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The question of controllability is investigated for a quantum control system in
which the Hamiltonian operator components carry explicit time dependence which
is not under the control of an external agent. We consider the general situation in
which the state moves in an infinite-dimensional Hilbert space, a drift term is
present, and the operators driving the state evolution may be unbounded. However,
considerations are restricted by the assumption that there exists an analytic domain,
dense in the state space, on which solutions of the controlled Schrödinger equation
may be expressed globally in exponential form. The issue of controllability then
naturally focuses on the ability to steer the quantum state on a finite-dimensional
submanifold of the unit sphere in Hilbert space—and thus on analytic controllabil-
ity. A relatively straightforward strategy allows the extension of Lie-algebraic con-
ditions for strong analytic controllability derived earlier for the simpler, time-
independent system in which the drift Hamiltonian and the interaction Hamiltonian
have no intrinsic time dependence. Enlarging the state space by one dimension
corresponding to the time variable, we construct an augmented control system that
can be treated as time independent. Methods developed by Kunita can then be
implemented to establish controllability conditions for the one-dimension-reduced
system defined by the original time-dependent Schrödinger control problem. The
applicability of the resulting theorem is illustrated with selected examples. ©2005
American Institute of Physics.fDOI: 10.1063/1.1867979g

I. INTRODUCTION

Over the last two decades, quantum control has played an important part in theoretical and
experimental progress toward the realization of laser control of chemical reactions and the devel-
opment of quantum computers.1–13 Essential to this contribution has been the integration of con-
cepts and mathematical results from control engineering with the fundamental principles of quan-
tum theory.

Geometric control, a treatment of differential equations rooted in differential geometry, uni-
tary groups, and Lie algebras, provides a natural mathematical basis for quantum control theory.
Explicitly or implicitly, its elements14 pervade the manipulation of quantum states in both tradi-
tional and novel technologies. Indeed, the field of nuclear magnetic resonancesNMRd is largely
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concerned with geometric control of collections of interacting nuclear spins.12,15–17 Geometric
control is also a key ingredient in the theory of quantum computation, figuring prominently in the
works of Lloyd,18 Deutsch, Barenco, and Ekert,19 Akulin, Gershkovich, and Harel.20

In particular, Lloyd18 was among the first to establish that almost all quantum logic gates are
universal. More precisely, if one has available a gate that can operate on two qubits, plus a
single-qubit operation, then an arbitrary unitary transformation on the variables of the system can
be performed with arbitrary precision by implementing a finite sequence of local operations.
Clark21 and Ramakrishnaet al.22 and Ramakrishna and Rabitz23 called attention to the close
relationship between open-loop geometric quantum control methods and the application of quan-
tum logic gates.18,19

Following Ref. 23, let us consider the differential system

dXstd
dt

= AXstd + o
i=1

m

BiXstduistd, Xs0d = I , s1d

which arises both in quantum computing and molecular control. Here,X is aN3N unitary matrix
sI being the corresponding identity matrixd, the matricesA and Bi, i =1, . . . ,m are N3N skew-
Hermitian, and the functionsuistd are controls. This equation is the law of motion of the evolution
operators which govern time development of theN-dimensional vector representing a pure state of
the system in itsN-dimensional Hilbert space. A necessary and sufficient condition fors1d to be
controllable is that the set of all matrices generated byA, Bi, i =1, . . . ,m, and their commutators
si.e., the Lie algebra generated byA andBid equals the set of allN3N skew-Hermitian matrices.
Additionally, when this condition is met, anyX can be attained through some choice among the
controlsuistd restricted to piecewise-constant functions of time. In fact, the formulation adopted by
Lloyd18 in his universality proof corresponds to the special caseA=0 andm=2 of systems1d.
Already in the 1970s, Sussmann and Jurdjevic24,25 applied Lie-group theory to obtain rigorous
results on controllability for finite-dimensional control problems corresponding tos1d.

Quantum computation has mostly concerned itself with the manipulation of discrete systems
with finite-dimensional state spaces. However, the fundamental quantum observables representing
position and momentum, and functions thereof, are continuous in nature. In view of recent devel-
opments in quantum error correction26–28 and quantum teleportation29,30 of continuous variables,
the potential of quantum computation over continuous variables warrants serious investigation,
thus reopening issues of controllability on infinite-dimensional Hilbert spaces. Continuous quan-
tum computers may in fact be able to perform some tasks more efficiently than their discrete
counterparts.

As early as 1983, Huang, Tarn, and ClarksHTCd5,31 proved a basic theorem on strong analytic
controllability of quantum systems. This theorem explicitly embraces the case of quantum systems
whose observables are continuous quantum variables acting on an infinite-dimensional state space,
but the essential finite-dimensional results may be extracted as special cases. Because of the
difficulties caused by infinite dimensionality and the unboundedness of operators, an analytic
domain in the sense of Nelson32 was introduced to deal with domain problems5,31 and maintain
key features of the application of Lie algebraic methods to finite-dimensional problems.

Infinite-dimensional control systems have been widely if not systematically studied outside
the quantum context. Brockett14 addressed the problem of realization of infinite-dimensional bi-
linear systems. Sakawa33 introduced a method for design of finite-dimensionalH` controllers for
diffusion systems with bounded input and output operators by using residual model filters.
Keulen34 designed infinite-dimensionalH` controllers for infinite-dimensional systems with
bounded input and output operators by using the solutions to two kinds of Riccati equations in an
infinite-dimensional space. Based on gap topology, Morris35 constructed finite-dimensionalH`

controllers for infinite-dimensional systems with bounded input and output operators. Morris36

also showed that approximations of Galerkin type can be used to design controllers for an infinite-
dimensional system. Costa and Kubrusly37 derived necessary and sufficient conditions for exis-
tence of a state feedback controller that stabilizes a discrete-time infinite-dimensional stochastic
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bilinear system and ensures that the influence of the additive disturbance on the output is smaller
than some prescribed bound. In Ref. 38, optimizability and estimatability for infinite-dimensional
linear systems are investigated; also, a theorem on the equivalence of input-output stability and
exponential stability of well-posed infinite-dimensional linear systems is established. In Ref. 39,
the Hilbert-space generalization of the circle criterion is used for finite-dimensional controller
design of unstable infinite-dimensional systems. There is also literature on absolute stability prob-
lems and open-loop stability problems in infinite-dimensional systems.40–44 In addition, the spec-
tral factorization problem plays a central role in designing feedback control for the linear quadratic
optimal control problem in infinite-dimensional state-space systems.45–48 In contrast to this body
of work, very little has been published on controllability for time-dependent infinite-dimensional
quantum control systems.

In the microscopic world ruled by quantum mechanics, most interesting phenomena involve
change, and all real-world quantum systems are influenced to a greater or lesser extent by inter-
actions with their environments. The environment changes with time, so the Hamiltonians used to
describe these open quantum systems are explicitly time dependent, as in Refs. 49 and 50. Tailored
time-dependent perturbations are used to improve system performance49 in high-resolution NMR
spectroscopy, where versatile decoupling techniques are available to manipulate the overall spin
Hamiltonian.16 Colegrave and Abdalla studied quantum systems with a time-dependent mass to
investigate the field intensities in a Fabry–Perot cavity.51 They suggested possible applications to
solid-state physics and quantum field theory.52 Remaud and Hernandez53 found that a time-
dependent mass parameter offers a means of simulating input or removal of energy from the
system. Implementation of controls on these time-dependent quantum systems requires guidance
from mathematical studies of controllability for time-dependent Hamiltonian operators. Although
the HTC theorem deals with controllability in infinite-dimensional Hilbert space, it is restricted to
time-independent operators. This paper explores a more general case. We seek an extension of the
HTC theorem that is applicable both to time-independent and time-dependent quantum systems, as
well as to systems with discrete or continuous operators acting on finite- or infinite-dimensional
state spaces.

