ﬁl‘ Acta Applicandae Mathematica@3: 333-347, 2000. 333
i\ © 2000Kluwer Academic Publishers. Printed in the Netherlands.

On Differential Operators in White Noise Analysis

Dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday

JURGEN POTTHOFF
Lehrstuhl fiir Mathematik V, Fakultat fir Mathematik und Informatik, Universitat Mannheim,
D-68131 Mannheim, Germany

(Received: 5 February 1999)

Abstract. White noise analysis is formulated on a general probability space which is such that (1) it
admits a standard Brownian motion, and (2)itglgebra is generated by this Brownian motion (up

to completion). As a special case, the white noise probability space with time parameter being the
half-line is worked out in detail. It is shown that the usual differential operators can be defined on the
smooth, finitely based functions of at most exponential growth via the chain rule, without supposing
the existence of a linear structure (or translations) on the underlying probability space.
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1. Introduction

In[DP97], T. Deck, G. Vage, and the author began the attempt to formulate T. Hida’s
white noise analysis on a general probability space. One of the reasons that moti-
vated the article [DP97] was that there are important applications — such as in
nonlinear filtering — in which a Brownian motion and its noise gieen and it
seems unnatural, if not wrong, to require that it is realized on a fixed probability
space, such as the white noise space. Another reason was the wish to unify the
bases of white noise analysis and the Malliavin calculus. It turned out that indeed
at least two of the main features of white noise analysis can be formulated within
a general framework without any loss: the theory of generalized random variables,
and the calculus of differential operators.

In the above-mentioned paper, however, the problem of showing that the differ-
ential operators defined there are well-defined was left open, and the main purpose
of the present paper is to give a proof of this fact.

Our starting point here will be a general probability space which carries a
Brownian motion whose time parameter domain is the halffine The only addi-
tional assumption is that the underlyiagalgebra is (up to completion) generated
by the Brownian motion. This entails that tSgransform, which is one of the basic
tools of white noise analysis, is injective.
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The framework and basic notions will be established in Section 2. In Section 3
one realization of the framework via the white noise space with time parameter
domainR, is provided in a rather detailed fashion, because this realization seems
not to be so well known. Also, | reproduce there a result by S. Albeverio and
M. Rockner [AR90] on quasi-invariant measures on Suslin spaces. This result im-
plies that on a Suslin space with a (nontrivial) measuvehich is quasi-invariant
with respect to translations of a dense linear subspacee;lass of random vari-
ables can have at most one continuous representative. This fact will be essential
for the proof of the well-definedness of the differential operators which is given in
Section 4.

2. Framework

Let (2, 8, P) a complete probability space which satisfies the following condi-
tions:

(H.1) There exists a standard Brownian moti@, ¢ € R,) on (2, B, P);
(H.2) TheP-completion ofo (B;, t € R,) is equal toB.

It is well known, e.g., [RY91], Lemma V.3.1, that condition (H.2) implies that
the algebra generated by the (real, imaginary or complex) exponential functions in
the variablesB,,, ..., B,,, forn e N, #1,...,t, € R;, is dense inL2(P). In fact,
both statements are equivalent, and it is obvious that the same holds just as well for
the algebra of polynomials.

Let us mention two realizations of these assumptions:

(1) Wiener space2 = Co(R,), P is Wiener measureB is the completion of the
o -algebra generated by the cylinder sets, 8n@) = w(¢) for w € Q.
(2) White noise over the half line, which is discussed in detail in Section 3.

Let (F° t € R,) be the filtration generated b§B,, t € R,). Denote by
(F:,t € R,) its standardu-augmentation: ifA is the ideal of theu-null-sets
in 8, F := FPAN,t € R,. Then(F, t € R,) is right-continuous because
(B;, t € Ry) is strongly Markov (cf. Proposition 2.7.7 in [KS88]). Actually,
(F:, t € R,) is continuous (e.g., [KS88], Corollary 2.7.8), and foralk € R,
with ¢+ > s, B, — By is independent off; (e.g., [KS88], Theorem 2.7.9), i.e.,
(B;, t € R}) is a Brownian motion relative taF;, t € R,).

