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The question of controllability is investigated for a quantum control system in
which the Hamiltonian operator components carry explicit time dependence which
is not under the control of an external agent. We consider the general situation in
which the state moves in an infinite-dimensional Hilbert space, a drift term is
present, and the operators driving the state evolution may be unbounded. However,
considerations are restricted by the assumption that there exists an analytic domain,
dense in the state space, on which solutions of the controlled Schrdodinger equation
may be expressed globally in exponential form. The issue of controllability then
naturally focuses on the ability to steer the quantum state on a finite-dimensional
submanifold of the unit sphere in Hilbert space—and thus on analytic controllabil-
ity. A relatively straightforward strategy allows the extension of Lie-algebraic con-
ditions for strong analytic controllability derived earlier for the simpler, time-
independent system in which the drift Hamiltonian and the interaction Hamiltonian
have no intrinsic time dependence. Enlarging the state space by one dimension
corresponding to the time variable, we construct an augmented control system that
can be treated as time independent. Methods developed by Kunita can then be
implemented to establish controllability conditions for the one-dimension-reduced
system defined by the original time-dependent Schrédinger control problem. The
applicability of the resulting theorem is illustrated with selected example20@
American Institute of Physic$DOI: 10.1063/1.1867979

I. INTRODUCTION

Over the last two decades, quantum control has played an important part in theoretical and
experimental progress toward the realization of laser control of chemical reactions and the devel-
opment of quantum computejr‘sl.3 Essential to this contribution has been the integration of con-
cepts and mathematical results from control engineering with the fundamental principles of quan-
tum theory.

Geometric control, a treatment of differential equations rooted in differential geometry, uni-
tary groups, and Lie algebras, provides a natural mathematical basis for quantum control theory.
Explicitly or implicitly, its element$* pervade the manipulation of quantum states in both tradi-
tional and novel technologies. Indeed, the field of nuclear magnetic resofdktiR) is largely
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concerned with geometric control of collections of interacting nuclear $pifis:’ Geometric
control is also a key ingredient in the theory of quantum computation, figuring prominently in the
works of Lloyd® Deutsch, Barenco, and EkéftAkulin, Gershkovich, and Haréf

In particular, Lonc}8 was among the first to establish that almost all quantum logic gates are
universal. More precisely, if one has available a gate that can operate on two qubits, plus a
single-qubit operation, then an arbitrary unitary transformation on the variables of the system can
be performed with arbitrary precision by implementing a finite sequence of local operations.
Clark’* and Ramakrishn@t al?? and Ramakrishna and Rabiitzcalled attention to the close
relationship between open-loop geometric quantum control methods and the application of quan-
tum logic gate§.8'19

Following Ref. 23, let us consider the differential system

dX(t) O

. AX(t) + 2‘1 BX(tui(t), X(0) =1, (1)

i=

which arises both in quantum computing and molecular control. BeigaN X N unitary matrix
(I being the corresponding identity matrixhe matricesA andB;, i=1,... m are NX N skew-
Hermitian, and the functiong(t) are controls. This equation is the law of motion of the evolution
operators which govern time development of Mveimensional vector representing a pure state of
the system in itdN-dimensional Hilbert space. A necessary and sufficient conditioriljioto be
controllable is that the set of all matrices generatedA\b$;, i=1, ... m, and their commutators
(i.e., the Lie algebra generated ByandB;) equals the set of all X N skew-Hermitian matrices.
Additionally, when this condition is met, any can be attained through some choice among the
controlsu;(t) restricted to piecewise-constant functions of time. In fact, the formulation adopted by
Lond18 in his universality proof corresponds to the special cAs® andm=2 of system(1).
Already in the 1970s, Sussmann and Jurdfe‘\'ﬂéapplied Lie-group theory to obtain rigorous
results on controllability for finite-dimensional control problems correspondir@)to

Quantum computation has mostly concerned itself with the manipulation of discrete systems
with finite-dimensional state spaces. However, the fundamental quantum observables representing
position and momentum, and functions thereof, are continuous in nature. In view of recent devel-
opments in quantum error correctfSit® and quantum teleportati6h®® of continuous variables,
the potential of quantum computation over continuous variables warrants serious investigation,
thus reopening issues of controllability on infinite-dimensional Hilbert spaces. Continuous gquan-
tum computers may in fact be able to perform some tasks more efficiently than their discrete
counterparts.

As early as 1983, Huang, Tarn, and Clarkrc)®>3t proved a basic theorem on strong analytic
controllability of quantum systems. This theorem explicitly embraces the case of quantum systems
whose observables are continuous quantum variables acting on an infinite-dimensional state space,
but the essential finite-dimensional results may be extracted as special cases. Because of the
difficulties caused by infinite dimensionality and the unboundedness of operators, an analytic
domain in the sense of Nelstrwas introduced to deal with domain probléﬁ%and maintain
key features of the application of Lie algebraic methods to finite-dimensional problems.

Infinite-dimensional control systems have been widely if not systematically studied outside
the quantum context. Brockéttaddressed the problem of realization of infinite-dimensional bi-
linear systems. Sakawsintroduced a method for design of finite-dimensiofél controllers for
diffusion systems with bounded input and output operators by using residual model filters.
Keulert* designed infinite-dimensionak., controllers for infinite-dimensional systems with
bounded input and output operators by using the solutions to two kinds of Riccati equations in an
infinite-dimensional space. Based on gap topology, MBrienstructed finite-dimensiond.,,
controllers for infinite-dimensional systems with bounded input and output operators. rorris
also showed that approximations of Galerkin type can be used to design controllers for an infinite-
dimensional system. Costa and Kubrﬁ%l;ierived necessary and sufficient conditions for exis-
tence of a state feedback controller that stabilizes a discrete-time infinite-dimensional stochastic
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bilinear system and ensures that the influence of the additive disturbance on the output is smaller
than some prescribed bound. In Ref. 38, optimizability and estimatability for infinite-dimensional
linear systems are investigated; also, a theorem on the equivalence of input-output stability and
exponential stability of well-posed infinite-dimensional linear systems is established. In Ref. 39,
the Hilbert-space generalization of the circle criterion is used for finite-dimensional controller
design of unstable infinite-dimensional systems. There is also literature on absolute stability prob-
lems and open-loop stability problems in infinite-dimensional syst&m&in addition, the spec-

tral factorization problem plays a central role in designing feedback control for the linear quadratic
optimal control problem in infinite-dimensional state-space sysfé?ﬁ%ln contrast to this body

of work, very little has been published on controllability for time-dependent infinite-dimensional
guantum control systems.