Since this paper is aimed at an interdisciplinary readership that includes pure quantum theo-
rists as well as control engineers, it is well to draw a clear distinction between time dependence of
the system arising solely from influences that are directly under the control of an external, pur-
poseful agent, and time dependence that is intrinsic to the physical system either in isolation or as
embedded in a natural environment. In the accepted terminology of control theory, which we
adopt, the former case defines a time-independent control system, and the latter, a time-dependent
system. The issue of controllability has received considerable attention in the time-independent
situation so identifiedse.g., in Refs. 5, 8, 12, and 22d; whereas relevant results for the time-
dependent case are very limited.

The time-dependent quantum control problem that we shall address is stated formally in Sec.
II. To cope with the unboundedness of operators involved in the Schrödinger equation, an analytic
domain is introduced in Sec. III, such that solutions of the Schrödinger equation can be expressed
globally in exponential form on this domain. In Sec. IV, we define an augmented system in a space
enlarged by one dimension, enabling its description within the framework of time-independent
control systems. Following the pattern of Kunita’s proof54 of strong controllability of a time-
independent system, we then establish conditions for controllability of this kind for the one-
dimension-reduced system defined by the original time-dependent Schrödinger equation. Three
illustrative applications of the theorem are presented in Sec. V, and our findings are reviewed in
Sec. VI.

II. PROBLEM FORMULATION

The following quantum control system is derived by applying the geometric quantization
method55 to a classical bilinear control system:31,56
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i"
]

]t
cstd = FH08std + o

l

ulstdHl8stdGcstd,

s2d
cst0d = c0.

Here, H08std, and theHl8std with l =1,2, . . . ,r, are Hermitian operators on a unit sphereSH of
Hilbert space, theulstd, l =1, . . . ,r are restricted to piecewise-constant real functions of time, and
cstd denotes a quantum state belonging toSH. In physical language,H08 is the unperturbed or
autonomous Hamiltonian, and theHl8 are interaction Hamiltonians. It is the coefficientsulstd that
are subject to purposeful control by an agent external to the system, within the specified class of
functions. Setting"=1 and dividingH08std and theHl8std by i, we arrive at a more familiar control
form,

]

]t
cstd = FH0std + o

l

ulstdHlstdGcstd,

s3d
cst0d = c0 P SH,

where theHistd, i =0,1,2, . . . ,r, are skew-Hermitian operators onSH. From the standpoint of
systems engineering,H0std is called the drift term in Eq.s3d because no control function directly
modifies its action. Importantly, we depart from previous studies of quantum controllability in
allowing the Hamiltonian operatorsHistd to their own carry explicit time dependence, which is
assumed to be inherent in the physical structure of the system and therefore beyond the control of
any external agent. The operatorsHistd are the counterparts of the structural matrices involved in
standard formulations of linear control theory.

For the systems3d, we know from arguments presented in Ref. 5 that the transitivity of states
on SH requires an infinite sequence of control manipulations within the control sethulstdj of
piecewise-constant real functions. Clearly, such a process is strictly meaningless in practice, al-
though under certain conditions it may be possible to find a finite series of control operations that
approach the desired target state arbitrarily closely. Even so, we are naturally directed to consider
the issue of controllability on afinite-dimensionalsubmanifold of the unit sphereSH, for which in
turn a finite-dimensional tangent space is generated byH0stdcstd , . . . ,Hrstdcstd.

Accordingly, our attention focuses on a finite-dimensional submanifoldM ,SH, on which the
following dynamics prevail:

]

]t
cstd = FH0std + o

l

ulstdHlstdGcstd,

s4d
cst0d = c0, cstd P M, ∀ t ù t0.

Thus, instead of studying controllability onSH, we consider controllability onM ,SH. On the
submanifoldM, the inherited topology ofSH still applies; hence it is paracompact and connected.

For systems4d, we have available a set of vector fieldsOsMd composed of skew-Hermitian
operators onM with Lie algebra defined byOsMd=LhH0, . . . ,Hrj. Let V be a subset ofOsMd. The
Lie algebra generated byV is denoted byLsVd. The restriction ofLsVd to a pointc on M, which
is a tangent subspace ofTMc at c, is written as

LsVdscd = hYscduY P LsVdj , TMc, s5d

while
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L̃sVd = hLsVdscduc P Mj s6d

defines an involutive differential system. A vector fieldX is said to belong toL̃sVd if Xscd
P L̃sVdscd holds for allcPM.

III. SELECTING THE DOMAIN

Recognizing that operators in quantum mechanics are in general unbounded, we need to find
a domain on which exponentiations of the operators entering the systems4d converge. To this end,
we introduce the so-called analytic domain conceived by Nelson,32 a dense domain invariant under
the action of the operators in systems3d. The solution of the Schrödinger equation can be ex-
pressed globally in exponential form on this domain, which is also invariant under the action of
the exponentiations of the operatorsHi.

Definition III.1: If H is an operator on the state spaceH, we call an elementv of H an
analytic vector for H in case the series expansion ofexpsHtdv has a positive radius of absolute
convergence, that is, provided

o
n=0

`
iHnvi

n!
sn , ` s7d

for some s.0.
If H is a bounded operator, then every vector inH is trivially an analytic vector forH.
The corresponding definition of analytic vectors for a Lie algebra of operators runs as

follows.32,57

Definition III.2: A vectorvPH is said to be an analytic vector for the whole Lie algebraL
if for some s.0 and some linear basishH1, . . . ,Hdj of the Lie algebra, the series

o
n=0

`
1

n! o
1øi1,. . .,inød

iHi1
¯ Hin

visn s8d

is absolutely convergent.
The concept of analytic vectors is especially useful for our purposes, since for certain types of

unbounded operators they form a dense set in the Hilbert space. In fact, the set of all analytic
vectors for a Lie algebraL forms an analytic domain in the following sense.32,57

Definition III.3: Let L be the Lie algebra generated by the skew-Hermitian operators
H0, . . . ,Hr on a unit sphere SH of Hilbert space. An analytic domainDA is said to exist for the Hi,
i =0,1, . . .r, if (i) there exists a common dense invariant subspaceDA,H on which the corre-
sponding unitary Lie group G can be expressed locally in exponential form with Lie algebraL, (ii)
DA is invariant under GandL, and (iii) on DA, elements of G can be extended globally to all
tPR+.

We now state Nelson’s fundamental theorem, which provides conditions under which a Lie
algebraL defined by a set of skew-Hermitian operators can be associated with a unitary groupG
havingL as its Lie algebra.

