in some neighborhood
of zero in C. If G is G�holomorphic then there exists for every η e W, a
sequence of homogeneous polynomials ^dnG(η) such that

«=0 "'

for all θ from some open set If a <*U. G is said to be holomorphic, if foi^all η
in ^ there exists an open neighborhood V of zero such that Y^<^=Q^\άnG(η)(θ)
converges uniformly on TΓ to a continuous function. We say that G is
holomorphic at ΘQ if there is an open set ^ containing ΘQ such that G is
holomorphic on fy. The following proposition can be found e.g., in [9].

PROPOSITION 2.4. G is holomorphic if and only if it is G�holomorphic and
locally bounded.

Let us explicitly consider a function holomorphic at the point 0 e $ =
then

1) there exist p and ε > 0 such that for all ξQ e Jfς, with \ξQ\ <ε and for
all ξ E .Λ/c the function of one complex variable λ —» G(£0 + λξ) is analytic at
OeC, and

2) there exists c> 0 such that for all ξ e Λύ with |f|p < e : |G(£)| < c.
As we do not want to discern between different restrictions of one function, we
consider germs of holomorphic functions, i.e., we identify F and G if there
exists an open neighborhood % : 0 e <% c Jf^ such that F(ξ) = G(ξ) for all
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ξ e m. Thus we define Holoί Λ^c) as the algebra of germs of functions holo�
morphic at zero equipped with the inductive topology given by the following
family of norms

nMoo(G)= sup |G(0)|, Λ /eN.
\θ\p<2~1

Let use now introduce spaces of entire functions which will be useful later.
Let $2�1 (tf�pp) denote the set of all entire functions on 2tf�p$, of growth
ke [1,2] and type 2~ / ,/?,/eZ. This is a linear space with norm

= SUP

The space of entire functions on Jf1^ of growth k and minimal type is naturally
introduced by

see e.g., [30]. We will also need the space of entire functions on ΛC of growth
k and finite type:

In the following we will give an equivalent description of i^C/f^) anc*
^maχ(^). Cauchy's inequality and Corollary 2.3 allow to write the Taylor
coefficients in a convenient form. Let ^e^in(J^) and z € Λ^, then there
exist kernels 0>(n) e Λ ? Λ such that

i.e.,

(1)

This representation allows to introduce a nuclear topology on ^nί^c)? see

[30] for details. Let E^q denote the space of all functions of the form (1) such
that the following Hilbertian norm

00

:M)|^ Λ « e N (2)

is finite for β e [0,1]. (By 1̂ °̂  we simply mean the complex modulus for all
p.] The space El^_ with the norm | | M | | _ � a _ * is defined analogously.
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THEOREM 2.5. The following topological identity holds:

The proof is an immediate consequence of the following two lemmata
which show that the two systems of norms are in fact equivalent.

LEMMA 2.6. Let φ e E then φ e δ (#�„#) for I = ̂ . Moreover

PROOF. We look at the convergence of the series φ(z) = £^o <z®n, pM>,

z E jfLΛC, p<») 6 JTΛC if Σ"=o ("O^ZV'Og = HMlg^ is finite. The follow�
ing estimate holds:

1/2

n=0

Λ

_ z i
w �' /

D

LEMMA 2.7. For any /?', ̂  e IN fλere ^ cwί /?, / e M

exists a constant C > 0 Λ MC/Z

φ e

REMARK. More precisely we will prove the following: If φ e S
then p e E^ for Jk � ̂  and /? := 2^~2//A:fc2/A:^||z>)p||^ < 1 (in particular this
requires p' > p to be such that the embedding i^p : ^p> <�> ̂  is Hubert�
Schmidt).

Moreover the following bound holds
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PROOF. The assumption φ e ^/(Jf�^c) implies a bound on the growth of

For each p > 0, z e 3tf�pp the Cauchy inequality from complex analysis [9]
gives

1

By polarization [9] it follows for zi, . . . ,zπ e

For p1 > p such that ||̂ ||̂ 5 is finite, an application of the kernel theorem
guarantees the existence of kernels φ^ e ̂  such that

with the bound

We can optimize the bound with the choice of an ^�dependent p. Setting
pk = 2ln/k we obtain

\φ(n\ <npjfi(φ)�
* Ml

�n/k

II" e"'k

where we used nn < n\^ in the last estimate. Now choose β e [0,1] such that
k = π to estimate the following norm:

n=0

for sufficiently large /. This completes the proof. D
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Analogous estimates for these systems of norms also hold if /?,/?, q, I become
negative. This implies the following theorem. For related results see e.g., [30,
Prop. 8.6].

THEOREM 2.8. If βe[Q, 1) then the following topological identity holds:

If β — 1 we have

Eli _. = Holo(Λe).

This theorem and its proof will appear in the context of section 8. The
characterization of distributions in infinite dimensional analysis is strongly
related to this theorem. From this point of view it is natural to postpone its
proof to section 8.

3. Measures on linear topological spaces

To introduce probability measures on the vector space Jf', we consider
#σ(«Ό the σ�algebra generated by cylinder sets on Ji' , which coincides with
the Borel σ�algebras ^σ(^f) and ^β(^V'} generated by the weak and strong
topology on Jf1 respectively. Thus we will consider this σ�algebra as the
natural σ�algebra on Jf'. Detailed definitions of the above notions and proofs
of the mentioned relations can be found in e.g., [4].

We will restrict our investigations to a special class of measures µ on
^σC Όj which satisfy two additional assumptions. The first one concerns
some analyticity of the Laplace transformation

lµ(θ) = f
J

lµ(θ) = exp<x, 0> άµ(x) =: E,(exp<�, 0», θ e
JΛ*

Here we also have introduced the convenient notion of expectation JEµ of a
µ�integrable function.

ASSUMPTION 1. The measure µ has an analytic Laplace transform in a
neighborhood of zero. That means there exists an open neighborhood ^ c
Jf<£ of zero, such that lµ is holomorphic on ,̂ i.e., lµ e Holo(Λc). This class
of analytic measures is denoted by

An equivalent description of analytic measures is given by the following
lemma.
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LEMMA 3.9. The following statements are equivalent

2) 3/veN, 3C>0:\^,(x,θyndµ(x)\<n\Cn\θ\n

pµ, θ e
3) 3p'µ € N, 3εµ > 0 : J^ exp^x^) φι(x) < oo

PROOF. The proof can be found in [23]. We give its outline in the
following. The only non�trivial step is the proof of 2) => 3).