In the microscopic world ruled by quantum mechanics, most interesting phenomena involve
change, and all real-world quantum systems are influenced to a greater or lesser extent by inter-
actions with their environments. The environment changes with time, so the Hamiltonians used to
describe these open quantum systems are explicitly time dependent, as in Refs. 49 and 50. Tailored
time-dependent perturbations are used to improve system perfor??lammgh-resolution NMR
spectroscopy, where versatile decoupling techniques are available to manipulate the overall spin
Hamiltonian®® Colegrave and Abdalla studied quantum systems with a time-dependent mass to
investigate the field intensities in a Fabry—Perot ca@iﬂ]hey suggested possible applications to
solid-state physics and quantum field theiRemaud and Hernand¥zfound that a time-
dependent mass parameter offers a means of simulating input or removal of energy from the
system. Implementation of controls on these time-dependent quantum systems requires guidance
from mathematical studies of controllability for time-dependent Hamiltonian operators. Although
the HTC theorem deals with controllability in infinite-dimensional Hilbert space, it is restricted to
time-independent operators. This paper explores a more general case. We seek an extension of the
HTC theorem that is applicable both to time-independent and time-dependent quantum systems, as
well as to systems with discrete or continuous operators acting on finite- or infinite-dimensional
state spaces.

Since this paper is aimed at an interdisciplinary readership that includes pure quantum theo-
rists as well as control engineers, it is well to draw a clear distinction between time dependence of
the system arising solely from influences that are directly under the control of an external, pur-
poseful agent, and time dependence that is intrinsic to the physical system either in isolation or as
embedded in a natural environment. In the accepted terminology of control theory, which we
adopt, the former case defines a time-independent control system, and the latter, a time-dependent
system. The issue of controllability has received considerable attention in the time-independent
situation so identifiede.g., in Refs. 5, 8, 12, and 22whereas relevant results for the time-
dependent case are very limited.

The time-dependent quantum control problem that we shall address is stated formally in Sec.
II. To cope with the unboundedness of operators involved in the Schrdodinger equation, an analytic
domain is introduced in Sec. Ill, such that solutions of the Schrédinger equation can be expressed
globally in exponential form on this domain. In Sec. IV, we define an augmented system in a space
enlarged by one dimension, enabling its description within the framework of time-independent
control systems. Following the pattern of Kunita’s prodf strong controllability of a time-
independent system, we then establish conditions for controllability of this kind for the one-
dimension-reduced system defined by the original time-dependent Schrédinger equation. Three
illustrative applications of the theorem are presented in Sec. V, and our findings are reviewed in
Sec. VI.

Il. PROBLEM FORMULATION

The following quantum control system is derived by applying the geometric quantization
method® to a classical bilinear control systeth>®
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mgmz Hc;(t)@u.(t)H.’(t) o),

(2)
o) = to.

Here, H{(t), and theH/(t) with 1=1,2, ...y, are Hermitian operators on a unit sph&g of

Hilbert space, they(t), I=1,... 1 are restricted to piecewise-constant real functions of time, and
Y(t) denotes a quantum state belongingS@ In physical languaget,, is the unperturbed or
autonomous Hamiltonian, and th are interaction Hamiltonians. It is the coefficieniét) that

are subject to purposeful control by an agent external to the system, within the specified class of
functions. Settingi=1 and dividingH(t) and theH, () by i, we arrive at a more familiar control

form,

0= [Ho(t) + S uOH | w0,

(3
o) = o € Sy,

where theH;(t), i=0,1,2,...r, are skew-Hermitian operators @),. From the standpoint of
systems engineeringy(t) is called the drift term in Eq(3) because no control function directly
modifies its action. Importantly, we depart from previous studies of quantum controllability in
allowing the Hamiltonian operatotd;(t) to their own carry explicit time dependence, which is
assumed to be inherent in the physical structure of the system and therefore beyond the control of
any external agent. The operatdtgt) are the counterparts of the structural matrices involved in
standard formulations of linear control theory.

For the systent3), we know from arguments presented in Ref. 5 that the transitivity of states
on Sy, requires an infinite sequence of control manipulations within the contro{us@j} of
piecewise-constant real functions. Clearly, such a process is strictly meaningless in practice, al-
though under certain conditions it may be possible to find a finite series of control operations that
approach the desired target state arbitrarily closely. Even so, we are naturally directed to consider
the issue of controllability on finite-dimensionasubmanifold of the unit sphei®,, for which in
turn a finite-dimensional tangent space is generateH i) #(t), ... ,H,(t) y(t).

Accordingly, our attention focuses on a finite-dimensional submanibtdS,;, on which the
following dynamics prevail:

20 = {Hom * S uOH |,

(4)
o) =, ) eM, Ot=t,.

Thus, instead of studying controllability dB,, we consider controllability otM CS;,. On the

submanifoldM, the inherited topology 08, still applies; hence it is paracompact and connected.
For system(4), we have available a set of vector fiel@$M) composed of skew-Hermitian

operators oM with Lie algebra defined b@(M)=L{H,, ... ,H,}. LetV be a subset dd(M). The

Lie algebra generated by is denoted byZ (V). The restriction of£(V) to a pointy on M, which

is a tangent subspace ®M,, at ¢, is written as

LV =YY € LV} CTM,, (5

while
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LNV) ={LV)()|ih € M} (6)

defines an involutive differential system. A vector fieXdis said to belong toZ(V) if X(y)
e L(V)(¥) holds for all y e M.

IIl. SELECTING THE DOMAIN

Recognizing that operators in quantum mechanics are in general unbounded, we need to find
a domain on which exponentiations of the operators entering the sydj@onverge. To this end,
we introduce the so-called analytic domain conceived by Nelsargense domain invariant under
the action of the operators in systgi8). The solution of the Schrédinger equation can be ex-
pressed globally in exponential form on this domain, which is also invariant under the action of
the exponentiations of the operatdis

Definition 1l.1: If H is an operator on the state spad€, we call an elementw of H an
analytic vector for H in case the series expansiorerf(Ht)w has a positive radius of absolute
convergence, that is, provided

5 Mol .
n=0 n!

for some $-0.

If H is a bounded operator, then every vectofHnis trivially an analytic vector foH.