Theorem III.1: (Nelson) LetL be a Lie algebra of skew-Hermitian operators in a Hilbert
spaceH which have a common invariant dense domainDA. Let X1, . . . ,Xd be an operator basis
for L. If T=X1

2+¯ +Xd
2 is essentially self-adjoint, then there is a unique unitary group G inH

with Lie algebraL. Let T̄ denote the unique self-adjoint extension of T. Then the analytic vectors

of T̄ are analytic vectors for the whole Lie algebraL and form a set invariant under G and dense
in H.

Accordingly, on the analytic domainDA, the Lie algebra and its unitary Lie group are related
through the familiar exponential formula. The Lie algebra is composed of skew-Hermitian opera-
tors which are vector fields defined onDAùSH. By propertysiii d of the Definition III.3 of the
analytic domain, these vector fields onDAùSH are complete. Moreover, owing to the skew-
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Hermiticity of the operatorsHi of systems3d, the corresponding transformation groups, taking a
given state onSH to another state onSH, are unitary. This feature guarantees preservation of the
norm of quantum states, as required for the statistical interpretation of quantum mechanics.

In fact, Nelson’s theorem only provides sufficient conditions for the important properties it
yields. With this in mind, we shall assume an analytic domainDA existswithoutexplicitly impos-
ing the conditions stated in this theorem, a stance also adopted in Ref. 5. This strategy clearly
implies that the existence of such a domain must be established explicitly prior to application of
the controllability results to be derived in the following sections.

We are now prepared to adapt the concept of controllability to problems involving unbounded
operators.

Definition III.4: For system (3), ifDA exists forL, and if for anyc0 and c f PDAùSH there
exist control functions u1std , . . . ,urstd, and a time tf srespectively, ∀tfd such that the solution of
control system (3) satisfiescst0d=c0, cstfd=c f, and cstdPDAùSH, where t0ø tø tf, then the
system is called analytically controllablesrespectively strongly analytically controllabled on SH;
moreover we then say that the corresponding unitary Lie group is analytically transitive on SH.

As has been argued, the more pertinent concept is controllability on the submanifoldM of SH.
By assumption,M ùDA is dense inM, while dimsM ùDAd=dim M =m. Denoting the tangent
space ofM ùDA at c by TMc=LhH0, . . . ,Hrjscd, the tangent bundle of the systems4d is given by
TsM ùDAd=øcPMùDA

TMc.
Let Rtscd denote the set of all points that are reachable fromc at time t. The setRscd

=øt.t0
Rtscd is then reachable fromc at some time greater thant0. We say that systems4d is

analytically controllable onM if Rscd=M ùDA, ∀cPM ùDA, and that the system is strongly
analytically controllable onM if Rtscd=M ùDA, ∀ t. t0, ∀cPM ùDA.

IV. CONTROLLABILITY OF TIME-DEPENDENT QUANTUM CONTROL SYSTEMS

A. Reformulation as a time-independent augmented system

Most of the methods developed for determining controllability of time-independent bilinear or
nonlinear systems5,31,58–61cannot be applied directly to the time-dependent bilinear control prob-
lem studied here, since these approaches rely upon the following property. LetYtswd be an integral
curve of the time-independent tangent vectorY starting from pointw and tP ft0,t0+ tfg, and let
cYtswd be an integral curve of the tangent vectorcY starting fromw andtP ft0,t0+ tf / ucug; then the
integral curvesYtswd and cYtswd coincide. This property holds for all time-independent tangent
vectors, but it generally fails for time-dependent tangent vectors.

However, recognizing that this feature has been instrumental to controllability proofs for
nonlinear systems, we recast the systems4d as a time-independent problem so that it can once
again be exploited. Reformulation of the original problem is accomplished by regarding the time
variable t as an additional parameter in the specification of the system state, supplementing the
state vectorc. Thus the state of the extended system is expressed as

j = St + t0
c

D . s9d

Making the corresponding extension of the manifoldM, we form an augmented
sm+1d-dimensional manifold defined by

N = H R

M ù DA
J , s10d

whereR is the real line. Next we define augmented vector fieldsWl by

W0sjd = F 1

H0st + t0dcst + t0d G ,
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Wlsjd = F 0

Hlst + t0dcst + t0d G , s11d

with l =1,2, . . . ,r. Obviously, theWl, with l =0,1, . . . ,r, depend on botht andc, i.e., theWl now
depend on the statej defined by Eq.s9d.

The time-dependent control systems4d has thereby been reformulated as an augmented system
of time-independent form. Explicitly,

]jstd
]t

= FW0sjd + o
l

ulstdWlsjdG ,

js0d = h = S t0
cst0d

D = S t0
c0
D , s12d

∀t ù 0, c0 P M ù DA, j P N,

whereN is then=sm+1d-dimensional manifold constructed in Eq.s10d andM is now viewed as
a one-dimension-reduced manifold of the augmented system. As always, the controlsulstd, with
l =1, . . . ,r, are piecewise-constant real functions of timet.

It is convenient to employt+ t0 instead oft in definitions s9d and s11d, thereby setting the
starting time at zero for the augmented systems12d. Since the latter system is time-independent by
construction, this can be done without affecting its trajectory. Thus, if the time for the augmented
system ist, then the time for the original systems4d is t+ t0. Standard differential equation
techniques can evidently be employed to analyze the behavior of the augmented system on the
manifold N, and the results will reflect the behavior of the original system on manifoldM.

We note peripherally that systems12d is in a decomposed form in the sense of Ref. 59, where
several theorems were developed for decomposition of nonlinear control systems. However, these
theorems do not specify reachable sets, so they cannot be applied here to obtain controllability
results.

Reachable setsR̂tshd and R̂shd are defined for the augmented systems12d in just the same
manner as for systems4d. From the work of Huang, Tarn, and Clark5 based on the results of
Chow,62 Sussmann and Jurdjevic,24 and Kunita,54,58 it is to be expected that the issue of analytic
controllability will hinge on the relationships among certain Lie algebras generated by the vector
fields involved in the control systems4d or its augmented counterparts12d. For the latter problem,

these Lie algebras are specified byÂ=LhW0, . . . ,Wrj, B̂=LhW1, . . . ,Wrj, and Ĉ=LhadW0

m Wl , l
=1, . . . ,r ,m=0, . . . ,̀ j. By definition, adW0

m Wl is built from repeated commutators ofW0, present

in Â but not B̂, with any and all of theWl present inÂ or B̂; clearly,

B̂ , Ĉ , Â. s13d

For future reference we notesin particulard that the restriction ofB̂ to a pointc on N, which is a
tangent subspace ofTNc at c, is written as

B̂scd = hYscduY P B̂j , TNc, s14d

and in turn that

B̂˜ = hB̂scduc P Nj s15d

is an involutive differential system.
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B. Controllability of the augmented system

We must still face the situation that standard controllability results,5,31,58–61derived for time-
independent systems, cannot be carried over directly to our problem as reformulated in the pre-
ceding section, since derivation of these results employs the vector-space property of the tangent
space. Specifically, it is required that ifY is an acceptable tangent vector, then so iscY, wherec
is an arbitrary constant. But in our case, once the first component of a tangent vector of the
augmented manifold is fixed at unity, it is not possible for bothY and cY, with cÞ1, to be
available tangent vectors. However, with the aid of a result of Kunita,54 we may nevertheless
establish one-dimension-reduced controllability of the augmented system; that is, we may prove
strong analytic controllability of the original system since it is not necessary to control the time
dimension.