Consider the linear mapping

X: C®Ry) — L3P)
f — Xy,
where X, := fﬂh f (@) dB,. A trivial application of the Itd isometry shows that
this mapping is continuous, if we giv€>°(R,) the norm| - |, of L2(R,) =

L?’(R,, B(R,), 1), wherex is the Lebesgue measure. Sircg (Ry) is dense in
L?(R,), this mapping extends to a continuous linear mappirfpom L2(R.,) into
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L2(P). If f € L%(R,) is not inC®(R,), we mean byX ; any representative of
the P-classX ;. It is clear, that the family X ;, f € L%(R,)) forms a centered
Gaussian family with covariance given by the inner produadt@fR ., ).

| think it is appropriate to call the mappinkj (Gaussiaj white noise and an
essential part of white noise analysis is really the analysis of this mapping and
its extensions. Consider the Schwartz sp&@e, ) over the half-line as defined in
[DP97], cf. also Section 3, and the dense continuous embeddRg) C L?(R.).
4(R) is by construction nuclear, and therefore we have the canonically associated
Gel'fand-Hida triple (e.g., [KL96])

(81) C LA(P) C (8,)%,

where(4,)" is a space of generalized random variables. Therefore, we may con-
sider nowX as a mapping fron€>°(R.) into (8,)*, and it has a continuous linear
extension to the Schwartz space of tempered distributfd(R ) over the half—

line (cf. Section 3). In particular, we have fore R,, X\gt € (8)* (8, is the
Dirac distribution at), and this iswhite noise at time. It is customary to denote
this generalized random variable By, and it is not hard to see that it is indeed
the time derivative of Brownian motion at timethe derivative being taken in the
strong topology of 8, )*.

Let Z € L2(P). Define itsS-transformSZ as a function orC>*(R ) by
SZ(f) :=eV2VEE(Z€eX), feCER,).

Among other purposes, the factor in front of the expectation serves to normalize
the S-transform so thaf1 = 1.

By what has been said above, it is clear thatfoe L?(P), SZ has a continuous
extension ta.?(R. ), and we shall not distinguish the two mappings in the sequel.

The S-transform was first introduced in white noise analysis by I. Kubo and
S. Takenaka [KT80], and it is closely related to the Segal-Bargman transform on
Fock space, cf., e.g., [KL96].

The S-transform is very useful for a number of reasons. Two are:

(i) It ‘diagonalizes’ the 1t6 integral [DP97], and thereby allows to handle and
extend ‘multiplication by Gaussian (white) noise’ very efficiently.

(i) Spaces of generalized random variables, li¥g)*, can be characterized via
the S-transform in a way (e.g., [KL96] and literature quoted there) which is
quite convenient for theoretical work as well as applications.

3. Schwartz Spaces and White Noise on the Half-Line

In this section we construct a white noise probability space over the halRline
which — according to Section 2 — is to be interpreted as the domain of the time
parameter. The construction and properties are very similar to those of the usual
white noise probability space (e.g., [Hi80, HK93]).
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Let C2 (R, ) denote the set of twice continuously differentiable functignsn
(0, +00), which are such that

() f and its first two derivatives vanish rapidly (i.e., faster than any power) at
infinity, and

(i) the first two right derivatives off exist at 0, and they coincide witfi'(0+)
and f”(0+), respectively.

Consider the following differential operator

A . 1d d 1 R
f@) = 5! dtf(t) + 4tf(t), teRy,
acting onC2 (R,). Itis obvious that is symmetric on the dense subspate(R ;)

of L?(R,). (As usual, we talk about the elements of this Hilbert space as if they
were functions. There will be no danger of confusion.) Introduce the set of La-
guerre functions

L(t) :==e"2L(r), teR,, keNp,

where L, is the Laguerre polynomial of ordér € Ny (e.g., [Sa77]). It is well-
known that(/t, k € Np) is a complete orthonormal system irf(R, ). The La-
guerre functiond, obviously belong taC2 (R, ), and an elementary calculation
shows that they are the eigenfunctionsof

1
Alk:(k+§>lk’ k € Np.

Therefore it is plain (for example by an application of Nelson’s analytic vector
theorem [RS75]), that is essentially self-adjoint 062 (R, ), and its unique self-
adjoint extension has domain

D(A) = {f e L2Ry); f = Z fi L with Z fEk? < +oo}.

kENo kENo

We see that on the half-ling plays a role which is very similar to the one of the
Hamiltonian of the harmonic oscillator on the full line, and the Laguerre functions
play the role of the Hermite functions. Now we can proceed as in the case of the
full line (e.g., [Hi80, RS72, Si71]). Define