The corresponding definition of analytic vectors for a Lie algebra of operators runs as
follows 3%’

Definition 111.2: A vectorw € H is said to be an analytic vector for the whole Lie algel#fa
if for some $>0 and some linear basifH;, ... ,Hy} of the Lie algebra, the series

o

1
2 2 [Hy e H el ®
n=0 "" 1<i,,...j,=d
is absolutely convergent

The concept of analytic vectors is especially useful for our purposes, since for certain types of
unbounded operators they form a dense set in the Hilbert space. In fact, the set of all analytic
vectors for a Lie algebr@ forms an analytic domain in the following serée’

Definition 111.3: Let £ be the Lie algebra generated by the skew-Hermitian operators
Ho, ... ,H, on a unit sphere $ of Hilbert space An analytic domairD, is said to exist for the H
i=0,1,..r, if (i) there exists a common dense invariant subsp®g& H on which the corre-
sponding unitary Lie group G can be expressed locally in exponential form with Lie algeliia
D, is invariant under Gand £, and (iii) on D4, elements of G can be extended globally to all
te R

We now state Nelson’s fundamental theorem, which provides conditions under which a Lie
algebral defined by a set of skew-Hermitian operators can be associated with a unitary@roup
having £ as its Lie algebra.

Theorem 111.1: (Nelson) LeL be a Lie algebra of skew-Hermitian operators in a Hilbert
space’H which have a common invariant dense dom®&iQ Let X, ..., X4 be an operator basis
for L. If T:X'f+ -~+X§ is essentially self-adjoint, then there is a unique unitary group G<in
with Lie algebral. Let T denote the unique self-adjoint extension offfien the analytic vectors
of T are analytic vectors for the whole Lie algebfaand form a set invariant under G and dense
in H.

Accordingly, on the analytic domaif,, the Lie algebra and its unitary Lie group are related
through the familiar exponential formula. The Lie algebra is composed of skew-Hermitian opera-
tors which are vector fields defined dm,N'S,. By property(iii) of the Definition 111.3 of the
analytic domain, these vector fields d,NS,;, are complete. Moreover, owing to the skew-
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Hermiticity of the operator$d; of system(3), the corresponding transformation groups, taking a
given state or, to another state 08, are unitary. This feature guarantees preservation of the
norm of quantum states, as required for the statistical interpretation of quantum mechanics.

In fact, Nelson’s theorem only provides sufficient conditions for the important properties it
yields. With this in mind, we shall assume an analytic donTajnexistswithoutexplicitly impos-
ing the conditions stated in this theorem, a stance also adopted in Ref. 5. This strategy clearly
implies that the existence of such a domain must be established explicitly prior to application of
the controllability results to be derived in the following sections.

We are now prepared to adapt the concept of controllability to problems involving unbounded
operators.

Definition I11.4: For system (3), ilD, exists forL, and if for any ¢, and ¢ € DoN Sy, there
exist control functions 44t), ... ,u,(t), and a time { (respectively Ot;) such that the solution of
control system (3) satisfies(ty) =g, ¥(t)) =, and Y(t) e DoNSy, where p<t=<t;, then the
system is called analytically controllableespectively strongly analytically controllahlen S;
moreover we then say that the corresponding unitary Lie group is analytically transitivg,on S

As has been argued, the more pertinent concept is controllability on the submanitdl,,.

By assumptionM ND, is dense inM, while dim(M ND,)=dimM=m. Denoting the tangent
space oM ND, aty by TM,,=L{Hy, ... ,H,}(#), the tangent bundle of the systé#) is given by
TMN D) =Uyemnp, TMy.

Let R(y) denote the set of all points that are reachable frgnat timet. The setR()
:Ut>toRt(¢) is then reachable frongy at some time greater thap. We say that systerf¥) is
analytically controllable oM if R($)=MND,, Ope MND,, and that the system is strongly
analytically controllable o if R(#)=M N Dy, Ot>ty, Dipe MN Dy,

IV. CONTROLLABILITY OF TIME-DEPENDENT QUANTUM CONTROL SYSTEMS

A. Reformulation as a time-independent augmented system

Most of the methods developed for determining controllability of time-independent bilinear or
nonlinear systenis**®-%!cannot be applied directly to the time-dependent bilinear control prob-
lem studied here, since these approaches rely upon the following propert(&gbe an integral
curve of the time-independent tangent vectostarting from pointe andt € [ty,to+t;], and let
cY;(¢) be an integral curve of the tangent veotdfstarting frome andt e [ty,to+t:/|c|]; then the
integral curvesY(¢) andcY,(¢) coincide. This property holds for all time-independent tangent
vectors, but it generally fails for time-dependent tangent vectors.

However, recognizing that this feature has been instrumental to controllability proofs for
nonlinear systems, we recast the syst@nas a time-independent problem so that it can once
again be exploited. Reformulation of the original problem is accomplished by regarding the time
variablet as an additional parameter in the specification of the system state, supplementing the
state vectory. Thus the state of the extended system is expressed as

t+%>
= _ 9
§<<// (9)

Making the corresponding extension of the manifold, we form an augmented
(m+1)-dimensional manifold defined by

| R
N= MND, |’ (10

whereR is the real line. Next we define augmented vector fighddy

1
Wol8) = L"o(t +1o) Yt + 1) } '
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0
Wi(§) = 11
9 {H|(t+to)lﬂ(t+to)], @D
with [=1,2, ... r. Obviously, thew,, with 1=0,1, ... r, depend on bothand ¢, i.e., theW, now
depend on the statédefined by Eq(9).
The time-dependent control systéf has thereby been reformulated as an augmented system
of time-independent form. Explicitly,

%Q:PWQ+EW®W®ﬁ
o to _ t0
ﬂ@—n—<%w)—<%>- "

Ot=0, Ype MND, EeN,

whereN is then=(m+ 1)-dimensional manifold constructed in E4.0) andM is now viewed as
a one-dimension-reduced manifold of the augmented system. As always, the cajitiplwith
I=1,...r, are piecewise-constant real functions of titne

It is convenient to employ+t, instead oft in definitions(9) and (11), thereby setting the
starting time at zero for the augmented systéf). Since the latter system is time-independent by
construction, this can be done without affecting its trajectory. Thus, if the time for the augmented
system ist, then the time for the original systei) is t+t,. Standard differential equation
techniques can evidently be employed to analyze the behavior of the augmented system on the
manifold N, and the results will reflect the behavior of the original system on manifald

We note peripherally that systefh?) is in a decomposed form in the sense of Ref. 59, where
several theorems were developed for decomposition of nonlinear control systems. However, these
theorems do not specify reachable sets, so they cannot be applied here to obtain controllability
results.