First, let us identify certain properties of the reachable setR̂tshd that will be useful in proving
strong analytic controllability.

Theorem IV.1: sReferences 24 and 25d Assume that the Lie algebraĈ is locally finitely

generated, and let Ishd be the maximal connected integral manifold ofĈ containing the pointh.

Then R̂tshd,at
0sIshdd, whereat

0 is the integral curve whose vector field is W0. Furthermore, the

interior of R̂tshd with respect to the topology ofat
0sIshdd is dense in Rˆ tshd.

In the rest of this section, we systematically develop the principal result of the paper, namely,

under suitable conditions the reachable set of the augmented systems12d at timet, R̂tshd, is equal
to at

0sIshdd. We begin by establishing a key relationship between the interior of the reachable set

R̂tshd of the augmented system at timet and the interior of its closure, through the following
lemma.

Lemma IV.2:

intscl R̂tshdd = int R̂tshd. s16d

Proof: Let xP intscl R̂tshdd and letSesxd be the set of allx8 such thatx is reachable fromx8
within time e.0. ThenSesxd is the reachable set within timee.0 for the dual control system

]y

]t
= − FW0syd + o

l

ulstdWlsydG . s17d

Theorem IV.1 implies that intSesxd is dense in clSesxd, and intR̂tshd is dense in clR̂tshd. Since
xPcl Sesxd, we know that

cl Sesxd ù intscl R̂tshdd Þ x s18d

and hence that

int Sesxd ù intscl R̂tshdd ù R̂tshd Þ x . s19d

If z belongs to the latter intersection, thenz is reachable fromh using timet, andx is reachable
from z in elapsed time less than or equal toe. Therefore,x is reachable fromh in elapsed time
betweent and t+e. This argument holds for anyt.0 and anye.0. Letting e→0, we conclude

that x is reachable fromh in time t, so xP R̂tshd. Thus,

intscl R̂tshdd , R̂tshd ⇒ intscl R̂tshdd , int R̂tshd.

But clearly intR̂tshd, intscl R̂tshdd and the statements18d follows.
From the control-theoretic perspective, the drift term is undesirable because no control is

present to influence or remove its effect. It is therefore of strategic value to consider a suitably
modified control system, called the auxiliary system, that will serve as a bridge to an effective
controllability analysis of the augmented system. Lete0,e1, . . . ,er be unit vectors inRr+1; in
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particular, letei =s0, . . . ,0 ,1,0, . . . ,0d, in which only thesi +1dth element is unity and the others
are zero. Denote byU0 the set of controlsustd=su0std , . . . ,urstdd composed of piecewise-constant
functionsuistd taking the valuese0, ±e1, . . . , ±er only. Consider then the control system expressed
in the form

]j

]t
= u0stdW0sjd + o

l

ulstdWlsjd, jst0d = h, s20d

whereustdPU0. The solution of this system may be written as

at = atk

ik
¯ at j

i j
¯ at1

i1, s21d

where k is a positive integer and whereat j
i j is the integral curve ofWij

with i j =0,1, . . . ,r, j
=1, . . . ,k, andk a positive integer. The timestj satisfytj ù0 if i j =0, otherwise,tj PR. We denote

by R̂t
0shd the reachable set of the auxiliary system corresponding to the total timet since time zero,

over which the control functionu0s·d is nonzero; the reachable set of the auxiliary system is then

R̂0shd=øt.0R̂t
0shd. Theorem IV.1 is valid for this control system.24

The following notations are convenient:

Exp L̂=the group of diffeomorphisms generated by theat
i, tPR, i =0, . . . ,r, whereat

i is an
integral curve ofWi,

sExp L̂d+=the semigroup of diffeomorphisms generated byat
0, tù0, and theat

l, with tPR
and l =1, . . . ,r,

sExp L̂dt=the subset ofsExp L̂d+ generated byatk
ik· ¯ ·at1

i1, with o j=1
k tj ·1hi j=0j= t.

To clarify the meaning of the last line, we note that when the indexj is such thati j =0, we
haveu0=1 sand all the otherui =0d, soW0 is “turned on” and does play a role as an active vector
field or tangent vector. Conversely, for indicesj such thati j Þ0, the factoru0 multiplying W0 in

systems20d vanishes, andW0 plays no role. The sum appearing in the definition ofsExp L̂dt gives
the total time over whichW0 is active in the system dynamics.

From Chow’s theorem,24,62 it is known that the group ExpL̂ acts transitively on the manifold

N when dimL̂hW0,W1, . . . ,Wrj=dim N, i.e., we know thathashd uaPExp L̂j=N for any hPN.

On the other hand, the reachable set at timet for the auxiliary systems20d is R̂t
0shd=hashd ua

P sExp L̂dtj. sIt is to be noted that in the present contextt is the total time over whichW0 has been
active since time zero, which is generally not equal to the actual elapsed time, sinceW0 may be
turned off over certain intervals.d

Lemma IV.3:

cl R̂tshd = cl R̂t
0shd. s22d

We may gain intuitive understanding of this lemma by analyzing a simple example.
Example:Let us compare the control system

d

dt
Sx

y
D = S1

0
D + uS0

1
D , s23d

whereinuPR, with the system

d

dt
Sx

y
D = u0S1

0
D + u1S0

1
D , s24d

whereinsu0,u1dP hs0, ±1d ,s1,0dj. Clearly, the first of these corresponds to the augmented system,

and the second to the auxiliary system. LetR̂tshd andR̂t
0shd denote, respectively, the reachable sets

of systemss23d and s24d, starting from the stateh. While stopping short of rigorous argument,

052102-9 Controllability of quantum control systems J. Math. Phys. 46, 052102 ~2005!

Downloaded 26 Mar 2008 to 193.136.232.58. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



explicit computation will be used to reveal the pertinent relationship between clR̂tshd and

cl R̂t
0shd.
First consider the integral curve

atshd = S0

1
D

t1

·S 0

− 1
D

t2

·S1

0
D

t
P R̂t

0shd, s25d

and forn=1,2,3, . . .form a series of integral curvesbt
nshdP R̂tshd defined by

bt
nshd = SS1

0
D + nS0

1
DD

t1/n
·SS1

0
D + nS 0

− 1
DD

t2/n
·S1

0
D

t−st1/nd−st2/nd
. s26d

As n goes to`, we find

bt
nshd → S0

1
D

t1

·S 0

− 1
D

t2

·S1

0
D

t
, s27d

that is,bt
nshd→atshd. HenceatshdPcl R̂tshd.

On the other hand, consider

btshd = SS1

0
D + m1S0

1
DD

t1

·S1

0
D

t2

·SS1

0
D + m2S 0

− 1
DD

t3

P R̂tshd, s28d

wherem1, m2PR and t= t1+ t2+ t3, and construct

a1
n = FS1

0
D

t1/n
·m1S0

1
D

t1/n
Gn

, s29d

again forn=1,2,3, . . . .Applying the Baker–Campbell–Hausdorff formula, it is straightforward to
show that

lim
n→`

a1
n = lim

n→`
HSS1

0
D + m1S0

1
DD

t1

+
t1
2

2n
m1FS1

0
D,S0

1
DG + OS 1

n2DJ = SS1

0
D + m1S0

1
DD

t1

.

s30d

Similarly, let

a3
n = FS1

0
D

t3/n
·m2S 0

− 1
D

t3/n
Gn

s31d

and employ the Baker–Campbell–Hausdorff formula to obtain

lim
n→`

a3
n = lim

n→`
HSS1

0
D + m2S 0

− 1
DD

t3

+
t3
2

2n
m2FS1

0
D,S 0

− 1
DG + OS 1

n2DJ = SS1

0
D + m2S 0

− 1
DD

t3

.

s32d

Obviously

a1
n ·S1

0
D

t2

· a3
n P R̂t

0shd, s33d

and we find that
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lim
n→`

a1
nS1

0
D

t2

a3
n = SS1

0
D + m1S0

1
DD

t1

·S1

0
D

t2

·SS1

0
D + m2S 0

− 1
DD

t3

= btshd. s34d

ThereforebtshdPcl R̂t
0shd.