SR, = ﬂ D(A"),

nENo

and equip this space as usual with the projective limit topology defined by the
Hilbert spacesD (A"). Due to the spectral properties 4f it is obvious that (R )

is a nuclear countable Hilbert space, and as such a Fréchet and a Montel space
(e.g., [Tr67]). In [DP97] an elementary argument was given which shows that the
functions f in $(R,) are infinitely differentiable or0, +o0), and thatf together
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with all its derivatives vanishes rapidly at infinity. It is also straightforward to check
that all right derivatives of € $(R ) exist at zero, and that they coincide with the
right limits of the derivatives off at 0. That is,f € $(R,) can be considered as
the restriction of a function iB(R) toR,.

We denote the dual of (R,) by 8'(R,), and call itSchwartz space of tempered
distributions over the half-line

Let us equips’(R) with some of the various common topologies, and discuss
its topological properties. The arguments below are all completely standard, and
given here for the convenience of the interested reader.

If we give 8'(R,) the strong topology (i.e., the topology of uniform conver-
gence on bounded subsets £fR)), then 8'(R,) is reflexive sinceS(R,) is
Montel (e.g., [Tr67], p. 376, Corollary). For example, from the Lemma, p. 166,
in [RS72] we can conclude that the strong and the Mackey topology coincide. (The
Mackey topology is the topology of uniform convergence on the weakly compact,
convex subsets of(R,), and it is the finest dual topology of/(R.), i.e., the
finest locally convex Hausdorff topology &#(R ) so that§ (R, ) is its dual in this
topology. The weak topology ofl (R ) is the topology of pointwise convergence,
and it is the coarsest dual topology 8f(R.). The Mackey—Arens theorem (e.g.,
[RS72]) states that all locally convex dual topologies are between the weak and the
Mackey topology. Furthermore, the strong and the Mackey topology’ R, )
also coincide with the topology of uniform convergence on compact subsets of
S(R,) (e.g., [Tr67], p. 357, Proposition 34.5, but it also follows directly from the
definition of a Montel space).

Now we can use Theorem 7 in [S73], p. 112, to conclude 4h@& , ) equipped
with the strong topology is a Lusin space. (One only has to make the trivial remark
that the compact-open topology used ®(R,) = L(E, F) there, withE =
$(R,)andF = R, isjust the topology of uniform convergence on compact subsets
of $(R,), which had already been identified with the strong topology8&iR )
above.)

It is evident from the definition of a Lusin space (e.g., [S73], p. 94), that if
we equip$’(R,) with any topology weaker than the strong topology, it remains a
Lusin space. In particulag’ (R ) equipped wittanylocally convex dual topology
is a Lusin space, and we consider this case from now on. As a Lusin spjéRe)
is also a Suslin space ([S73], p. 96), and it is strongly Lindel6f ([S73], p. 104,
Proposition 3), i.e., every open cover of any open subsét(@,) has a countable
subcover.

Moreover, since$’ (R, ) is Suslin for any dual topology, Corollary 2, p. 101, in
[S73] entails that they all generate the same Beralgebra, which is the-algebra
generated by the cylinder sets, because the weak topology is a dual topology on
8'(R,). Let us denote this-algebra byB,.

Consider a total subsét in $(R,). As a Fréchet spacé(R,) is barreled.
Therefore we have the Banach—Steinhaus theorem which implies th#tRn)
the topology of pointwise convergence Ghcoincides with the weak topology.
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Consequently, the-algebraoc (7) = o((-, f); f € T) is equal toBy. For
example, we may choose f@r the set of Laguerre functions.

As usual, we may use Minlos’ theorem (e.qg., [Hi80]) to introduce the centered
Gaussian measuyeon (8'(R,), Bo) via the relation

/ el p(dw) = ef%m%, feSdRy),
8 (Ry)

where (-, -) stands for the dual pairing of'(R,) and §(R,), and| - |, for the

norm of L?(R,). We shall cally. the white noise measure on the half link.
shares almost all properties with the usual white noise measure, and the analysis of
L?(8'(R,), Bo, n) can be done just asin, e.g., [Hi80, HK93]. One aspect, however,
should be recorded here for later use, namely thét quasi-invariant under the
translations by elements ih?(R,) (which we embed in the canonical way into
8'(R,) so that it becomes a dense linear subspace). Here is a quick way to see
this: give the space®(A™), m € N, the norms|A™ - |, so that they and their
duals D(A™)* become Hilbert spaces. Chooge € N so that the injection of
D(A™) into L2(R.) is Hilbert—-Schmidt. Notice that Minlos’ theorem implies that

w is carried byD*(A™) c 8'(R,). Thus(L?(R,), D*(A™), n) forms an abstract
Wiener space, and we can use the well-known Cameron—Martin formula derived,
e.g., in [Ku75].