Reachable setR(#7) and R(%) are defined for the augmented systéh2) in just the same
manner as for systert¥). From the work of Huang, Tarn, and Clarkased on the results of
Chow?®? Sussmann and Jurdjevit¢and Kunita**2it is to be expected that the issue of analytic
controllability will hinge on the relationships among certain Lie algebras generated by the vector
fields involved in the control systefd) or its augmented counterpdft?). For the latter problem,

these Lie algebras are specified By=C{W,, ... W,}, B=L{W,, ... W}, and @=£{ad?vovw,l
=1,...r,m=0,... o} By definition, adj}ovv, is built from repeated commutators @f,, present
in A but not, with any and all of theA| present inA or B; clearly,

BCCCA. (13)

For future reference we note particulay that the restriction oB3 to a pointy on N, which is a
tangent subspace diN,, at ¢, is written as

B(y) ={Y()|Y € By CTN,, (14)

and in turn that

B={Bwlye N} (15

is an involutive differential system.
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B. Controllability of the augmented system

We must still face the situation that standard controllability resuits®®*derived for time-
independent systems, cannot be carried over directly to our problem as reformulated in the pre-
ceding section, since derivation of these results employs the vector-space property of the tangent
space. Specifically, it is required that¥fis an acceptable tangent vector, then soYswherec
is an arbitrary constant. But in our case, once the first component of a tangent vector of the
augmented manifold is fixed at unity, it is not possible for bgtrand cY, with c#1, to be
available tangent vectors. However, with the aid of a result of Kuflitae may nevertheless
establish one-dimension-reduced controllability of the augmented system; that is, we may prove
strong analytic controllability of the original system since it is not necessary to control the time
dimension.

First, let us identify certain properties of the reachableRgef) that will be useful in proving
strong analytic controllability.

Theorem IV.1: (References 24 and PFAssume that the Lie algebré is locally finitely
generated, and let(ly) be the maximal connected integral manifoldCofontaining the point;.
Then R(n)Ca?(l(n)), wherea? is the integral curve whose vector field igVFurthermore, the

interior of R(7) with respect to the topology a@’(1(7)) is dense inARn).
In the rest of this section, we systematically develop the principal result of the paper, namely,

under suitable conditions the reachable set of the augmented siieat timet, Iit(n), is equal
to a2(1(7)). We begin by establishing a key relationship between the interior of the reachable set

Iit(n) of the augmented system at timeand the interior of its closure, through the following
lemma.
Lemma IV.2:

int(cl R(7)) = int R(7). (16)

Proof: Let y e int(cl Ieit(n)) and letS(x) be the set of ally’ such thaty is reachable frony’
within time €>0. ThenS.y) is the reachable set within time>0 for the dual control system

2 W + 3 uOWio) | 17)

Theorem IV.1 implies that inB.(y) is dense in cB(x), and intlezt(n) is dense in cﬁt(n). Since
x € ¢l S(x), we know that

¢l S.(x) Nint(cl R(7)) # & (18

and hence that

int S.(x) N'int(cl R(7)) N R(n) # @ . (19)

If £ belongs to the latter intersection, théms reachable fromy using timet, and y is reachable
from £ in elapsed time less than or equaldoTherefore,y is reachable fromy in elapsed time
betweent andt+e. This argument holds for anly>0 and anye>0. Letting e— 0, we conclude

that y is reachable fromy in timet, so y Iit(n). Thus,

int(cl R(7)) C R(7) O int(cl R(7)) C int R(7).

But clearly intR,(%) Cint(cl R(7)) and the statemertf.8) follows.

From the control-theoretic perspective, the drift term is undesirable because no control is
present to influence or remove its effect. It is therefore of strategic value to consider a suitably
modified control system, called the auxiliary system, that will serve as a bridge to an effective
controllability analysis of the augmented system. kgte;, ...,e be unit vectors inR"™*?%; in
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particular, lete=(0,...,0,1,0,...,0 in which only the(i+1)th element is unity and the others
are zero. Denote b/, the set of controlsi(t)=(uy(t), ... ,u,(t)) composed of piecewise-constant
functionsu;(t) taking the valuesy, e, ..., e only. Consider then the control system expressed
in the form

)
% = WO + S uOW®, =7, (20)
|
whereu(t) e U,. The solution of this system may be written as

= k..
at—atk

a{'a{i (21)
Wherek is a positive integer and Wherell is the integral curve ow with i;=0,1,...1, j
. K, andk a positive integer. The tlmetesatlsfyt =0ifi;=0, otherW|set, eR. We denote

by R (77) the reachable set of the auxiliary system corresponding to the totat §mee time zero,
over which the control functiomy(-) is nonzero; the reachable set of the auxiliary system is then

Ii’o(n)—ut>oli?(n) Theorem IV.1 is valid for this control syste?ﬁ.
The followmg notations are convenient:

Expﬁ the group of diffeomorphisms generated by tﬂet eR,i=0,...r, whereait is an
integral curve ofW,

(Exp £),=the semigroup of diffeomorphisms generateddfytzo, and thea{, with te R
andl=1, ...,

(Exp £);=the subset ofExp L), generated bw{t- -a{i, with SIt; - L 0=t.

To clarify the meaning of the last line, we note that when the indexsuch that;=0, we

haveuy=1 (and all the othet;=0), soW, is “turned on” and does play a role as an active vector
field or tangent vector. Conversely, for indicesuch thati; # 0, the factoru, multiplying W in

system(20) vanishes, anilV, plays no role. The sum appearing in the definitior{ie%p £); gives
the total time over whichW is active in the system dynamlcs

From Chow’s theorerfi*®?it is known that the group Exﬁ acts transmvely on the manifold
N when dlm/:{Wo,Wl, ....W,}=dimN, i.e., we know thafa(7)|a e ExpL}—N for any e N.
On the other hand, the reachable set at tinfer the auxiliary systen(20) is R?(n)={a(77)|a

e (Exp ﬁ)t}. (It is to be noted that in the present conteid the total time over which\, has been
active since time zero, which is generally not equal to the actual elapsed time V¢jimoay be
turned off over certain intervals.

Lemma IV.3:

¢l R(n) =l RX(7). (22)

We may gain intuitive understanding of this lemma by analyzing a simple example.
Example:Let us compare the control system

%(;) - (é) “‘(2)' (23)
%(;) ) “°<cl>) ’ ”1<(1))' (24

wherein(ug,u,) € {(0,£1),(1,0)}. Clearly, the first of these corresponds to the augmented system,

and the second to the auxiliary system. ég(tay) and Ii’to( 77) denote, respectively, the reachable sets
of systems(23) and (24), starting from the statey. While stopping short of rigorous argument,

whereinu e R, with the system
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explicit computation will be used to reveal the pertinent relationship betweé}(n)l and

el R(7).