Now let us proceed with the proof of Lemma IV.3, showing first that clR̂t
0shd#cl R̂tshd.

Consider thatatshdP R̂t
0shd is expressible in the form ofatk

ik
¯at1

i1shd, wheret=o j=1
k tj ·1hi j=0j. With

the guidance of the example above, a sequence of controlsusnds·d associated with the diffeomor-
phism of this form is constructed as follows. For an arbitrary positive integern such thatntm
ùoi jÞ0utju, wherem is the last subscriptj such thati j =0, let

tm
snd = tm −

oi jÞ0
utju

n
. s35d

Define real numberss1
snd , . . . ,sk

snd, ordered so that 0øs1
sndøs2

sndø ¯ øsk
snd, by

s1
snd = ut1u if i1 = 0,

=
1

n
ut1u if i1 Þ 0,

sjù2
snd = sj−1

snd + utj
sndu if last j with i j = 0, s36d

=sj−1
snd + utju if other j with i j = 0,

=sj−1
snd +

1

n
utju if i j Þ 0.

Further, let

usndstd = n · sgnstjdei j
if sj−1

snd ø t ø sj
snd and i j Þ 0,

=0 if sj−1
snd ø t ø sj

snd and i j = 0, s37d

=0 if t ù sk
snd,

wheree1, . . . ,er are unit vectors inRr. The solutionbt
snd of the systems12d associated with the

control usnds·d may be written

bsk
snd

snd = butku
n,ik

¯ but1u
n,i1 P R̂tshd, s38d

wherebutu
n,i j is the integral curve ofW0 if i j =0, or the integral curve ofW0+n·sgnstdWij

if i j Þ0,
i.e.,

butu
n,i j = sW0dt if i j = 0,

=sW0 + n · sgnstdWij
dutu/n if i j Þ 0. s39d

We note thatsW0+n·sgnstdWij
dutu/n and fs1/ndW0+sgnstdWij

gutu describe the same integral curve
on N, by virtue of the time-invariance property of systems12d. Obviously,butpu

n,i j →atp
i j asn→`. On

the other hand,
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sk
snd = o

j

t j · 1hi j=0j −
ol

utlu · 1hi lÞ0j

n
+

ol
utlu · 1hi lÞ0j

n
= t. s40d

Thus, asn→` we obtain

bsk
snd

snd shd → atk

ik
¯ at1

i1shd = atshd, s41d

and henceatshdPcl R̂tshd. Becauseatshd is an arbitrary element inR̂t
0shd, it follows that

R̂t
0shd#cl R̂tshd, and since clR̂tshd is closed, it follows in turn that clR̂t

0shd#cl R̂tshd.
Next we show clR̂tshd#cl R̂t

0shd. ConsiderbshdP R̂tshd of the form ofbuk

ck · ¯ ·bu1

c1shd, with
buj

cj =expujsW0+cj
1W1+¯ +cj

rWrd andcj =scj
1, . . . ,cj

rd. Here,cj
l is the control applied toWl during

time perioduj, socj is the control set applied toW1, . . . ,Wr during the corresponding time interval
uj, with uj PR+ andcj

l PR. For eachbuj

cj , j =1, . . . ,k, takea j
n in the form

a j
n = Fexp

uj

n
scj

1W1d ¯ exp
uj

n
scj

rWrdexp
uj

n
W0Gn

. s42d

Invoking the Baker–Campbell–Hausdorff formula,63 we write

lim
n→`

a j
n = lim

n→`
Fexp

uj

n
scj

1W1d ¯ exp
uj

n
scj

rWrd · exp
uj

n
W0Gn

= lim
n→`

expFujsW0 + cj
1W1 + ¯ + cj

rWrd + o
0øp,qør

uj
2

2n
cj

pcj
qfWp,Wqg + OS 1

n2DG
= expujsW0 + cj

1W1 + ¯ + cj
rWrd = buj

cj . s43d

Constructinga1
n
¯ak

nP R̂t
0shd we then obtain

lim
n→`

ak
n
¯ a1

nshd = buk

ck
¯ br1

c1shd = bshd, s44d

so thatbshdPcl R̂t
0shd. Sincebshd is an arbitrary element ofR̂tshd, we arrive atR̂tshd#cl R̂t

0shd
and hence clR̂tshd#cl R̂t

0shd. We conclude that clR̂tshd=cl R̂t
0shd.

The timet labeling these reachable sets is to be interpreted as the time interval over which the
control operation represented byW0 is in effect, or “turned on.” In fact,W0 is necessarilyalways
“on” in the augmented system, so the total time elapsing in the augmented system is the same as

the time interval over whichW0 is turned on; hence the reachable setsR̂t corresponding to these
two times are identical. Of course, the same coincidence does not hold for the auxiliary system.
However, this is immaterial, since the auxiliary system was only introduced to exploit the key

relationships22d. Further, we may observe that the reachable setR̂t
0shd of systems20d, with the

controlustd=su0std , . . . ,urstdd assuming valuesse0, ±e1, . . . , ±erd, is the same as the corresponding
set for which the controlustd assumes the valuese0, ±ce1, . . . , ±cer, with cPR+.

Since we can take advantage of the results22d in this manner, it is clearly preferable to study

the properties ofR̂t
0shd. The auxiliary system is easier to control, and the state at timet can be

expressed as a composition of integral curves ofWi in the same style as Eq.s21d. To do so, let the
set of subscriptsj with i j =0 be written ashp, . . . ,q,sj in increasing order, of course withtp
+¯ + tq+ ts= t. Then we have
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at = satk

ik
¯ ats+1

is+1d · sats
0 · ats−1

is−1 · a−ts
0 d · sats

0 · ats−2

is−2 · a−ts
0 d ¯ sats+tq

0 · atq−1

iq−1 · a−sts+tqd
0 d

· sats+tq
0 · atq−2

iq−2 · a−sts+tqd
0 d ¯ sats+tq+¯+tp

0 · atp−1

ip−1 · a−sts+tq+¯+tpd
0 d ¯ sats+tq+. . .+tp

0 · at1

i1

· a−sts+tq+. . .+tpd
0 d · at

0 = b0satk

ikd ¯ b0sats+1

is+1d · bts
sats−1

is−1d

· bts
sats−2

is−2d ¯ bts+tq
satq−1

iq−1d · bts+tq
satq−2

iq−2d ¯ btsatp−1

ip−1d ¯ btsat1

i1d · at
0, s45d

wherebtsgd=at
0·g ·a−t

0 . This analysis stimulates us to define the following three sets of diffeo-
morphisms:

Exp B̂=the group generated byat
l, tPR, l =1, . . . ,r, whereat

l is the integral curve whose
vector field isWl,

Ft = øk=1
` hbtk

sgkd · ¯ · bt1
sg1dug j P Exp B̂,0 ø tk ø ¯ ø t1 = tj,

Gt = øk=1
` hbtk

sgkd · ¯ · bt1
sg1dug j P Exp B̂,min

j
t j ù 0,maxj t j = tj.