Our next step is to quote a very useful result by S. Albeverio and M. Rdckner
[AR9O0].

Consider a Suslin topological vector spa€ever the reals, equipped with its
Borel o-algebra, denoted again g,. Assume thab is a measure olE, Bo)
which is not identically zero. Define an open sub®ebf E as the union of all
open subsets which havemeasure zero. Since by constructignis covered by
open subsets of zero measure, the fact thiststrongly Lindelof (s.a.) tells us, that
V has a countable subcover bynull sets, and consequently has itselfneasure
zero. Hencé¢v is the largest open subset Bfwhich has zere-measure. Albeverio
and Roéckner define supp := E\ V.

Letk € E. v is calledk-quasi-invariant ifv is quasi-invariant w.r.t. translations
by the elements of the one-dimensional subspace generatedilay, for every
A € Bp, and allx € R, v(A) = 0 impliesv(A + Ak) = 0. Albeverio and Rockner
prove in [AR90] the following

PROPOSITION.Let K := {k € E; v is k-quasi-invarian}. Thenk is a linear
space. IfK is dense inE thensuppv) = E.

For the convenience of the reader — and with the permission of the authors — |
repeat the proof given in [AR90] here:

The fact thatX is linear follows directly from the definition éf-quasi-invariance.
Assume thatk is dense inE, and letz € suppv). (Suchz exists, otherwise
would be the zero measure.) We want to show then that every elethen of
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the formz” = z + « 7/, 7/ € E, belongs to sup), and consequently also every
7" € E. First we show this for” = z 4+ k with k € K: Let V., be an open
neighborhood of + k. ThenV, := V_,; — k is an open neighborhood ef Thus
we must haver(V,) > 0, andk-quasi-invariance ob implies thatv(V,) > O.
Hencez + k € supp(v). Now letz’ € E, and choose a nék;, i € I) in K which
converges t@’. Thenz +«a z' = lim;(z + « k;). We havez + a k; € supfv) for all
i € I.suppv) is closed, and thus we get+ « 7’ € suppv). O

In other words: ifv is quasi-invariant with respect to the translations of a dense
linear subset, then every nonempty open set has nonvanishimgpsure. Assume
now that f andg are continuous mappings frof into a Hausdorff topological
spacefF’, which arev-a.e. equal. I is k-quasi-invariant for alk in a dense sek,
then they must be equal: The get; f(w) # g(w)} is open, and the assumption
that it is nonempty leads to a contradiction. For the white noise measune
($'(R,), Bo) we get therefore the following conclusion.

COROLLARY. Let f andg be two mappings frord’(R ) into a Hausdorff topo-
logical space which are continuous w.r.t. any dual topologysaiR , ), and which
are such thatf = g u-a.s. Thenf = g. In particular, a u-class of real or com-
plex valued random variables ai$’'(R.), 8o, 1) can only have one continuous
representative.

Our next task is to introduce a Brownian motion @H(R ), Bo, 1), and we
shall follow the usual constructions. One way to do this is as follows: Consider
the linear mappiné(\,: SRy — L%(w) where?(\f is the u-class of the random
variable given byX ;(w) := (, f) for f € 8(Ry), w € 8'(Ry). It follows directly
from the definition ofy that this mapping is continuous, (R, ) is equipped
with the norm ofL?(R. ). Therefore, it has a unique linear continuous extension to
L2(R+) which we continue to denote bgl and byX  we mean any representative
of X, if f e LAR,) \ 8(R,). Itis clear that(X,; f € L%(R,)) is a centered
Gaussian family whose covariance is given by the inner productiR, ). Choose
fort € Ry, f = 10, and setB; := Xy,,. Then it is plain to check, that the
process(ﬁ,; t € R,) has the same finite-dimensional distributions as a Brownian
motion. Therefore, we can apply the Kolmogorov—Chentsov lemma to find a mod-
ification of (B;; ¢ € R,) with a.s. continuous sample paths. This modification is a
standard Brownian motion, and it will be denoted(®; ¢ € R,).