By polarization [9] 2) implies

χ*n,®ξj)*µ(χ)
\ y=ι /

(5)

7=1

for a (new) constant C > 0. Choose // > pµ such that the embedding

irtpµ : Jfy ~^ ^pµ ^s °f Hubert�Schmidt type. Let {e^fceN} <= Λ^ be an
orthonormal basis in 3ep . Then |x|^ = Σ °̂=1 <x,^>2

5 xeJf_^. We will
first estimate the moments of even order

dµ(x),f M?, dµ(x) = £ Σ f <x, β
fcl

 >
2

 � <*,

J^' ^ £Ξί ί̂J '̂

where we changed the order of summation and integration by a monotone
convergence argument. Using the bound (5) we have

because
00

V^ I I2 — IΓ I I 2

k=\

The moments of arbitrary order can now be estimated by the Schwarz
inequality

1/2
\xtp,Aµ(x)<

since (2n)! < 4"(n!)2.
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Choose ε < (2C\\ipfιp \\HS)
 l then

Λ=0 "'

(6)
«=0

Hence the lemma is proven. Π

For µ E Jta^Jf'} the estimate in statement 2 of the above lemma allows to
define the moment kernels M£ e (Λ/*®")'. This is done by extending the above
estimate by a simple polarization argument and applying the kernel theorem.
The kernels are determined by

n=0

or equivalently

£, θl (8) � ® θn) = lµ(tιθι + � � � + tnθn)
Ot\ Oΐn tι= �=tn=Q

Moreover, if p > pµ is such that embedding ipιpµ : ̂ p ̂ ^ 2tfpµ is Hubert�Schmidt
then

|M;|_, < (nC\\ip,pµ\\HS)
n < n\ (βCHi^H^)". (7)

DEFINITION 3.10. A function φ: Jf' — > C of the form φ(x) = Σ^=0

<x<g>π, φ^y, x e ΛΛ, N e N, is called a continuous polynomial (short φ e
iff φW E Jf®n, Vw 6 NO = N U {0}.

Now we are ready to formulate the second assumption:

ASSUMPTION 2. For all φ e £P(jV') with φ — 0 //�almost everywhere we
have φ = 0. In the following a measure with this property will be called non�
degenerate.

NOTE. Assumption 2 is equivalent to:
Let φ E &(Jf'} with 1A φάµ = 0 for all A E ̂ σ(J^'} then φ = 0.
A sufficient condition can be obtained by regarding admissible shifts of the

measure µ. If µ(� + ξ) is absolutely continuous with respect to µ for all ξ E Jf,
i.e., there exists the Radon�Nikodym derivative
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Then we say that µ is Jf �quasi�invariant see e.g., [10, 34]. This is sufficient to
ensure Assumption 2, see e.g., [24, 4].

EXAMPLE 1. In Gaussian Analysis (especially White Noise Analysis) the
Gaussian measure y#> corresponding to the Hubert space tf is considered. Its
Laplace transform is given by

hence γ^ e Jfa(^'). It is well known that γ^ is .yΓ�quasi�invariant (moreover
e?f �quasi�invariant) see e.g., [34, 4]. Due to the previous note γ^ satisfies also
Assumption 2.

EXAMPLE 2. (Poίsson measures)
Let use consider the classical (real) Schwartz triple

The Poisson white noise measure µp is defined as a probability measure on
with the Laplace transform

lµp(θ) = expj JV«) � 1) df j = exp{<^ � 1, 1», θ e 5>C(R),

see e.g., [10]. It is not hard to see that lµp is a holomorphic function on
y<c(R), so Assumption 1 is satisfied. But to check Assumption 2, we need
additional considerations.

First of all we remark that for any ξ e <S^(R), ξ Φ 0 the measures µp and
µp( + ζ) are orthogonal (see [36] for a detailed analysis). It means that µp is
not «9<?(IR)�quasi�invariant and the note after Assumption 2 is not applicable
now.

Let some φ e ^( '̂(R)), φ = 0 µp�&.s. be given. We need to show that
then φ = 0. To this end we will introduce a system of orthogonal polynomials
in the space L2(µp) which can be constructed in the following way. The
mapping

θ( ) h�» α(0)( ) = log(l + 0( ))

is holomorphic on a neighborhood ^l c: ^^(R), 0 6 ̂ . Then

« *
0),x> � <β, 1», θ E *,* € ̂

is a holomorphic function on ^ for any x e «S^(R). The Taylor decom-
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position and the kernel theorem (just as in subsection 4.1. below) give

n=0

where Cn : ff"(K) �> ^'(R)®" are polynomial mappings. For φ
« e NO, we define Charlier polynomials

Due to [14, 15] we have the following orthogonality property:

Now the rest is simple. Any continuous polynomial φ has a uniquely defined
decomposition

N

where φW e

Λ=0

". If φ = 0 /ya.e. then

w=0

Hence pM — o, « = 0, . . . , N, i.e., φ = 0. So Assumption 2 is satisfied.

4. Concept of distributions in infinite dimensional analysis

In this section we will introduce a preliminary distribution theory in
infinite dimensional non�Gaussian analysis. We want to point out in advance
that the distribution space constructed here is in some sense too big for
practical purposes. In this sense section 4. may be viewed as a stepping stone
to introduce the more useful structures in §5. and §6.

We will choose 0>(*V') as our (minimal) test function space. (The idea to
use spaces of this type as appropriate spaces of test functions is rather old see
[25]. They also discussed in which sense this space is "minimal".) First we
have to ensure that 0*(Λ") is densely embedded in L2(µ). This is fulfilled
because of our assumption 1 [34, Sec. 10 Th. 1]. The space 0>(jV'} may be
equipped with various different topologies, but there exists a natural one such
that 0>(*V') becomes a nuclear space [4]. The topology on <P(*Vf) is chosen
such that it becomes isomorphic to the topological direct sum of tensor powers
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JT®n see e.g., [33, Ch II 6.1, Ch III 7.4]

via

φ(x) = £ <x®",,<»>> «�» φ = {φ^\n 6 N0}.
«=0

Note that only a finite number of φW is non�zero. We will not reproduce the
full construction here, but we will describe the notion of convergence of
sequences this topology on 0*(^V'). For φ e ^(Λ^'), φ(x) = Y^=o <*®n>^>
let pn : &(Λ") —> Jf®n denote the mapping pn is defined by pnφ := φ^n\ A
sequence {^y'eN} of smooth polynomials converges to φe^(jV'} iff the
N(<PJ) are bounded and pn<Pj j^& pnφ in Λ^f11 for all w e N .

Now we can introduce the dual space 0%(*V') of 3P(jV'} with respect to
L2(µ). As a result we have constructed the triple

The (bilinear) dual pairing < , >µ between (̂̂ ') and 0>(jV'} is connected to
the (sesquilinear) inner product on L2(µ) by

Since the constant function 1 is in ^(^V1) we may extend the concept of
expectation from random variables to distributions; for Φ e 0%(

The main goal of this section is to provide a description of ^(jV1), see
Theorem 4.18 below. The simplest approach to this problem seems to be the
use of so called µ�Appell polynomials.