.
By construction,

R̂t
0shd = Ftat

0shd. s46d

We observe thatFt is a semigroup of diffeomorphisms included in the groupGt, whose properties
are established in the following lemma.

Lemma IV.4: First, the set Gt is a group. Furthermore, ifdim Ĉshd=n−1=m holds for allh
PN, then hashd uaPGtj=at

0sIsa−t
0 shddd is true for all h, where Isnd is the maximal connected

integral manifold containingnPN, whose associated Lie algebra isĈ.
Proof: For a1,a2PGt, it is easily seen thata1·a2PGt. Writing aPGt as a

=btk
sgkd · ¯ ·bt1

sg1d, we also see thata−1=bt1
sg1

−1d · ¯ ·btk
sgk

−1d. ThereforeGt is a group.
Now, denote the sethashd uaPGtj by Btshd. It is straightforward to show thatsid Btshd

=Btsjd if jPBtshd and sii d BtshdùBtsjd=x if j¹Btshd.54 We can demonstrate thatsiii d h

P int Btshd under the topology ofat
0sIsa−t

0 shddd as follows. By definition,R̂t
0shd is the reachable

set for the systems20d. By the same reasoning that leads to Eq.s46d, we haveR̂t
0sa−t

0 shdd,Btshd
becauseR̂t

0sa−t
0 shdd=Ft ·at

0·a−t
0 shd. SinceR̂t

0sa−t
0 shdd has a nonempty interior with respect to the

topology of at
0sIsa−t

0 shddd by Theorem IV.1, we see thatBtshd contains a non-null open setU.
Given mPU, chooseaPGt such thatashd=m. Sincea is a continuous map,a−1sUd is an open
set containingh.

In fact,a−1sUd is included inBtshd. We know thatGt is a group, soa−1PGt if aPGt. Letting
zPa−1sUd, we can findxPU, such thatx=aszdPU,Btshd and alsoxPBtszd. By propertiessid
and sii d, we obtain xPBtszdùBtshdÞx. Hence Btszd=Btshd and zPBtshd. Accordingly,
a−1sUd,Btshd andhP int Btshd under the topology ofat

0sIsa−t
0 shddd.

The propertiessid–siii d imply thatBtshd is maximally connected and open under the topology
of at

0sIsa−t
0 shddd. Thus we haveBtshd=at

0sIsa−t
0 shddd for all t.0 andhPN. In addition, it is seen

that Btshd=at
0sIsa−t

0 shddd=s t0
MùDA

d. The proof of Lemma IV.4 is now complete.

Based on Lemmas IV.3 and IV.4, we could conclude that clR̂tsa−t
0 shdd=at

0sIsa−t
0 shddd if we

could establish thatFt=Gt. The following proof takes a slightly different path. Let ExpB̂˜ denote
the group of diffeomorphisms generated by all one parameter groups of transformations with

respect to vector fields belonging toB̂˜. The setsFt̃ andGt̃ are defined in the same way asFt and

Gt, i.e., via Eq.s17d, but with ExpB̂˜ entering in place of ExpB̂.

Obviously,Ft, F̃t andGt,G̃t hold. We shall now establish thatF̃t=G̃t.
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Lemma IV.5: Let X be a complete vector field belonging toB̂˜, and letgt be the one-parameter

group of transformations generated by X. AssumefB̂ , Ĉgshd, B̂shd is satisfied for allh. Then

dbssgtd is an isomorphism betweenB̂shd and B̂sbssgtdshdd for eachh, and F̃t=G̃t is true for all
t.0.

Proof: Sincebssgt1
d ·bssgt2

d=bssgt1+t2
d holds, we have dbssgt1+t2

d=dbssgt1
d ·dbssgt2

d. Hence it
is enough to prove the lemma’s assertion for sufficiently smallutu. Let Yt,s=dbssgtdZ, whereZ

P B̂˜ . For each value ofs, bssgtd with tPR is the one parameter group of transformations generated
by das

0 X, while

]Yt,s

]t
= − dbssgtdfdas

0 X,Zg = dbssgtdfZ,das
0 Xg. s47d

ThereforefZ,das
0 XgP B̂˜ by assumption, because das

0 X belongs toĈ˜ =hĈshd uhPNj.64,65

Now we fix a pointh of N and a value ofsPR. Let Z1, . . . ,Zn provide a basis ofB̂ in an open
neighborhoodU of h. Then there existC` functionsf ij on U such thatfZi ,das

0 Xg=o j=1
n f ijZ

j holds
in U. Let e be a positive number such thatbssgtdshdPU for utu,e, noting thatbssgtd is a
continuous map oft and bssg0dshd=h. Then dbssgtdfZi ,das

0 Xg=o j=1
n f ij dbssgtdZj for utu,e. Set

Vjstd=dbssgtdZj. ThenVjstd, with utu,e, satisfies the linear differential equation

dVjstd
dt

= o
j=1

n

f jkV
kstd j = 1, . . . ,n. s48d

The solutionVjstd can be written asVjstd=ok=1
n gjkstdVks0d, wheresgjkd is a regular matrix. Also,

we haveVks0dP B̂shd andVkstdP B̂sbssgtddshd. The map dbssgtd : B̂shd→B̂sbssgtddshd is bijective
becausesgjkd is a regular matrix. Moreover, dbssgtd retains the structure of the Lie bracket

with respect to das
0 X. This establishes that dbssgtd is an isomorphism betweenB̂shd and

B̂sbssgtddshd for utu,e. Sincegt8;bssad ·gt ·bssad−1 swith s fixedd is a one-parameter group of

transformations generated by dbssadX and dbssadX belongs toB̂˜ , we knowgt8 swith tPRd belongs

to ExpB̂˜ . But ExpB̂˜ is generated by all suchgt, so we arrive at the relationship

btsadsExp B̂˜ dbtsad−1 , Exp B̂˜ for a P B̂˜ . s49d

Let a be any element ofGt
˜ , written as

a = btk
sgkd · ¯ · bt1

sg1d, tl ù 0, max
l

tl = t. s50d

By induction we can prove that there existg̃k, . . . ,g̃1 of Exp B̂˜ and 0øskø ¯ øs1= t such that

btk
sgkd · ¯ · bt1

sg1d = bsk
sg̃kd · ¯ · bs1

sg̃1d. s51d

Here we only consider the casek=2. If t2ø t1, there is no need for proof. Supposet2. t1, and set
t3= t2− t1. Then we may writebt2

sg2d ·bt1
sg1d=bt1

sbt3
sg2d ·g1d. By relationships49d, there exists

g̃1 of Exp B̂˜ such thatbt3
sg2d ·g1·bt3

sg2d−1= g̃1, i.e., bt3
sg2d ·g1= g̃1·bt3

sg2d. This implies

bt2
sg2d · bt1

sg1d = bt1
sbt3

sg2d · g1d = bt1
sg̃1 · bt3

sg2dd = bt1
sg̃1d · bt2

sg2d. s52d

More detailed proofs may be found in Refs. 54 and 66.