Alternatively, we can mimic the Lévy—Ciesielski construction, e.g., [MK69].
To this end, we considek?([0, 1]) (with Lebesgue measure) as embedded into
L2(R+). Let(s,x;n e No, k =1,3,..., 2"~ — 1) be the system of Schauder
functions on[0, 1]. That is, forr € Ry, s,x(?) := fé fuk(s)ds, wheref, . is the
Haar function of indexx, k), which is 2"~9/2 on the interval (k — 1)/2", k/2"),
—2=V/Zon[k/2", (k +1)/2") and zero otherwise. Recall that the system of Haar
functions forms a complete orthonormal systemia0, 1)) (e.g., [MK69)). It is
clear thats, ; is continuous oo, 1].
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Now choose any CON&? ; n € No, k = 1,3,...,2""* — 1) of L*([0, 1])
in C°([0, 1]). Let N, i (@) = (w,€l,). Then the family(N,; n € No, k =
1,3,..., 01— 1) is an i.i.d. system of everywhere defined standard normal ran-
dom variables. Define

B :=tNos+ Y _ sni(®) Nuio 1 €1[0,1].
n,k

Then we are in the same situation as in [MK69], p. 7, and can use the Borel-
Cantelli lemma to prove that this series converges a.s. absolutelyrgfiodmly in

t € [0, 1]. Therefore, the proces’,, ¢t € [0, 1], has a.s. continuous sample paths.

It is obvious thatB, is centered Gaussian, and to check that the covarian®eg, of

B, iss At is an easy exercise. ThyB,, ¢ € [0, 1]) is a standard Brownian motion
over|[O, 1].

ForanyN € N we can now repeat the same construction on the intéMaN +
1] with a CONS(e),. n € No, k = 1,3,...,2""1 — 1) of L[N, N + 1]) in
C> ([N, N + 1]), and obtain an independent standard Brownian motion indexed
byt € [N, N + 1]. Gluing these Brownian motions continuously together, we
obtain a standard Brownian motion indexed by the half-line.

Let us denote th@-completion ofBg by B. (The extension of. to B will be
denoted by the same symbol.)

Consider our first construction of Brownian motiahy, ¢ € R,), i.e., by modi-
fication of the random variablg®, r € R... We want to show that the-completion
o"(B;, t e Ry) of o(B;, t € R,) generated by it is equal t8. First we prove the
following result which is almost obvious.

LEMMA. Let7 be any subset of(R,) which is total in$(R,) with respect
to the norm ofL2(R..) restricted to8(R,). Then theu-completion ofo (7) :=
o(Xy, f € T) coincides withB.

Proof. Since all linear combinations of random variables of the fafmwith
f € T areo (7)-measurable, we may assume without loss of generalityjthat
a dense linear subspace&ifR ;) with respecttq - |,. Let f € 8(R,), and choose
asequencef,, n € Ng) in 7 so that| f — f,|» — 0. ThenX ;, converges in mean
square toX ;. By choosing a subsequence if necessary, we may assumg ghat
converges tX ; u-a.s. This implies thak ; has a modification, say

X, :=limsupX,
neN
which is measurable with respect to thealgebra generated by the random vari-
ablesX,, n € N. In particular, X, is o (7)-measurable, and therefore, is
measurable with respect to thecompletionog“(7) of the o-algebrac (7). On
the other hand, the random variables, f € §(R.), generateBy, so that we have
the following inclusions

Bo C o™ (T) C B.
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Consequently (7)) = B. O

Let f € C*(R,), and consider the random variabtg . Define the following
sequence

o0
X4 =" f(s{)(By,, — By). neN,
k=0

wheres; = k/2". Observe that for each € N, the series above has only a finite
number of terms. It is straightforward to check th&t converges toX  in mean
square sense. By an argument similar to the one in the proof of the lemma, we find
that X ; is measurable with respect 4d'(B;, ¢+ € R;). This holds for everyf in

the subspac€ (R, ) of (R, ), which is dense w.r.t. the nori- |,. Using the
lemma withT = C°(R,) we therefore get the following inclusions:

o(CX(R,)) C o (B;, t €Ry) C B = 0" (CE(Ry)),

where the last--algebra is thg.-completion ofo (C2°(R.)). Hence we can con-
clude that

o“(B,, t eR,) = B.