First consider the integral curve

0 0 1\ -
at(ﬂ):<l>tl'(_l>t2'<o>t e Ri(n), (25

and forn=1,2,3,...form a series of integral curve8(z) e Ielt(n) defined by

sin=((g)+nl3)), A}l %)), G @
w7 No 1//4m \\O =1/ tyn \O/ ittty

As n goes tow, we find
Bt(’?)—> 1 tl' _1 tz' 0 t! ( )

that is, B{(7) — ay(7). Henceay(n) e cl ﬁzt(n).
On the other hand, consider

(3 oml0) () () ) r c

3

wherem,, my, e R andt=t; +t,+t5, and construct

= o) ml2), . 2
T 0 tllnlml 1 ty/n ’ ( )

again forn=1,2,3, ... Applying the Baker—Campbell-Hausdorff formula, it is straightforward to
show that

im = (2o )+ E]2.5)] o 2]} =((3)+m{3)).

1

(30)

=((0), %)) o
T 0 t3/n'rnz -1 ty/n (31

and employ the Baker—Campbell-Hausdorff formula to obtain

i at=am ((3)+m %)) S (34 %) -0l 5)}=((2) m %),

3

(32)

Similarly, let

Obviously

1 ~
a?-(o>t -af e R(7), (33)

and we find that
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i) {2l 3, ()l

ThereforeBi(n) e cl Ii’to( 7).

Now let us proceed with the proof of Lemma IV.3, showing first thaIE??(ﬂr;)Ccl IA?t(n)
Consider thaty(7) € Rt(r/) is expressible in the form oi'k 1(17) wheret= El E ]{, -op- With
the guidance of the example above, a sequence of coml.%ae associated with the diffeomor-

phism of this form is constructed as follows. For an arbitrary positive integsuch thatnt,,
>Eij¢o|tj|, wherem is the last subscripit such that;=0, let

2 Lol
#0111
tETrl]) = tm L n . (35)

(n)

Define real numbers,”, g( ordered so that@s”)<52”)$--- <s", by

sV=1t| ifi, =0,
1
==|ty| ifiy#0,
n|1| 1

s, =5 + [t if last j with ij = (36)

=s" +[tj| if other j with i; =0,

=5") +—|t | ifi;#0.
Further, let

u(f=n- sgrit)e,  if s < r<s" andi; # 0,

=0 if §" < r<sg" andij=0, (37)

=0 ifr=g,
whereey, ... g are unit vectors iR". The solutlon,[s’(”)
control u™(- ) may be written

of the system(12) associated with the

Ban =Bk By = R, (39)

where,B‘ 1i is the integral curve of\j if ij=0, or the integral curve dVy+n- sgr(T)W if i;#0,
ie.,

B =(Wo), i ij=0

=(Wp+n- sgr(T)V\/i,)M,n if i #0. (39

We note thatWy+n-sgrin)W; )Iﬂ/n and[(1/n)Wy+sgr(7)W, ] 4 describe the same integral curve
onN, by virtue of the time- invariance property of syst€h?). ObV|0ust,,B|t [— atl asn—«. On
the other hand,
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>l 1 >0l 1
8=t L= - - ]{'¢O}+ - JWm:t. (40)
i

n n

Thus, asn— <« we obtain
Bin(m) — alf- ail(n) = ), (41)

and hencea,(7) e cl IA?{(n). Becausea;(#) is an arbitrary element irﬁ?(n), it follows that
Rt(n)CcI Ri(7), and since th(n) is closed, it follows in turn that th(ﬂ ) Ccl Rt(n)
Next we show th(n )Ccl Rt 7). ConS|derﬁ(77) ceR(7) of the form of,/:?Ck - ,831(77) with

CJj—expuJ(Wo+c W+ +Cf W) andc;= ( . c) Here, c is the control applled t(W| during
time periody;, soc; is the control set apphed M/l, co W, dunng the corresponding time interval
uj, with u; € R* andc e R. For eachﬂ j= e take a]f‘ in the form

n
n_ El 1y Hl r El
@ = | exp N (cjWy) - -~ exp 0 (cWr)exp nWO . (42

Invoking the Baker—Campbell-Hausdorff form§fave write

J

n—oe n—oe

u u o |"
lim o = lim {exp—i(clwl) exp?]l(CJTWr) : exp#Wo}

2
ui 1
= lim expluj(wo+cjlwl+ oW+ X Zhelelw, ]+O(—2>}
N o<pg=<r 2N

= expu;(Wo + GiWy + -+ + W) = BﬁlJ (43)
Constructingay- - aj € I:\’?( 7) we then obtain

lim ag--- () = Bl B(m) = B(n), (44)

n—oo

so thatB(n) e cl Ii’?(n). SincepB(n) is an arbitrary element dARt( 7), We arrive au?et(n) Ccl ﬁ?( 7)

and hence df?((n)gcl I:x’?(n). We conclude that cht(n):cI I:x’?(n).

The timet labeling these reachable sets is to be interpreted as the time interval over which the
control operation represented Wy, is in effect, or “turned on.” In fact\\, is necessarilyalways
“on” in the augmented system, so the total time elapsing in the augmented system is the same as

the time interval over whicW, is turned on; hence the reachable sf&tsorresponding to these
two times are identical. Of course, the same coincidence does not hold for the auxiliary system.
However, this is immaterial, since the auxiliary system was only introduced to exploit the key

relationship(22). Further, we may observe that the reachablel“-@ét;) of system(20), with the
controlu(t) =(ug(t), ... ,u,(t)) assuming value&e,, ey, ..., =€), is the same as the corresponding
set for which the controli(t) assumes the values, £cey, ..., tce, with ce R*.

Since we can take advantage of the reg2® in this manner, it is clearly preferable to study
the properties oRY(7). The auxiliary system is easier to control, and the state at tican be
expressed as a composition of integral curve®/pin the same style as E(R1). To do so, let the
set of subscriptg with i;=0 be written as{p,...,q,s} in increasing order, of course witt
+: - +t,+ts=t. Then we have
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o= (ol aph) (@ - ait-ady) - (af - a2 a) (@ ol )
) (a?Hq ’ aitg:g ’ a(—)(tsﬂq)) T (a?+tq+~-+tp ’ aitg:i ’ a(—)(ts+tq+- ~~+tp)) T (a&+tq+. Sy a’ii
O(t gt ) a’t Bo(atk) ﬁo(aitSH) ﬁts(a;:j)
',Bts(at::z) “Brat (at “Brat (atq 2) ,Bt(aitgj) e ,Bt(aiti) . a?, (45)

Where,Bt('y):a?-’y-a_t. This anaIyS|s stimulates us to define the following three sets of diffeo-
morphisms:

Expfa’:the group generated bey't, teR, I1=1,...r, where a't is the integral curve whose
vector field isW,,

F.= Ule{ﬁtk('yk) s 'Bt1(71)|7j e Expf%,Ostks e Sty =t
G, = Uokczl{Btk(yk) C e ',3t1(71)|7i € ExpB,mintJ =0, max t; = t}.
J

By construction,

Ro(7) =Fial(7). (46)

We observe thak, is a semigroup of diffeomorphisms included in the gré@pwhose properties
are established in the following lemma.