4.1. Appell polynomials associated to the measure µ

Because of the holomorphy of lµ and lµ(0) = 1 there exists a neighborhood
of zero

/70, go e N, PQ >p'µ, 2~^ < εµ (p'µ,εµ from Lemma 3.9) such that lµ(θ) Φ 0 for
θ E WQ and the normalized exponential

eW>
^z)= forβe^o, z e Λ*c, (8)
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is well defined. We use the holomorphy of θ\�^eµ(θ\z) to expand it in a power
series in θ similar to the case corresponding to the construction of one
dimensional Appell polynomials [7]. We have in analogy to [1,2]

where dneµ(ty z) is an n�homogeneous continuous polynomial. But since eµ(β\ z)
is not only G�holomorphic but holomorphic we know that θ —> eµ(θ\z) is also
locally bounded. Thus Cauchy's inequality for Taylor series [9] may be applied,

1 siφ M0;z)||0|; < 1 jup^ ̂ H^ (9)id%(0;z)(0)

if z e 34f�p&. This inequality extends by polarization [9] to an estimate suffi�
cient for the kernel theorem. Thus we have a representation dneµ(tyz)(θ) =
<JP£(z),0®π> where P£(z) e (Λ^Λ)'. The kernel theorem really gives a little
more: P%(z) e jff®J for any p'(>p>po) such that the embedding operator
if : Jtfi c�> Jtf is Hubert�Schmidt. Thus we have

for^6%, ze<. (10)
n=0

We will also use the notation

,^)>, φWeΛ ®", neN.

Thus for any measure satisfying Assumption 1 we have defined the F^�system

IP" = {<^( )^W>kW e ̂ ",n e N}.

Let us collect some properties of the polynomials P%(z).

PROPOSITION 4.11. For x.yEjV', w e N the following holds

(PI)

(P2)

/*(*) = ̂  ("}x*k (g) <_,(0), (11)
^=o V^/

χ~°"' =

(P3) �"' x * ' "'
k+l+m=n

Σfϊ)/>ίWβ»'Θ(""fc) (13)
fc=o V*/
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(P4) Further we observe

(P5) For all p > PQ such that the embedding tfp^> 3tfpQ is Hilbert�Schmidt and

for all ε > 0 small enough (ε < e\\?~q\ ) there exists a constant Cp,ε > 0 with

PROOF. We restrict ourselves to a sketch of proof, details can be found in
[2]. (PI) This formula can be obtained simply by substituting

—— = y^ — <Pff(0),0®">, 0eΛc, \θ\ <δ (16)
IP(Θ) n=Qn'

and

n=Q '

in the equality eµ(θ;x) = e<x^l~l(θ). A comparison with (10) proves (PI).
The proof of (P2) is completely analogous to the proof of (PI). (P3) We start
from the following obvious equation of the generating functions

= eµ(θ;x)eµ(θ;y)lµ(θ)

This implies

' " =, τ i > rn
«=0 ' )t,/,m=0

from this (P3) follows immediately. (P4) To see this we use, θ e ΛC,

»=o «
!

Then a comparison of coefficients and the polarization identity gives the above
result. (P5) We can use

Z6jr_,,
c
 (I?)

p> PQ, p',ρ defined above. (17) is a simple consequence of the kernel theorem
by (9). In particular we have
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If p > PQ such that ||fp,/>0||#s is finite. For 0 < ε < 2~9o/e\\iptpQ\\HS we can fix

P = **\\*P,P \\Hs£2~q* ' with

CP* •= sup �Γjp
\Θ\PQ=P W

we have

\Pµ

n(0)\�P ^ Cp,εn\ε�n.

Using (11) the following estimates hold

k=0

This completes the proof. Π

NOTE. The formulae (11) and (16) can also be used as an alternative
definition of the polynomials P%(x).

EXAMPLE 3. Let us compare to the case of Gaussian Analysis. Here one
has

Then it follows

and M^1 = P^(0) = 0 if n is odd. Here Tr e Ji'®2 denotes the trace kernel
defined by

®i> = (i/,i), η,ξe^ (18)

A simple comparison shows that

P£(x) =: x®" :
and

eµ(θ;x)=:e<x'θ>:
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where the r.h.s. denotes usual Wick ordering see e.g., [4, 13]. This procedure is
uniquely defined by

1 — \./V. ^ / I « C G eΛ'

"\y5ifΓ
 ιw

;

where //„ denotes the Hermite polynomial of order n (see e.g., [13] for the
normalization we use).

Now we are ready to give the announced description of

LEMMA 4.12. For any φ€̂ (jV'} there exists a unique representation

(19)

and vice versa, any functional of the form (19) is a smooth polynomial.

PROOF. The representations from Definition 3.10 and equation (19) can be
transformed into one another using (11) and (12). Π

4.2. The dual Appell system and the representation theorem for

To give an internal description of the type (19) for 0µ(^V') we have to
construct an appropriate system of generalized functions, the (Q^�system. The
construction we propose here is different from that of [2] where smoothness of
the logarithmic derivative of µ was demanded and used for the construction
of the Q^�system. To avoid this additional assumption (which excludes e.g.,
Poisson measures) we propose to construct the Q^�system using differential
operators.

Define a differential operator of order n with constant coefficient Φ^ e

0 for m < n

eΛ^w,weN) and extend by linearity from the monomials to

LEMMA 4.13. D(Φ^) is a continuous linear operator from &(Λ^f) to

REMARK. For Φ^ e Jf1 we have the usual Gateaux derivative as e.g., in
white noise analysis [13]

=
 ̂

(
.

 + ί
φ(D

)Uo
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for φ E 9(Jf} and we have D((ΦW)*") = (/)Φ(D)Λ thus D((ΦM)®") is in fact a
differential operator of order n.

PROOF. By definition ^(Λ^'j is isomorphic to the topological direct sum
of tensor powers Jf®n

n=Q

Via this isomorphism D(Φ^} transforms each component Jf®m,m>n by

(wt\ M / �r(vi\ f»IΛ\\

(m�n)\^ 'r

where the contraction (Φ^n\φ^)^n e Λ^®^m~n* is defined by

for all x E Jf'. It is easy to verify that

(20)

which guarantees that (Φ(n\φ^)^n E J^®(m~n^ and shows at the same time
that Z>(ΦM) is continuous on each component. This is sufficient to ensure the
stated continuity of Z)(Φ(w)) on 9(Jf'\ Π

LEMMA 4.14. For Φ^ e we have

(P6)
for w < «

(21)

PROOF. This follows from the general property of Appell polynomials
which behave like ordinary powers under differentiation. More precisely, by
using

= hπ eµ(tθ , )
t=o

we have

ί=0
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� teµ(tθ�,x)
ί=0

f=0

ί=0

This proves

The property (21), then follows by induction. D

In view of Lemma 4.13 it is possible to define the adjoint operator D(Φ(π))*:
&µ(Λ") �> ^µ(^') for Φ(n) e Λ^®" Further we can introduce the constant
function 11 e &µ(Jf'} such that 11 (x) = 1 for all x e Jf', so

«H, φ^µ = f φ(x) dµ(x) = V,µ(φ).