For the Brownian motion defined by the Lévy—Ciesielski construction we obtain
the same result — more easily — in a similar way.

Thus we have completed our discussion of a realization of the hypotheses (H.1),
(H.2) in the setting of the white noise space over the half-line.

We conclude this section with the following remark. Instead @ ) we could
as well have chosen the smaller spag€R ) which is defined as the closure of
C>(R4) in 8(R) (or in 8(R.), which leads to the same space). It is clear that
4(R,) is the subspace of those functions&iR) which are supported iR, (or
those functions in§(R,) which together with all their derivatives vanish at the
origin). As a linear subspace &f(R) or 8(R_), $(R,) is again nuclear. There-
fore, we can repeat the preceding discussion almost word by word, with obvious
modifications here and there.

4. Differential Operators

Consider a random variableon (2, 8, P). If Q is a topological vector space (or
admits some suitable notion of translations), like in the case of the two realizations
mentioned in Section 2, it is obvious how to define directional derivatives. Since
in the general case such a structure is not available, we introduce directional deriv-
atives by imitating the chain rule. This has been done in [DP97], but the question
whether the derivatives are well-defined had been left open. We start with this
guestion here.



342 JURGEN POTTHOFF

Forn € N, denote byC°(R") the space of infinitely often continuously dif-
ferentiable functions oiR” which — together with all their derivatives — have at
most exponential growth. It will be convenient to denote ithepartial derivative
of f € C*(R") atx € R" by f;(x).

By Cg°,(€2) we mean the space of all random variabtetor which there exist
neN hy,...,h, € CCRy), andf € C>*(R") so that

Y = f(Xpy, ..oy Xn,).
Note thatCg?, () C LP(P) forall p > 1, and these inclusions are dense.
LEMMA 1. Assume that’ € Cg°,(2) has two representations of the form

Y = f(Xnys s Xn,)

= g(Xiys .-, Xi,)

with n, m € N, hq,...,h,, k1,....ky, € CFRy), and f € CXR"), g €
C®(R™). Then for allu € L?(R,),

n
Z f‘,i(xhlv e Xh,l) (l/i, hi)LZ(RJr)
i=1

= g (Xuy. ... Xp,) . k) 2wy,  P-as.
j=1
Proof. By assumption, we have for dlle C>*(R.),
(fXnys oo X)) — 8(Xiqs -+ X)) € =0,

and in particular the law of this random variable is the Dirac measgiat 0.

Now consider the Gaussian random varial#gs ..., Z,,, Zs,, ..., Z,, Z; in
the white noise realization aq’(R.), 8, u) of Section 3. ThatisZ, (w) = (w, 1)
forn € $(Ry), w € 8'(Ry). The random variable8,,, ..., Z, have the same joint
distribution asX,,, ..., X;. Therefore also the random variable

(fZnys s Zny) — 8(Ziy, ..., Zy,)) €7

haseg as its law. Since this is true for evetye C°(R.), this implies that the
S-transform of

f(Zhl, ey Zh”) — g(Zkl, ey ka)
is zero. Because of the injectivity of ttfetransform we conclude that
fZyy,. ... Zy,) =8(Zyy, ..., Zy,), p-&S.

By construction, both sides of the last equality are weakly continuou$ @, ).
The corollary of Section 3 entails that these two random variables are @gprat
whereon §’(R. ). Hence we may compute the directional derivative of both sides
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in directionu € L?(R,) c 8'(R.) as follows:

n
Du f(Zh]_v'--th,l) - Zﬁi(zhlv"'vzhn) (uvhi)Lz(R+)
i=1

= Dug(Zkl,...,Zk)

m

m
= Zg,j(zklv ceey ka) (I/l, kj)LZ(R+)a
=1

because fon € $(R}), w, u € 8'(Ry),

= %(erku,n)

= (u, ﬂ)LZ(R+)-

Dy Z,(w)