Lemma IV.4: First, the set Gs a group. Furthermore, iflim @(n):n—lzm holds for all
e N, then {a("/])|aeGt}:a?(l(agt(n))) is true for all %, where (v) is the maximal connected
integral manifold containingr e N, whose associated Lie algebrafifs

Proof: For a;,a,e G, it is easily seen thatal ar,e G, Writing aeG; as «
=B, (%) By (7). we also see that =B, (") -+ - B, (%"). ThereforeG, is a group.

Now, denote the sefa(7)|ae G by Bt(r]) It is straightforward to show thafi) B(7)
=B(&) if £eBy(n) and (i) B (n)NB(H=D if £¢B(n).>* We can demonstrate thdiii) »
e int B(7) under the topology of(I(a%(7))) as follows. By definitionR%(7) is the reachable
set for the systen(20). By the same reasoning that leads to E#f), we haveli?(a?t( 7)) CBi(7n)
becausdi’?(a 6(1;)) Fi at —t(77) Sinceﬁ?t(a_t(n)) has a nonempty interior with respect to the
topology of a?(1(a%(7))) by Theorem IV.1, we see thd(») contains a non-null open sét.
Given e U, choosea e G, such thata(7)=u. Sincea is a continuous mapy *(U) is an open
set containing.

In fact, @ (U) is included inB,(7). We know thaiG, is a group, saxr ! € G, if @ € G,. Letting
{ e a(U), we can findy € U, such thaty=a({) € U CB,(#) and alsoy € B,({). By properties(i)
and (i), we obtain y e B;({)NBy(n) #©. Hence By({)=B(n) and {eBy(n). Accordingly,
a”1(U) CBy(7) and 5 e int B{(7) under the topology 0&X(1(a’(7))).

The properties{i)—(iii) imply that Bt(77) is maximally connected and open under the topology
of at(l(a—t(ﬂ))) Thus we have3,(#n) = at(|(a—t(77))) for all t>0 and#n e N. In addition, it is seen
that Bi(#n)= (I( —t(ﬂ))) (MmD ) The proof of Lemma V.4 is now complete.

Based on Lemmas IV.3 and V.4, we could conclude ttht(Qt (7)= at(l(a_t(ﬂ))) if we

could establish thdE;=G,. The following proof takes a slightly different path. Let EBp:ienote
the group of diffeomorphisms generated by all one parameter groups of transformations with

respect to vector fields belonging B The set?t and’é—; are defined in the same way Bsand

G, i.e., via Eq. (17) but with ExpB entering in place of Ex;lii
Obviously, FtCFt and GtCGt hold. We shall now establish thE’g Gt
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Lemma IV.5: Let X be a complete vector field belonginé tand lety; be the one-parameter
group of transformations generated by Xssume[B C](n)CB(n) is satisfied for all. Then

dBy(v) is an isomorphism betweeﬁs\(r;) and B( (B () for eachn, and F R= Gt is true for all
t>0.

Proof: SinceBy(y,) 'Bs(ytz):Bs(7t1+t ) holds, we have ﬁs()’t +t,) dﬂs()’tl) dBs(n, ). Hence it
is enough to prove the lemma’s assertion for sufficiently srhhé\ILet \ S—d,BS(yt)Z whereZ

e B. For each value o, B(y) with t € Ris the one parameter group of transformations generated
by da? X, while

Y,
% = - dBy(n[da X, Z] = dBy( W[Z,dad X]. S

Therefore[Z,da? X] e B by assumption, becausedX belongs 0= {C(m)| 7 e N}.B45

Now we fix a point; of N and a value o R. LetZ?, ... ,Z" provide a basis oB in an open
neighborhoodJ of 7. Then there exis€™ functionsf;; on U such tha{Z', da X]= EJ” 1f”Z holds
in U. Let € be a positive number such thg@(y)(7) e U for |t|<e noting that B4y, is a
continuous map of and By yo)(7)=7. Then B y[Z',dad X]= =2, f; dBg( Y2 for |t| <e. Set
Vi(t)=dBy(n)Z. ThenVi(t), with |t| <, satisfies the Ilnear differential equation

n

avicy EkaVk(t)j— N (48)

dt

The solutioan(t) can be written a®/!(t) ==}, 0;(t)V¥(0), where(gy) is a regular matrix. Also,

we havev(0) e B(7) andVA(t) € B(By(1)(7). The map () B(7)— B(B{)(7) is bijective
because(g) is a regular matrix. Moreover, &l(y;) retains the structure of the Lie bracket

with respect to dg X. This establishes thatgd(y,) is an isomorphism betweeﬁi(n) and
B(Bs(y)(n) for || <e. Sincey, =pBya) y-Ba)* (with s fixed) is a one-parameter group of

transformations generated bBgda)X and g3(a)X belongs tdAS’, we knowy, (with t € R) belongs

to ExpB. But Expl%’ is generated by all such;, so we arrive at the relationship

Bi(a)(ExpB)Bia) L CExpB for a € B. (49)
Let « be any element o¢~3t, written as

“:Btk(?’k)' 'Btl(yl): t=0, m|aXt| =t (50

By induction we can prove that there exigt, ...,y of ExplAS’ and 0s s <---<s;=t such that

B () By (v =Bs (W) - - Bs (). (51)

Here we only consider the cake 2. If t,<t,, there is no need for proof. Suppase-t;, and set
ts=t,~t;. Then we may write8, (y2) - By, (v1) =B (B,(v2) - v1). By relationship(49), there exists

7, of ExpB such thatBe,(v2) - v1-Bi(v2) =1, .., Be(v2) - v1=71- B, (72). This implies

B, (v2) * B, (v) = B (Be(v2) - v1) = By, (71 - Br(72) = B, (Y1) - Br(72)- (52

More detailed proofs may be found in Refs. 54 and 66.