Now we are ready to define our Q�system.

DEFINITION 4.15. For any Φ(π) e (^n}' we define β£(Φ(π)) €̂ µ(J\T') by

We want to introduce an additional formal notation Q%(x) which stresses
the linearity of Φ<">ι�»g£(φW) 6

EXAMPLE 4. It is possible to put further assumptions on the measure µ to
ensure that the expression is more than formal. Let us assume a smooth
measure (i.e., the logarithmic derivative of µ is infinitely differentiable, see [2]
for details) with the property

< Cn\\φ\\L2(µ}\ξ\n

q
Dn,φάµ(x)

where φ is any finitely based bounded #°° �function on Jf'. This obviously
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establishes a bound of the type

llfiί(ίι® βίι .) l l ι? M ^CiΠ l</l f ι ίi. �.^e./K, neW
y=ι

which is sufficient to show (by means of kernel theorem) that there exists
Q%(x) e (<^®n)' for almost all xe^V' such that we have the representation

#(?<">)(*) = <Qµ

n(x), φ(n}\ φ(n) € Jf**

for almost all x e N' . For any smooth kernel φW e jV®n we have then that
the function

belongs to L2(µ).

EXAMPLE 5. The simplest non trivial case can be studied using finite
dimensional real analysis. We consider 1R as our basic Hubert space and as
our nuclear space Jf. Thus the nuclear "triple" is simply

and the dual pairing between a "test function" and a "distribution" degenerates
to multiplication. On 1R we consider a measure dµ(x) = p(x) dx where p is a
positive #°° �function on R such that Assumptions 1 and 2 are fulfilled. In this
setting the adjoint of the differentiation operator is given by

where the logarithmic derivative β of the measure µ is given by

This enables us to calculate the Q^�system. One has

The last equality can be seen by simple induction.
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If p = �iπg'ί1/2)*2 is the Gaussian density Q% is related to the nίΛ Hermite
polynomial:

DEFINITION 4.16 We define the ^�system in &µ(jV') by

Q" = {Qµ

n(Φ(n}}\ Φ(n)

and the pair (JPµ, Qµ) will be called the Appell system Aµ generated by the
measure µ.

Now we are going to discuss the central property of the Appell system Aµ.

THEOREM 4.17. (Biorthogonality w.r.t. µ)

«β£(Φ(n)), <Pµ

m, Ψ(m)»yµ = <W«!<Φ(ΠWΠ)> (22)

for ΦW e (Λ^f")' and pH e ^fm.

PROOF. It follows from (14) and (21) that

Now we are going to characterize the space &'µ(Jf'

THEOREM 4.18. For all Φe^'(./Γ') there exists a unique sequence
|» e Mo}, Φw e (Λ ̂ ")' such that

Λ=0 «=0

and vice versa, every series of the form (23) generates a generalized function in

PROOF. For Φ e ί̂(^Γ') we can uniquely define Φ(n) e (Λ^f")' by

<ΦW, ,,(�)> = «φ, pjj, ̂

This definition is possible because <P^,^> e ^(^Γ'). The continuity of
pMµ�^φW^W) follows from the continuity of ^r�^<Φ,^>, ^e^(^Γ')�
This implies that ι̂�^ ΣίΓ=on!<Φ(ΛWw)> is continuous on ^(^T7)� τhis
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defines a generalized function in '̂(^Γ7), which we denote by
In view of Theorem 4.17 it is obvious that

Λ=0

To see the converse consider a series of the form (23) and φ
Then there exist pW e Λ*®", n e N and N e N such that we have the
representation

N

So we have

// oo \\ N

because of Theorem 4.17. The continuity of φ ι�> < Σ™=o Qn(φ(n] ) > ^>/ι follows
because ^Mh�><φM,^M> is continuous for all «eN. Π

5. Test functions on a linear space with measure

In this section we will construct the test function space (^Γ)1 and study its
properties. On the space ίP(^Vf) we can define a system of norms using the
representation from Lemma 4.12. Let

w=0

be given, then <pW e J4f®£ for each p > 0 (n e N). Thus we may define for any
/?, # e N a Hilbertian norm on ^(Λ^7) by

N

«=0

The completion of ^(J/'1} w.r.t. || � \\p^µ is called ( J f p ) l

q ι µ .

DEFINITION 5.19. We define

This space has the following properties



236 Yuri G. KONDRATIEV et al.

THEOREM 5.20. (Λ*)l

µ is a nuclear space. The topology (*W)l

µ is uniquely
defined by the topology on Jf\ It does not depend on the choice of the family of
norms {\ � \p}.

PROOF. Nuclearity of (jV) l follows essentially from that of Jf. For fixed
p,q consider the embedding

where p' is chosen such that the embedding

is Hubert�Schmidt. Then Ipf^PΛ is induced by

'UP* = Σ <Pn ' '*>W> fθΓ V = Σ <Pn ' Λ
«=0 «=0

Its Hubert�Schmidt norm is easily estimated by using an orthonormal basis of
τhe result is the bound

00

Λ fa� t fOl l ί \\2n

which is finite for suitably chosen cf.
Let us assume that we are given two different systems of Hilbertian norms

I |̂  and | \'k, such that they induce the same topology on Jf. For fixed k and
/ we have to estimate || ||^7 ^ by || \\p^µ for some p,q (and vice versa which is
completely analogous). Since | \'k has to be continuous with respect to the
projective limit topology on ^Γ, there exists p and a constant C such that
\f\'k < C\f\p) for all/ e Jf, i.e., the injection i from ̂  into the completion JΓ*
of N with respect to | \'k is a mapping bounded by C. We denote by i also
its linear extension from J )̂(C into Jf^c It follows that ι®n is bounded by Cn

from Jί^ into jfT®g. Now we choose r̂ such that 2^~7)/2 > C. Then

00

n=0

/ί=0

lli,,,

which had to be proved. Π



Generalized functions in infinite dimensional analysis 237

LEMMA 5.21. There exist p, C, K > 0 such that for all n

l\PΪ(x)\2_pdµ(x)<(n\)2CnK (24)

PROOF. The estimate (17) may be used for p < 2~q° and 2p < εµ (εµ from
Lemma 3.9).

This gives

�\\ip,pa\\as e2'W�>o dµ(x)

which is finite because of Lemma 3.9. Π

THEOREM 5.22. There exist p',q' > 0 such that for all p>pf, q>q' the
topological embedding (^P)

l

q µ <= L2(µ) holds.