Theorem IV.6: Suppose thatdim Ĉshd=n−1=m holds for all hPN, and suppose that

fB̂ , Ĉgshd, B̂shd holds for all h. Let Ishd be the maximally connected integral manifold contain-

ing h whose corresponding Lie algebra isĈ. Thenat
0sIshdd=R̂tshd.
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Proof: Clearly we havehaat
0shd uaPFtj, haat

0shd uaP F̃tj. In fact, the closures of these two

sets coincide. SinceF̃t=G̃t.Gt, it is seen that

cl R̂t
0shd = clhaat

0shdua P Ftj

= clhaat
0shdua P F̃tj

= clhaat
0shdua P Gt

˜ j sby Lemma IV.5d

= cl at
0sIsa−t

0 sat
0shdddd sby Lemma IV.4d

= cl at
0sIshdd. s53d

But Lemma IV.3 tells us that clR̂t
0shd=cl R̂tshd, so we obtain clR̂tshd=cl at

0sIshdd. From

Lemma IV.2 we know that intR̂tshd=intscl R̂tshdd, which implies intR̂tshd=at
0sIshdd under the

topology of at
0sIshdd. Finally, R̂tshd,at

0sIshdd by Theorem IV.1, and we arrive atR̂tshd
=at

0sIshdd.

C. Strong analytic controllability of the actual system

In Sec. IV B, we investigated the reachable set at timet of the time-independent augmented
system formed by enlarging the state space to include an extra dimension corresponding to the
variablet. Now we return to the original quantum control systems4d to discover conditions under
which it is strongly analytically controllable.

Theorem IV.7: For the control system defined by Eq. (4), let

Bstd = LhH1std, . . . ,Hrstdj,

B1std = − fH0std,Bstdg +
]

]t
Bstd, . . . ,

s54d

Bnstd = − fH0std,Bn−1stdg +
]

]t
Bn−1std, . . . ,

Cstd = LhBstd,B1std, . . . ,Bnstd, . . . j.

Supposedim Cstdcstd=m holds for allcPM ùDA, and fB ,Cgstd,Bstd is the case for all t. Then
the time-dependent quantum control system (4) is strongly analytically controllable.

Proof: We apply Theorem IV.6 to the augmented control systems12d. To do so, we need to

examine the Lie algebrasB̂ and Ĉ for this problem. For economy of expression, we sometimes

omit the t argument in the following steps. ForB̂ we readily find

B̂ = LhW1, . . . ,Wrj = LHS 0

H1std
D, . . . ,S 0

Hrstd
DJcstd = S 0

LhH1std, . . . ,Hrstdj
Dcstd = S 0

Bstdcstd D .

s55d

Next let us constructĈ. For any

Wshd = Wst,cd = S 0

Hstdcstd
D P B̂, s56d

wherehPN, we have
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adW0
W= fW0,Wg = FS 1

H0stdcstd
D,S 0

Hstdcstd
DG

=

]S 0

Hstdcstd
D

]st,cd
S 1

H0stdcstd
D −

]S 1

H0stdcstd
D

]st,cd
S 0

Hstdcstd
D

= H 0

− fH0,Hg + ]H/]t
Jcstd. s57d

Similarly,

adW0
B̂ = S 0

− fH0,Bg + ]B/]t
Dcstd. s58d

SettingB1=−fH0,Bg+]B /]t, we may then derive

adW0

2 B̂ = adW0
adW0

B̂ = adW0
S 0

B1cstd
D = S 0

− fH0,B1g + ]B1/]t
Dcstd. s59d

Continuing in this fashion with

Bn = − fH0,Bn−1g + ]Bn−1/]t s60d

for n=2,3, . . ., we find

adW0

n B̂ = 1 0

− fH0,Bn−1g +
]Bn−1

]t
2cstd = S 0

Bncstd
D . s61d

Thus

Ĉ = LhB̂,adW0
B̂, . . . ,adW0

n B̂, . . . j

= LHS 0

Bstdcstd D,S 0

B1stdcstd
D, . . . ,S 0

Bnstdcstd
D, . . .J

= S 0

LhBstd,B1std, . . . ,Bnstd, . . . jcstd D = S 0

Cstdcstd D . s62d

From the assumption thatfB ,Cgstd,Bstd, ∀std, we have

fB,Cgstdcstd , Bstdcstd, ∀ std. s63d

Hence

FS 0

Bc
D,S 0

Cc
DG , S 0

Bc
D , s64d

so thatfB̂ , Ĉgshd, B̂shd, ∀hPN.

By assumption, dimCstdcstd=m, ∀cPM ùDA, which implies that dimĈshd=m=n−1 holds

for all hPN. According to Theorem IV.6,at
0sIshdd=R̂tshd , ∀ t.0, and sinceat

0sIsa−t
0 shddd

=s t0
MùDA

d, we obtainat
0sIshdd=s t+t0

MùDA
d.

Let p :N→M ùDA be the projection map that in effect annihilates the time dimension of the
augmented problem corresponding to the variablet, and brings us back to the original control
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system. In fact, the extension and projection maps mediate a one-to-one correspondence between
the states of the augmented system and those of the original system. The simplicity of this
relationship stems from the fact thatt is a strictly increasing variable.

To reiterate our strategy: We have dealt with the explicit time dependence of the original
control problem by adding an extra dimension to its state space, such that, as viewed in the
augmented space, the augmented control problem is time independent. After analyzing controlla-
bility within this extension, the results are projected to the original space by removing the extra
time dimension, recovering the exact states of the original system.

Accordingly,psat
0sIshddd=M ùDA, while pR̂tshd=Rt+t0

scd , ∀cPM ùDA and∀t.0. Hence
Rtscd=M ùDA, ∀ t. t0, and the systems4d is strongly analytically controllable onM.

We may note that upon introducing the Lie algebraAstd=LhH0std ,H1std , . . . ,Hrstdj, it is
readily established from propertys13d that B,C,A for all t.

To complete the formal analysis, we state two corollaries that devolve immediately from
Theorem IV.7.

Corollary IV.8: From the operators Hi entering control system (4), form the Lie algebrasB
=LhH1, . . . ,Hrj and C=LhB ,adH0

B , . . . ,adH0

n B , . . .j. Suppose that the Hi do not possess explicit
dependence on the time t, that dim Ccstd=m holds for all cPM ùDA, and that fB ,Cg,B is
satisfied. Then the time-invariant system (4) is strongly analytically controllable.

Corollary IV.9: For the control system (4), form the Lie algebraBstd=LsH1std , . . . ,Hrstdd, and
suppose thatdim Bstdcstd=m holds for allcPM ùDA. Then system (4) is strongly analytically
controllable.

The latter corollary follows becausefB ,Cgstd,Bstd must hold, once dimBstdcstd=m.

V. EXAMPLES OF STRONG ANALYTIC CONTROLLABILITY

In this section, we present three examples that meet the criteria for analytic controllability
enunciated in Theorem IV.7. The examples selected are relevant to problems of interest in math-
ematical physics or engineering applications of quantum mechanics.