=0
Consequently, we have for dlke C°(R,) that
(Z FiZngs -y Zny) (i) o,y —
i=1

— Y 8 (Zs s Zi) (W, k,,>Lz(R+>> e
j=1

haseg as its law. Now we go back to the original probability space, i.e., replace
the Gaussian random variabl&s,, etc., byX,,, etc. Then we obtain that the
transform of

m

D iy X)) b ey = Y 8 Ko o0 Xi,) (K)o,
i=1

j=1

is zero, and hence this random variabléis.s. zero. O
The preceding lemma justifies the following

DEFINITION. LetY € Cg,(2) be given by

Y = f(Xng, .o, Xn,),

withn € N, hy, ..., h, € C*(Ry), and f € C*(R"). For allu € L%(R,), the
random variable irCg", (€2) defined by

DY := Z FiXngs ooy X)) 0, b)) 2w,y
i—1

is called thederivative ofY in directionu.
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For everyu € L?(R,), D, is a densely defined operator @3(P). Thus it has
an adjointD;; with domainD (Dy). It is not very difficult to check tha€'¢®, (€2) is
a subset ofD(D;), and that ort’ € Cg°, () it acts as

DY =X,Y — D,Y.

In particular,D, is closable orL?(P), and we denote its closure b9, D(D,)).
At this point we can repeat all arguments, as, e.g., given in [HK93], to show that
actually

D(D,) = D(D}) = D(X,) = D(NY?),

whereN is the number operator, which can — for example — be defined on the core
Cs-,(2) by the formula
N =YD} D,
keN
with a CONS(e, k € N) of L?(R,).
The following result will be useful.

LEMMA 2. For everyu € L%(R,), D, commutes with th&-transform in the
sense that for alv € D(NY?), f € L>(R,),

S(D,Y)(f) = Du(SY)(f),

where the right-hand side is the usual Gateaux derivative of a functidt?GR.,).
Proof. Compute

S(D,Y)(f) = E(D,Y : €% 1)
= E(Y D; : eXr . )
= E(Y (Xu — (u, f)) cefr ),
where we have set

el = exffl/z‘flg.

On the other hand, we have

D, (SY)(f)

0
Ty SY)(f +2ru)

A=0

9
— . fHru -
8)\E(Y.e"H :)

A=0

_ iE(YeXer)»Xufl/Z\erAul%)
oA

= E(Y (Xu — (fiw):€" 1),

1=0
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where the interchange of the derivative wx.tand the expectation is readily justi-
fied, e.g., by an application of the dominated convergence theorem. O

Consider again the formula fab, Y with Y e Cg°,(2). We may write it as
follows '

DY = (0, Y) u(r) dr,
Ry

where we have put

Y :=> " filXny, - or Xn,) hi(0),

i=1

The integral above could of course be interpreted pointwis® dmut we shall take
in the sense of a?(P)-valued Pettis integral (e.g., [HP57]). Therefore we have
for all Z € L?(P) the relation

E(Z (8,Y)u(t)dt>=/ E(Z (8,Y)) u(r) dr.
Ry

Ry

Choosing in particulaZ = exp(X s — 3| f13) with f € C=(R..), we find that

S(DLY)(f) = / S@Y)(f) ulr) dr.

Ry

We are interested to compute tleransform ofd; Y. To this end, let us prove
first the following result

LEMMA 3. Forall f e C(R,), Y € Cg,(£2), the mapping
u = D, (SY)(f)

from L?(R,) into R is linear and continuous.

Proof. That for ally € Cg7,(R2), the mapping: — D, Y is linear and continuous
from L?(R,) into L?(P), is obvious from the definition. On the other hand, she
transform of a random variable is if$( P)-inner product with expX ; — % |f|§),
and hence it is clear that this is a continuous linear map #3aP) into R. Thus
u — S(D,Y)(f) is linear and continuous fromi?(R,) into R. The proof is
finished by an application of Lemma 2. O

From Lemma 3 we conclude that for givéhe C2°, (), f € CX(R,), there
exists an element ih?(R,) which we denote by

8
— SY
LSO )
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so that for allu € L?(R,),
)
Du(SY)(f) = /R i S a0

8 SY(f)/8f () is also called th&réchet functional derivative &Y at 1. If we use
again the fact thab, andS commute, we arrive at the following (slightly informal)
intertwining relation ford, andS

) S
8f(0)

which is essentially T. Hida’s original definition 6f in the ground-breaking paper
[Hi75].

9, =81
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