Theorem IV.6: Suppose thadim@(n):n—lzm holds for all e N, and suppose that
[fﬁ &](n)cl%(n) holds for all 5. Let I(#) be the maximally connected integral manifold contain-
ing » whose corresponding Lie algebradls Thena(I(7))= Rt(77)
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Proof. Clearly we havdaa?(7)|a e F} C{aa(7)|a eTft}. In fact, the closures of these two
sets coincide. SincE,=G;D G, it is seen that

ol R(7) = caaf(n)]a € F
= cllaal(y)|a  Fy
=c{aad(n)|a e G} (by Lemma IV.5
=cla(1(a(e(())) (by Lemma IV.9
=cla(1(n). (53)

But Lemma IV.3 tells us that @t(ﬂ) cl Rt(77) so we obtain th(n) cl at(l(n)) From
Lemma IV.2 we know that mRt(r;)—mt(cI Rt(ﬂ)) which implies mRt(n) (I(n)) under the

topology of a/t(l(n)) Finally, Rt(n)Ca?(I(‘r])) by Theorem IV.1, and we arrive th(n)
=a((I(n)).

C. Strong analytic controllability of the actual system

In Sec. IV B, we investigated the reachable set at timoé the time-independent augmented
system formed by enlarging the state space to include an extra dimension corresponding to the
variablet. Now we return to the original quantum control systétto discover conditions under
which it is strongly analytically controllable.

Theorem IV.7: For the control system defined by Eq. (4), let

B(t) = L{H(v), ... H/(O},

By (1) :—[Ho(t>,6(t>]+§ﬁ(t), e
(54
BA(0) =~ [Ho(0) Bra 0]+ 5B, a0, ..

C(t) = L{B(1),By(1), ... Bu(t), ...}

Supposaim C(t)(t)=m holds for alliye MND,, and[B,C](t) C B(t) is the case for all.tThen
the time-dependent quantum control system (4) is strongly analytically controllable
Proof. We apply Theorem IV.6 to the augmented control systé&). To do so, we need to

examine the Lie aIgebraB andC for this problem For economy of expression, we sometimes
omit thet argument in the following steps. Fét we readily find

A 0 0 0 0
B= LW, .. ’Wf}‘ﬁ{(m(t))‘ '(Hr(t))}w(t) - (ﬁ{Hl(t). ,Hr<t>}>"”“) = (B(tw/(t) )

(55)

Next let us construcf. For any

(56)

0 ~
W) =Wt ¢) = (H(t)¢(t)) =B,

where n e N, we have
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1 0
m%W=N@WF[QmmmJ(HWW“ﬂ

foso) L
_ Hmﬂﬂ< 1 )_ mmwn( 0 )
at, ) Ho(t) (1) at, ) H(t) (1)
0
- {—[HO,H] +aH/at}"”(t)' 57
Similarly,
ady, B= (— [Ho, 5] + aB/at)"”(t)' (58)

SettingB,=—[Hy, 8]+ B/ dt, we may then derive

0

—[Ho,B,] + dB,/ét ) w. 59

- - 0
acﬁ\lo B= adNO ad/vo B= ad/V(J( Bl¢(t) ) = (

Continuing in this fashion with

Bn=—[Ho,By-1] + dBy-1/dt (60)
forn=2,3,..., we find
0 0
2, 5= —[Ho,Bn—1]+%n_1 lﬂ(t):(Bntlf(t)) (oD
Thus
C=L{B,ady B, ....ad, B, ...}
(R RPN O L
ST \BOWO ) \By gty ) \B 0ty )
_< 0 )-( 0 ) 62
A\ L{B(1),B(1), ... By1), ... pt) ) \CHwt) ) (62)
From the assumption tha3,C](t) C B(t), O(t), we have
[B,Clt) (1) C B y(v), O (1). (63)

Hence

[< : ) ( y )} ( ; )
o) \ew) | € sy ) (64)
so that[B,C](7) CB(x), One N.

By assumption, din@(t)#(t)=m, 0 ¢ e M N D4, which implies that dimf?(n)=m=n—1 holds
for all 7eN. According to Theorem IV.6,22(1(7))=R(7),0t>0, and sincea’(1(a®(7)))
. +
:(MAODA), we Obtalna?(l(n))Z(th%A).
Let m:N— M N D4 be the projection map that in effect annihilates the time dimension of the
augmented problem corresponding to the varidblend brings us back to the original control
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system. In fact, the extension and projection maps mediate a one-to-one correspondence between
the states of the augmented system and those of the original system. The simplicity of this
relationship stems from the fact thiais a strictly increasing variable.

To reiterate our strategy: We have dealt with the explicit time dependence of the original
control problem by adding an extra dimension to its state space, such that, as viewed in the
augmented space, the augmented control problem is time independent. After analyzing controlla-
bility within this extension, the results are projected to the original space by removing the extra
time dimension, recovering the exact states of the original system.

Accordingly, 7(a?(1(5))) =M N Dy, while wﬁt(n):Rmo(zp), O¢e MND, andOt>0. Hence
R(#)=MND,, Ot>t, and the systend) is strongly analytically controllable okf.

We may note that upon introducing the Lie algebd#t)=L{Hy(t),H(t), ... H (D)}, it is
readily established from properti3) that BCCC A for all t.

To complete the formal analysis, we state two corollaries that devolve immediately from
Theorem IV.7.

Corollary 1V.8 From the operators Hentering control system (4), form the Lie algebigs
=L{H4,...,H,} and C:/J{B,aq.,oB, ,aci,ol’j’, ...}. Suppose that the Hlo not possess explicit
dependence on the time that dim Cy(t)=m holds for all € MND,, and that[B,C]CB is
satisfied Then the time-invariant system (4) is strongly analytically controllable

Corollary I1V.9: For the control system (4), form the Lie algelsé)=L(H4(t), ... ,H,(t)), and
suppose thatlim B(t) (t) =m holds for alliye MND,. Then system (4) is strongly analytically
controllable

The latter corollary follows becau$#,C](t) C B(t) must hold, once dinf(t) (t)=m.

V. EXAMPLES OF STRONG ANALYTIC CONTROLLABILITY

In this section, we present three examples that meet the criteria for analytic controllability
enunciated in Theorem IV.7. The examples selected are relevant to problems of interest in math-
ematical physics or engineering applications of quantum mechanics.

Example 1The strong analytic controllability theorem can be applied to the simple degener-
ate parametric oscillator, a problem of importance in physics and engineering. Introducing an
appréJYpriate effective Hamiltonian allows the corresponding control system to be written in the
form

i %d/ = { w(t)a'a+ %x(t)[e‘z‘ “(ah?+e” “’taz]} 2 (65)

Herea' and a represent, in turn, the creation and annihilation operators of the pump mode of
frequencyw(t), while x(t) is the time-dependent coupling function related to the second-order
nonlinear susceptibility of the pumped medium. We may consiglér and x(t) as control func-
tions playing the role of the, in Eq. (4), since they are real and can be adjusted to piecewise-
constant functions of timg outside the system itself.