PROOF. Elements of the space (^)l

µ are defined as series convergent in
the given topology. Now we need to study the convergence of these series in
L2(µ). Choose qf such that C > 2* (C from estimate (24)). Let us take an
arbitrary

H=0

For p > p' (pr as in Lemma 5.21) and q > q1 the following estimates hold

«=0

Σ \φ(n)\�P\\\pµ

n\�P\\mµ)
«=0

< K Σ «!2n?/2|9>(n)|_/,(C2�«)"/2

n=0

/ C O

<κ( \�p
«=0 / \π=0 >

Taking the closure the inequality extends to the whole space (3ίfp)l

q. Π

COROLLARY 5.23. (^)\ is continuously and densely embedded in L2(µ).
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EXAMPLE 6. (µ�exponentials as test functions) The //�exponential given in
(10) has the following norm

n=Q

This expression is finite if and only if 2«\θ\2

p < 1. Thus we have eµ(θ\ •) φ
if θ φ 0. But we have that eµ(β\ •) is a test function of finite order i.e.,
eµ(θ\ �} e (3tfpγq if 2«\θ\p < 1. This is in contrast to some useful spaces of test
functions in Gaussian Analysis, see e.g., [4, 13].

The set of all //�exponentials {eµ(θ]�)\2^\θ\p<l,θe^c} is a total set
in (Jfp)l

q. This can been shown using the relation dneµ(Q] )(θι,...,θn) =

PROPOSITION 5.24. Any test function φ in (^)l has a uniquely defined
extension to Λ^ as an element of ^^(^c)

PROOF. Any element φ in (ΛOJ, is defined as a series of the following type

n=Q

such that

n=Q

is finite for each /?, q e IN. In this proof we will show the convergence of the
series

to an entire function in z.
Let p > PQ such that the embedding ίpίpo : 3PP <�^ Jjfpo is Hubert�Schmidt.

Then for all 0 < ε < 2~q°/e\\ipjpo\\HS we can use (15) and estimate as follows

n=0 /ϊ=0

n=0

p,q,µ
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if 2q > ε~2. That means the series Σ™=Q <^(z), φ^y converges uniformly and
absolutely in any neighborhood of zero of any space J^�p^� Since each
term <P£(z),0>(w)> is entire in z the uniform convergence implies that

Z^Σ™=θ(Ptt(z)><P(n}y is entίre OΠ each ^�P$> and henCC On ΛC This

completes the proof. Π

The following corollary is an immediate consequence of the above proof
and gives an explicit estimate on the growth of the test functions.

COROLLARY 5.25. For all p > po such that the norm \\ip,pQ\\HS of the
embedding is finite and for all 0 < ε < 2~q°/e\\ipίpQ\\HS we can choose q e N such
that 2q > ε~2 to obtain the following bound.

where

Let us look at Proposition 5.24 again. On one hand any function φ e
can be written in the form

φ(z) = Σ (Pµ

n (*), ?W>, <P(n] e ̂ \ (25)
n=0

on the other hand it is entire, i.e., it has the representation

®", Λ, *M 6 .*"*", (26)
n=0

To proceed further we need the explicit correspondence {
{^W,«eN} which is given in the next lemma.

LEMMA 5.26. (Reordering) Equations (25) and (26) hold iff

or equivalent ly

where (^(O),̂ ""1"^)^®,, and (M^φ^n+k^)^n denote contractions defined by (20).

This is a consequence of (11) and (12). We omit the simple proof.
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Proposition 5.24 states

as sets, where

Corollary 5.25 then implies that the embedding is also continuous. Now we
are going to show that the converse also holds.

THEOREM 5.27. For all measures µ e Jta(Jf') we have the topological
identity

To prove the missing topological inclusion it is convenient to use the nuclear
topology on f^(^i) (given by the norms ||| |||Mjι) introduced in section 2.
Theorem 2.5 ensures that this topology is equivalent to the projective topology
induced by the norms n^/^ Then the above theorem is an immediate con�
sequence of the following norm estimate.

PROPOSITION 5.28. Let p > pµ (pµ as in Lemma 3.9) such that \\iPJ>µ\\HS

is finite and q e N such that 2q/2 > Kp (Kp := eC\\iptpµ\\HS as in (7)). For any
φeEl

qq the restriction φ\^ is a function from (^PΫ^µ) q* < q� Moreover the
following estimate holds

PROOF. Let /?, q e N, Kp be defined as above. A function φ e E^q has the
representation (26). Using the Reordering lemma combined with (7) and

we obtain a representation of the form (25) where

«=0

< I I M I I i ^ Ί 1 Kk2�("+k),/2
— l l l τ r l l l n / 3 1 / .\ Ί I / . » \ t �*vn **

1 00

_ 9�^/2 V^ (2~q/2K
n\

L 2^^ ^P



Generalized functions in infinite dimensional analysis 241

For cf < q this allows the following estimate

«=0

i t 1 � 2~9/2KpΓ2 Σ 2«tf�*> < oo
«=0

This completes the proof. Π

Since we now have proved that the space of test functions (^µ is
isomorphic to ^^n(^f) for all measures µ e Jta^'}, we will now drop the
subscript µ. The test function space (*V)1 is the same for all measures

COROLLARY 5.29. (^V) is an algebra under pointwise multiplication.

COROLLARY 5.30. (ΛO1 admits 'scaling9 i.e., for λ e (C the scaling operator
σλ ' (ΛO1 �> (^Ϋ defined by σλφ(x) := φ(λx), φ e (j\T}\ xεjV" is well�defined.

COROLLARY 5.31. For all ze^ the space (jV}1 is invariant under the
shift operator τz : φ\�^φ(� +z).

6. Distributions

In this section we will introduce and study the space (ΛO"1 of distri�
butions corresponding to the space of test functions (�/Γ)1. Since

)1 the space (^)~l can be viewed as a subspace of

Let us now introduce the Hilbertian subspace (^�PYµ of ̂ ( '̂) for which
the norm

is finite. Here we used the canonical representation

from Theorem 4.18. The space (^�P)~l

q µ is the dual space of (^p}
l

q with
respect to L2(µ) (because of the biorthogonality of P�and Q�systems). By
general duality theory

== U
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is the dual space of (Λ*)1 with respect to L2(µ). As we noted in section 2.
there exists a natural topology on co�nuclear spaces (which coincides with the
inductive limit topology). We will consider (ΛO"1 as a topological vector
space with this topology. So we have the nuclear triple

The action of Φ = Σ£L0 β£(Φ(π)) e (ΛO'1 on a test function φ
)1 is given by

For a more detailed characterization of the singularity of distributions
in (ΛO"1 we will introduce some subspaces in this distribution space. For
β E [0, 1] we define

Σ ("01~'2�flΊΦw|?, < oo for Φ =
n=0 n=0

and
— \ \

µ — \J

It is clear that the singularity increases with increasing β:

if jSt < jff2 We will also consider («wγµ as equipped with the natural topology.