Example 1: The strong analytic controllability theorem can be applied to the simple degener-
ate parametric oscillator, a problem of importance in physics and engineering. Introducing an
appropriate effective Hamiltonian allows the corresponding control system to be written in the
form67

i
]

]t
c = Hvstda†a +

1

2
xstdfe−2ivtsa†d2 + e2ivta2gJc. s65d

Here a† and a represent, in turn, the creation and annihilation operators of the pump mode of
frequencyvstd, while xstd is the time-dependent coupling function related to the second-order
nonlinear susceptibility of the pumped medium. We may considervstd andxstd as control func-
tions playing the role of theul in Eq. s4d, since they are real and can be adjusted to piecewise-
constant functions of timet, outside the system itself.

Following Refs. 68–71, we define the operators

K+ = 1
2sa†d2, K− = 1

2a2, K0 = 1
2sa†a + aa†d, s66d

which satisfy the commutation relations of SUs1, 1d, thus

fK0,K±g = ± K±, fK+,K−g = − 2K0. s67d

Setting

H0 = − iK0, s68d

H1 = −
i

2
fe−2ivtK+ + e2ivtK−g, s69d
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H2 = 1
2fe−2ivtK+ − e2ivtK−g, s70d

the control systems65d may be written in the more familiar form

]

]t
c = fvstdH0 + xstdH1stdgc. s71d

The skew-Hermitian operatorsH0, H1, andH2 satisfy the commutation relations

fH0,H1g = − H2, fH0,H2g = H1, fH1,H2g = H0. s72d

We observe that the systems71d does not have a drift term in the usual sense, because the
factor vstd can be manipulated externally. We also see immediately thatA=B=C
=LhH0,H1,H2j, and the second condition of Theorem IV.7 is obviated. In addition,H0 has eigen-
vectorsumkl, with m=0,1, . . . andk=1/4, 3/4,which span an analytic domainDA.69,71 Conse-
quently, we can choose a manifoldM such that dimCc=dim M, ∀cPDAùM. All conditions of
Theorem IV.7 being met, the systems65d is strongly analytically controllable onM.

Example 2: Defining Q= i]t+]x1x1
+]x2x2

, the Schrödinger equation for a free particle moving
in two spatial dimensions may be expressed simply asQu=0. Determination of the maximal
symmetry algebra of this equation leads to the following set of nine operators, which form the
basis of a nine-dimensional complex Lie algebra:72

K2 = − t2]t − tsx1]x1
+ x2]x2

d − t + si/4dsx1
2 + x2

2d, K−2 = ]t, Pj = ]xj
,

s73d
Bj = − t]xj

+ ixj/2, J = x1]x2
− x2]x1

, E = i, D = x1]x1
+ x2]x2

+ 2t]t + 1,

with j =1,2. Of immediate concern is the real Lie algebra spanned by this basis, i.e., the
Schrödinger algebra, which has, as alternative basis, the operatorsBj, Pj, and E syielding the
five-dimensional Weyl algebrad, plus the operatorJ and the three operators defined byL1=D,
L2=K2+K−2, andL3=K−2−K2. The pertinent nonvanishing commutators are specified by72

fL1,L2g = − 2L3, fL3,L1g = 2L2, fL2,L3g = 2L1, fL1,Bjg = Bj, fL1,Pjg = − Pj ,

fPj,Jg = s− 1d j+1Pl, fBj,Jg = s− 1d j+1Bl, fL2,Bjg = − Pj, fL3,Bjg = − Pj, fL2,Pjg = Bj ,

s74d

fL3,Pjg = − Bj, fPj,Bjg = E/2,

where j , l =1, 2, j Þ l.
Now we consider the controllability of the system

]

]t
c = fL2 + u1stdL1 + u2stdL3 + u3stdP1 + u4stdJgc. s75d

In this case there is a time-dependent drift term in the vector field drivingc. The relationss74d
imply the equalitiesB=C=LhL1,L2,L3,P1,P2,B1,B2,J,Ej, while the required analytic domain
DA is furnished by the span of the eigenfunctionscn,m of L3. These take the explicit, time-
dependent form72

cn,m = s2m+n+1pn!m!d−1/2expfipsm+ n − 1d/2g

3 expF sv1
2 + v2

2ds1 − iv3d
4

GSv3 + i

v3 − i
Dsm+nd/2

3
Hmsv1/Î2dHnsv2/Î2d

v3 − i
, s76d

where x1=v1s1+v3
2d1/2, x2=v2s1+v3

2d1/2, and t=v3. It follows as before that the systems75d is
strongly analytically controllable.
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Example 3: A quantum control system with position-dependent effective massm=s2Axd−1 has
been described by the time-dependent Schrödinger equation73

i
]

]t
c = fiBI0 + u1stdAstdI0I− + iu2stdCgc, s77d

whereB, CPR, andAstd, is a real function of timet but in general not piecewise constant. The
operatorsI0 and I±, which are independent of time, provide a basis for an SUs1, 1d algebra, and
have the concrete realization

I− = − ]x, I0 = x]x + 1, I+ = x2]x + 2x, s78d

which satisfies the commutative relations

fI0,I±g = ± I±, fI−,I+g = − 2I0. s79d

This effective-mass problem arises in the study of semiconductor heterostructures and, more
generally, of inhomogeneous crystals.74 In the semiconductor application, the effective mass of a
carrier depends spatially on the graded composition of the semiconductor alloys used in the barrier
and well regions of the microstructures.75

The wave functions of the stationary states of Eq.s77d can be written as

cEst,xd =
1

Î2p
expH− iEE

0

t

Bssdds +E
0

t F− Cssd −
1

2
BssdGdsJ

3 exph− a1stdsx]xx + ]xdjx−iE−1/2 =
1

Î2p
expH− iEE

0

t

Bssdds +E
0

t F− Cssd

−
1

2
BssdGdsJ

3o
n=0

`

p
l=0

n SiBstdE +
1

2
+ lD2

f− a1stdgn 3
x−iE−n−1/2

n!
. s80d

These eigenfunctions span the analytic domain relevant to Theorem IV.7.
Let us define

H0 = BI0 + u2stdC, H1 = − iAstdI0I−, s81d

where we takeu2std=−B/2C. Equations77d can be recast as the control system,

]

]t
c = fH0 + u1stdH1gc. s82d

Here the drift term is time independent. Using the commutation relationss79d, we obtain
fH0,H1g=−BH1. Obviously,B=C,A, so fB ,Cg=B. Choosing a manifoldM such that dimM
=dim Cc for all cPM, we are assured that systems77d is strongly analytically controllable.

VI. CONCLUSIONS

In this paper, we have formulated the time-dependent quantum control problem and studied its
controllability. Acknowledging the unbounded nature of operators commonly involved in quantum
control systems, our analysis has been predicated on the existence of an analytic domain32 on
which exponentiations of such operators are guaranteed to converge. Within this framework, we
have extended the established treatment of time-independent quantum control problems by intro-
ducing an augmented system described in a state space that is enlarged by one dimension, yet
embodies the true dynamics of the original system. With the aid of techniques and results devel-
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oped by Kunita,54,58 we are able to explicate the one-dimension-reduced controllability of the
augmented system. Projection onto the original state space then yields a proof of the analytic
controllability of the original time-dependent quantum control system, under conditions similar to
those required in the time-independent case. The theorem so established has been illustrated with
examples drawn from mathematical physics and systems engineering.
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