Following Refs. 68-71, we define the operators

K.=3@"? K.=3a Ky=3(@@a+aa), (66)

which satisfy the commutation relations of U, 1), thus

[KoKel= £Ks [K, K== 2Ks. (67)

Setting
HO =- iKo, (68)
Hy= = e 20K, + 2, (69)
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Hp = 37K, - K], (70

the control systent65) may be written in the more familiar form

J
i [w(Ho + x(OH1 (D) ]y (72)
The skew-Hermitian operatots,, H;, andH, satisfy the commutation relations

[Ho,Hil=-H,, [HoHzl=H;, [Hy,Hpl=Ho. (72

We observe that the syste(il) does not have a drift term in the usual sense, because the
factor w(t) can be manipulated externally. We also see immediately thHatB=C
=/L{Hy,H4,H,}, and the second condition of Theorem IV.7 is obviated. In additigrhas eigen-
vectors|mk, with m=0,1,... andk=1/4, 3/4,which span an analytic domaiR,.°>"* Conse-
quently, we can choose a manifdidl such that dinCy¢=dim M, Oy e DoN M. All conditions of
Theorem IV.7 being met, the systei®5) is strongly analytically controllable ol.

Example 2 Defining Q:iat+axlxl+axzxz, the Schrédinger equation for a free particle moving
in two spatial dimensions may be expressed simplyQas-0. Determination of the maximal
symmetry algebra of this equation leads to the following set of nine operators, which form the
basis of a nine-dimensional complex Lie aIgeBZra:

K2 == tzﬁt - t(Xlé’Xl + XZé’XZ) - t + (|/4)(X§ + Xg), K_2 = o"t, P] = 0)(] y
(73)
Bj=- t&xj +ix;/2, J= X10x, = Xa0x, E=0, D =X1d +Xpdx, + 2tg, + 1,

with j=1,2. Of immediate concern is the real Lie algebra spanned by this basis, i.e., the
Schrodinger algebra, which has, as alternative basis, the opeBtoRs, and E (yielding the
five-dimensional Weyl algebyaplus the operatod and the three operators defined by=D,
L,=K,+K_,, andL3z=K_,—K,. The pertinent nonvanishing commutators are specifiéa by

[LiLo]==2Ls [Lali=2L, [Lpls]=2L;, [Ly,Bj]=Bj, [Li,PJ=-Pj,

[P]!J] = (_ 1)j+1pll [BJIJ] = (_ 1)j+lB|1 [Lz,B]] == P]l [L3! BJ] == P]! [LZ! PJ] = B],

(74)
[L3,Pj]=—Bj, [Pj,Bj]zE/Z,
wherej, 1=1, 2,j#I.
Now we consider the controllability of the system
J
al//: [Lo+ up(HLy + Up(t)Lg + us(t) Py + Uy(t) ] (75)

In this case there is a time-dependent drift term in the vector field driyinghe relationg74)
imply the equalitiesB=C=,L{L,,L,,L3,P;,P5,B;,B,,J,E}, while the required analytic domain
D, is furnished by the span of the eigenfunctiosis,, of L;. These take the explicit, time-
dependent forrif

Yom= (2mn+Llon m!)_llzexdi m(m+n-1)/2]

y exp{ (w2 +0d)(L-ivy) ]<vg+ i )<m+“>/2 . Hi02/\DH(02\2)
4 . 1

(76)

U3_| U3_|

where x;=v1(1+v3)Y?, x,=v,(1+v3)Y?, andt=vs. It follows as before that the syste(i5) is
strongly analytically controllable.
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Example 3A quantum control system with position-dependent effective mas&@Ax) ™! has
been described by the time-dependent Schrodinger eqlfation

igzﬂ: [iBlg+ us(t)A(t) 1ol - +iuy(t)Clep, (77)

whereB, C e R, andA(t), is a real function of time but in general not piecewise constant. The
operatord, andl,, which are independent of time, provide a basis for ar{1SW) algebra, and
have the concrete realization

I_==0, lo=xd+1, |,=x%0+2x, (78

which satisfies the commutative relations

[lole]= £l [I1]=- 2. (79

This effective-mass problem arises in the study of semiconductor heterostructures and, more
generally, of inhomogeneous crysté‘fﬂn the semiconductor application, the effective mass of a
carrier depends spatially on the graded composition of the semiconductor alloys used in the barrier
and well regions of the microstructurés.

The wave functions of the stationary states of Ety) can be written as

1 p{ ! ! 1
Pe(t,X) = = expy - iEJ B(o)do + J [— C(o) - —B(O'):|d0'
N2 0 0 2

t t
X exp(— ay(t) (Xdy + d) )X E2= i_ expy — iEJ B(o)do + f {— C(o)

/ 0 0
1
=3 B(o) ] do}
—iE-n-1/2

V2w
- 1 \? X
xEH(iB(t)E+—+I) [-a()]" X ——. (80)
n=0 1=0 2 n!
These eigenfunctions span the analytic domain relevant to Theorem IV.7.
Let us define

H0:B|0+ Uz(t)c, le_iA(t)Iol_, (81)

where we takeu,(t)=—B/2C. Equation(77) can be recast as the control system,

2= THo+ t(OH,1Y. (82)

Here the drift term is time independent. Using the commutation relati@ds we obtain
[Ho,H;]=—-BH,. Obviously, B=CC A, so[B,C]=B. Choosing a manifold such that diniv
=dim Cy for all ¥+ M, we are assured that systdiiV) is strongly analytically controllable.

VI. CONCLUSIONS

In this paper, we have formulated the time-dependent quantum control problem and studied its
controllability. Acknowledging the unbounded nature of operators commonly involved in quantum
control systems, our analysis has been predicated on the existence of an analytic%omain
which exponentiations of such operators are guaranteed to converge. Within this framework, we
have extended the established treatment of time-independent quantum control problems by intro-
ducing an augmented system described in a state space that is enlarged by one dimension, yet
embodies the true dynamics of the original system. With the aid of techniques and results devel-
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oped by Kunite**® we are able to explicate the one-dimension-reduced controllability of the
augmented system. Projection onto the original state space then yields a proof of the analytic
controllability of the original time-dependent quantum control system, under conditions similar to
those required in the time-independent case. The theorem so established has been illustrated with
examples drawn from mathematical physics and systems engineering.
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