EXAMPLE 7. (Generalized Radon�Nikodym derivative) We want to define a
generalized function pµ(z, ) e (ΛO"1, ze^J with the following property

<>„(*, •), Λ/i = 9(x~
J^r

That means we have to establish the continuity of pµ(z, •). Let z e 3tf�pp. If
p' >p is sufficiently large and ε > 0 small enough, Corollary 5.25 applies i.e.,
3# e N and C > 0 such that

I f ψ(x� z) φι(x) < C|k||Λι/l fU^r ^'^J

If ε is chosen sufficiently small the last integral exists. Thus we have in fact
p(z, �) e (jV)~l. It is clear that whenever the Radon�Nikodym derivative
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exists (e.g., ξ e jV in case µ is Λ^�quasi�invariant) it coincides with
pµ(ξ, ) defined above. We will now show that in (ΛO"1 we have the can�
onical expansion

It is easy to see that the r.h.s. defines an element in (^)µ . Since both sides
are in (ΛO"1 it is sufficient to compare their action on a total set from

For φW e Jf®n we have

= f

Jj

«=0 µ

where we have used (13), (14) and the biorthogonality of IP� and Q�systems.
This had to be shown. In other words, we have proven that pµ(�z, •) is the
generating function of the Q�functions

") (27)

Let use finally remark that the above expansion allows for more detailed
estimates. It is easy to see that pµ e (ΛO~°.

EXAMPLE 8. (Delta distribution) For z e Λ^. we define a distribution by
the following Q�decomposition:

If p e N is large enough and ε > 0 sufficiently small there exists Cp,ε > 0
according to (15) such that

«=o

which is finite for sufficiently large q e N. Thus <JZ e
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For φ = Σ™=0 <P£, pM> e (JVΫ the action of δz is given by

n=0

because of (22). This means that δz (in particular for z real) plays the role of a
"J�function" (evaluation map) in the calculus we discuss.

7. Integral transformations

We will first introduce the Laplace transform of a function φeL2(µ).
The global assumption µ e Ma(Jf'} guarantees the existence of p'µ e N, εµ > 0
such that Ijp Qxp(εµ\x\_pf ) dµ(x) < oo by Lemma 3.9. Thus exp«x, 0» e L2(µ)
if 2)0^ < εµ, θ e Jfy c. Then by Cauchy�Schwarz inequality the Laplace
transform defined by

^(61):=].

is well defined for φ e L2(µ), θ e ̂  <& with 1\θ\^ < εµ. Now we are interested
to extend this integral transform from L2(µ) to the space of distributions

Since our construction of test function and distribution spaces is closely
related to IP� and Q�systems it is useful to introduce the so called 5^�transform

Since eµ(θ;x) — e< x^/lµ(θ) we may also write

Sµφ(θ)=\ φ(x)eµ(θ >X)dµ(x).
J^r'

The //�exponential eµ(θ,>] is not a test function in (^Γ)1, see Example 6. So
the definition of the S^�transform of a distribution Φ e (Λr)µ must be more
careful. Every such Φ is of finite order i.e., 3/?, q e N such that Φ e (jf_p)!_^ ^.
As shown in Example 6 ^(0, •) is in the corresponding dual space (^)J^ if
θ e Jtfpφ is such that 2q\θ\* < 1. Then we can define a consistent extension of
Sµ�transform.

if θ is chosen in the above way. The biorthogonality of P� and Q�system
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implies

It is easy to see that the series converges uniformly and absolutely on any
closed ball {θ e Jί ĉ | \θ\2

p <r,r< 2~q}, see the proof of Theorem 8.34. Thus
SµΦ is holomorphic in a neighborhood of zero, i.e., SµΦ e Holo(^c). In the
next section we will discuss this relation to the theory of holomorphic functions
in more detail.

The third integral transform we are going to introduce is more appropriate
for the test function space (J^)1. We introduce the convolution of a function
φe (ΛO1 with the measure µ by

Cµφ(y) := f φ(x + y) φ(*), y
ΪΛ*

From Example 7 the existence of a generalized Radon�Nikodym derivative
pµ(z, •), z e Λ ^ in (ΛO"1 is guaranteed. So for any ^e(J/*)1, ze^J the
convolution has the representation

If φe(^)1 has the canonical representation

Λ=0

we have by equation (27)

In Gaussian Analysis C^� and Sµ�transform coincide. It is a typical non�
Gaussian effect that these two transformations differ from each other.

8. Characterization theorems

Gaussian Analysis has shown that for applications it is very useful to
characterize test and distribution spaces by the integral transforms introduced
in the previous section. In the non�Gaussian setting first results in this direction
have been obtained by [1,2].

We will start to characterize the space (Λ7*)1 in terms of the convolution
cµ.
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THEOREM 8.32. The convolution Cµ is a topological isomorphism from (Λf)
on

REMARK. Since we have identified (^Γ) and < n̂( '̂) by Theorem 5.27
the above assertion can be restated as follows. We have

as a topological isomorphism.

PROOF. The proof has been well prepared by Theorem 2.5, because the
nuclear topology on ̂ n(^) is the most natural one from the point of view
of the above theorem. Let φt(Jf}1 with the representation

/ι=0

From the previous section it follows

It is obvious from (2) that

ll|ί>|||Mlι = \\Ψ\\M,µ

for all /?, q e NO, which proves the continuity of

Conversely let F e ^ύn(^J). Then Theorem 2.5 ensures the existence of
a sequence of generalized kernels {φW e«yΓ^|weNo} such that

Moreover for all /?, ̂  e NO

«=0

is finite. Choosing

we have ||̂ ||̂ ^ = Ill^ll^i Thus φ e (^Γ). Since C^^ = F we have shown
the existence and continuity of the inverse of Cµ. D
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To illustrate the above theorem in terms of the natural topology on
<imin(>c) we will reformulate the above theorem and add some useful estimates
which relate growth in ^n(^^) to norms on

COROLLARY 8.33.
1) Let φ e (^Γ)1 then for all p, I e NO and z e tf�pg, the following estimate

holds

\Cµφ(z)\<\\φ\\p,2l,µπp(2�l\z\_p)

2) Let F e ̂ (̂ e). Then there exists φ e (jV}1 with Cµφ = F. The
estimate

\F(z)\

for C > 0,p, q e NO implies

if the embedding i^p :Jtff^>jtfp is Hubert� Schmidt and 2l~q/2 > e\\iprlp\\HS.

PROOF. The first statement follows from

\Cµφ(z)\ < nMl(Cµφ)

which follows from the definition of n^^i and estimate (3). The second
statement is an immediate consequence of Lemma 2.7. Π

The next theorem characterizes distributions from (ΛO" in terms of
ansform.

THEOREM 8.34. The Sµ�transform is a topological isomorphism from

iSµ�transform.

on

REMARK. The above theorem is closely related to the second part of
Theorem 2.8. Since we left the proof open we will give a detailed proof here.

PROOF. Let Φ e (ΛO"1 . Then there exists />, q e N such that

«=0

is finite. From the previous section we have

(φ(n],θ®ny (28)
«=0
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For 0 e Λ c such that 2*|0|* < 1 we have by definition (Formula (2))

By Cauchy�Schwarz inequality

\sµΦ(β)\ < £ |
n=0

/ co \ 1/2 / oc /2

n=0 / \«=0

Thus the series (28) converges uniformly on any closed ball
\p{θ e jepfl I \θ\p <r,r< 2"^}. Hence SµΦ e Hol0(^<c) and

if 2/ > .̂ This proves that S^ is a continuous mapping from (^)~ to
Cc). In the language of section 2.2. this reads

indlimE
'

topologically.
Conversely, let FeHoloί^c) be given, i.e., there exist/?, 7 e N such that

npjί00(F) < oo. The first step is to show that there exists //, # e N such that

for sufficiently large C > 0. This implies immediately

topologically, which is the missing part in the proof of the second statement in
Theorem 2.8.

By assumption the Taylor expansion

n=0 "'

converges uniformly on any closed ball {θ e 3tfp& \ |0ί < r, r < 2~1} and

Proceeding analogously to Lemma 2.6, an application of Cauchy's inequality
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gives

<2l\θ\"p sup \F(Θ)\

The polarization identity gives

l 5 . . . , θn}
l f[ \θj\p

7=1

Then by kernel theorem (Theorem 2.2) there exist kernels Φ(w) e Jf®^ for
p' > p with 11^11 #5 < oo such that

n=0

Moreover we have the following norm estimate

Thus

n=0

«=o

if ^ 6 N is such that p := 22l~qe2\\i^p\\jfS < 1. So we have in fact

Now the rest is simple. Define Φ e (ΛO"1 by

then ^Φ = F and

This proves the existence of a continuous inverse of the *S^�transform.
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Uniqueness of Φ follows from the fact that //�exponentials are total in any

We can extract some useful estimates from the above proof which describe
the degree of singularity of a distribution.

COROLLARY 8.35. Let F€Holo(^c) be holomorphic for all θ e
with \θ\p < 2~l. If p' > p with \\ip>p\\Hs < °° and # e N is such that p :=

For a more detailed discussion of the degree of singularity the spaces
,̂ /?e[0, 1) are useful. In the following theorem we will characterize

these spaces by means of S^�transform.

THEOREM 8.36. The Sµ�transform is a topological isomorphism from
, e 0 , l o n �

REMARK. The proof will also complete the proof of Theorem 2.8.

PROOF. Let Φ e (jtf�p)~ with the canonical representation Φ =
oδ«(φ(/l)) be »ven. The 5^�transform of Φ is given by

Λ=0

Hence

is finite. We will show that there exist / e N and C < 0 such that

C\\\SµΦ\\\_p^_β.

We can estimate as follows

n=0

/ « 7 2 0 0 /2

(n^2�""\Φ^_p_p

«=0 / \n=0 W

/ oo ,

= III^*III�*�*H» Σ ̂
/2
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where we have introduced a parameter p e (0,1). An application of Holder's
inequality for the conjugate indices and gives

00

\sµφ(θ)\ < \\\sµΦ\\\_p^_Λ
\Λ=0 / \n=0

If / e N is such that

2

we have

*�p,�W(ί�n(SµΦ) = wp \SµΦ(θ)\exp(�2'|0|f'�«)

Z(l�pΓβ'2\\\SβΦ\\\�p,�,,�β

This shows that Sµ is continuous from (^}~µ to ^ " ( Λ c ) � Or in the
language of Theorem 2.8

topologically.
The proof of the inverse direction is closely related to the proof of Lemma

2.7. So we will be more sketchy in the following.
Let F e ^maxί ̂ i), k = y^. Hence there exist /?, / e N0 such that

\F(0)\ < n.p^k(F) «p(2'|0|J), θ € ̂

From this we have (completely analogous to the proof of Lemma 2.7) by
Cauchy inequality and kernel theorem the representation

and the bound

where pr > p is such that i^p : ̂  <-* 3?p is Hubert-Schmidt. Using this we
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Λ=0

«=0

«=o

where we have set p := ^~q+Ή^kk2fke2\\i^p\\2

HS. If q e N is chosen large enough
such that p < I the sum on the right hand side is convergent and we have

That means

topologically.
If we set

I�x�,,�/? < *�P,�ιm�f>(f) (i � p l/2

<= ίnd lim

(29)

then SΦ = F and Φ e

Φ :=
n=0

since

is finite. Hence

is one to one. The continuity of the inverse mapping follows from the norm
estimate (29). Π

9. The Wick product

In Gaussian Analysis it has been shown that (ΛO^ (and other distribution
spaces) is closed under so called Wick multiplication (see [20] and [3, 29, 35]
for applications). This concept has a natural generalization to the present
setting.



Generalized functions in infinite dimensional analysis 253

DEFINITION 9.37. Let Φ, Ψε(Λ*)~l. Then we define the Wick product
ΦOΨ by

Sµ(ΦθΨ}=SµΦ SµΨ.

This is well defined because Holo(J/c) is an algebra and thus by the
characterization Theorem 8.34 there exists an element Φ O Ψ 6 (ΛO"1 such
that Sµ(Φ OΨ)= SµΦ SµΨ.

By definition we have

β£(Φ(n)) O Qµ

m(Ψ(m}) = Qΐ+m(Φ(n] ® Ψ(m)),

Φ(π) e C^d"1)' and Ψ(rri} ε (�<fm)'. So in terms of Q�decompositions Φ =

Σ^oβ«(φ(π)) and ψ = Σ™=o Qtt(ψ(m}) the wick Product is given by

«=0

where
n

Ξ(n) _ y^ φ(k) φ ψ(n�k)

k=Q

This allows from concrete norm estimates.

PROPOSITION 9.38. The Wick product is continuous on (ΛO"1. In par�
ticular the following estimate holds for Φ e (J4f�Pl)~l

q^µ, Ψ e (Jj?_g2)~l

q^µ and

p = max(/7ι,/?2), q = q\ + qi + 1

PROOF. We can estimate as follows

n=0

n=0 \fc=0

00

«=0 k=0

oo n

~nqι\Φ^\2_ 2~nq2\ψ(n~v\2_

n=0 / \n=0 /

2,_?2,,. D
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Similar to the Gaussian case the special properties of the space
allow the definition of Wick analytic functions under very general assumptions.
This has proven to be of some relevance to solve equations e.g., of the type
Φ O X = Ψ for X e (Λ*)µ

l. See [20] for the Gaussian case.

THEOREM 9.39. Let F : C �» C be analytic in a neighborhood of the point
ZQ = Έ,µ(Φ), Φ e (ΛO"1. Then F<>(Φ) defined by Sµ(F<>(Φ)) = F(SµΦ) exists
in '

PROOF. By the characterization Theorem 8.34 S^Φ e Holo(Λc).
F(SµΦ) e Holoί^c) since the composition of two analytic functions is also
analytic. Again by characterization Theorem we find F°(Φ) e (ΛO"1. D

REMARK. If F(z) = Σ™=Qak(z � z0)
n then the Wick series Σ

zo)0" (where Ψ°n = Ψ O � � � O Ψ n�times) converges in (^}~l and
z0°" holds.

EXAMPLE 9. The above mentioned equation Φ <> X =Ψ can be solved
if Έ,µ(Φ) = SµΦ(0) Φ 0. That implies (SµΦ)~l e Hol0(^<c). Thus Φo(~1} =
S�l((SµΦ}~λ}e(J\r}�\ Then X = Φ^�^OΨ is the solution in
For more instructive examples we refer the reader to [20].

10. Positive distributions

In this section we will characterize the positive distributions in
We will prove that the positive distributions can be represented by measures
in Jfa(*Wr). In the case of the Gaussian Hida distribution space (S)' similar
statements can be found in works of Kondratiev [17, 18] and Yokoi [37, 38],
see also [31] and [27]. In the Gaussian setting also the positive distributions in
(ΛO"1 have been discussed, see [23].

Since (^V)1 = ̂ (̂ 0 we say that <p e (J^)1 is positive (φ > 0) if and
only if φ(x) > 0 for all x e ΛΛ

DEFINITION 10.40. An element Φ e (J^) is positive if for any positive
ι A* ι

φ e («yΓ) we have ^Φ, φ^µ > 0. 7%e c0«e of positive elements in (^}µ is
denoted by

THEOREM 10.40. Let Φε(jV)µ\. Then there exists a unique measure
v e Jta(rf') such that V φ e (jV)1

φ(x)dv(x). (30)

Vice versa, any (positive) measure v e Jia(Jf'} defines a positive distribution Φ e
by (30).
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REMARKS.
1. For a given measure v the distribution Φ may be viewed as the

generalized Radon�Nikodym derivative ^ of v with respect to µ. In fact if v
is absolutely continuous with respect to µ then the usual Radon�Nikodym
derivative coincides with Φ.

2. Note that the cone of positive distributions generates the same set of
measures Jta(^f) for all initial measures µe

PROOF. To prove the first part we define moments of a distribution Φ and
give bounds on their growth. Using this we construct a measure v which is
uniquely defined by given moments*. The next step is to show that any test
functional φe (ΛO1 is integrable with respect to v.

Since ^(^') c (Λ^)1 we may define moments of a positive distribution
by

We want to get estimates on the moments. Since Φ e
/?, q > 0 we may estimate as follows

for some

p,q,t>

To proceed we use the property (12) and the estimate (7) to obtain

n /n

=

 ΣU
p,q,µ

fc=C

n

=πι
j=ι

* Since the algebra of exponential functions is not contained in (ΛO, we cannot use Minlos'
theorem to construct the measure. This was the method used in Yokoi's work [37].
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n

7=1 k=0

n oo

7=1 fc=0

which is finite for p,q large enough. Here ^Γ is determined by equation (7).
Then we arrive at

(31)
7=1

for some AT, C > 0.
Due to the kernel theorem 2.2 we then have the representation

where M(π) e (Λ°®n)' '. The sequence {M(n),« e NO} has the following property
of positiyity: for any finite sequence of smooth kernels {0W,Λ6N} (i.e.,
0M e Λ/*®" and 0M = 0 V n > «0 for some n0 e N) the following inequality is
valid

Σ <M(*+Λ , 0<*> (8) ̂ ) > > 0. (32)
kj

This follows from the fact that the left hand side can be written as <Φ, |0>|2>
with

rtx) = Σ<*®",flfM>, Jce^T,

n=0

which is a smooth polynomial. Following [6, 4] inequalities (31) and (32)
are sufficient to ensure the existence of a uniquely defined measure v on

), such that for any φ e 9(Jf'} we have

= f
JΛ '

From estimate (31) we know that ve^β(^Γ'). Then Lemma 3.9 shows
that there exists ε> 0, /?eN such that exp(e|x|.) is v�integrable. Corollary

1 r

5.25 then implies that each φ e (^Γ) is v�integrable.
Conversely let v e Jta(<W') be given. Then the same argument shows that

each φe (^Γ)1 is v�integrable and from Corollary 5.25 we know that

I f φ(x)dv(x) <C\\φ\\Mµ f
I J ̂ r J
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for some /?,#, e IN, C > 0. Thus the continuity of φ\�+ \^, φdv is established,
showing that Φ defined by equation (30) is in (ΛO~+. D

11. Change of measure

Suppose we are given two measures µ,µeJ^a(^) both satisfying
Assumption 2. Let a distribution Φ e MO .7* be given. Since the test function

1 A*

space (^Γ) is invariant under changes of measures in view of Theorem 5.27,
the continuous mapping

can also be represented as a distribution Φ e (Λ^)~. So we have the implicit
relation Φ e (ΛO"1 <�> Φ e ( Λ O 1 defined by

This section will provide formulae which make this relation more explicit in
terms of redecomposition of the Q�series. First we need an explicit relation of
the corresponding IP�systems.

LEMMA 11.42. Let µ,µ e JKa(^V') then

Pn(^= Σ ^*)®^(°)®M^k+l+m—n

PROOF. Expanding each factor in the formula

eµ(θ,x)

we obtain

^ Σ
ιι=0 '

A comparison of coefficients gives the above result. Π

An immediate consequence is the next reordering lemma.

LEMMA 11.43. Let φe(.Λ^)1 be given. Then φ has representations in
P^�series as well as P^�series:

n=0 n=Q
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where φ^n\ φW e Jf®n for all n e NO, and the following formula holds:

v(n} = Σ ̂ w^wβ^/
/,m=0 ' '

Now we may prove the announced theorem.

THEOREM 11.44. Let Φ = Σ"=o<β£,Φ(l°> e C ^ � ™en Φ =
£,Φ(B)> defined by

following relation holds

φ(n)= Σ i

PROOF. We can insert formula (33) in the formula

Γ π!<φM,pM> = «!<φ(n),^)>
n=0 «=0

and compare coefficients again. Π
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