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Abstract. White noise analysis is formulated on a general probability space which is such that (1) it
admits a standard Brownian motion, and (2) itsσ -algebra is generated by this Brownian motion (up
to completion). As a special case, the white noise probability space with time parameter being the
half-line is worked out in detail. It is shown that the usual differential operators can be defined on the
smooth, finitely based functions of at most exponential growth via the chain rule, without supposing
the existence of a linear structure (or translations) on the underlying probability space.
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1. Introduction

In [DP97], T. Deck, G. Våge, and the author began the attempt to formulate T. Hida’s
white noise analysis on a general probability space. One of the reasons that moti-
vated the article [DP97] was that there are important applications – such as in
nonlinear filtering – in which a Brownian motion and its noise aregiven, and it
seems unnatural, if not wrong, to require that it is realized on a fixed probability
space, such as the white noise space. Another reason was the wish to unify the
bases of white noise analysis and the Malliavin calculus. It turned out that indeed
at least two of the main features of white noise analysis can be formulated within
a general framework without any loss: the theory of generalized random variables,
and the calculus of differential operators.

In the above-mentioned paper, however, the problem of showing that the differ-
ential operators defined there are well-defined was left open, and the main purpose
of the present paper is to give a proof of this fact.

Our starting point here will be a general probability space which carries a
Brownian motion whose time parameter domain is the half-lineR+. The only addi-
tional assumption is that the underlyingσ -algebra is (up to completion) generated
by the Brownian motion. This entails that theS-transform, which is one of the basic
tools of white noise analysis, is injective.
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The framework and basic notions will be established in Section 2. In Section 3
one realization of the framework via the white noise space with time parameter
domainR+ is provided in a rather detailed fashion, because this realization seems
not to be so well known. Also, I reproduce there a result by S. Albeverio and
M. Röckner [AR90] on quasi-invariant measures on Suslin spaces. This result im-
plies that on a Suslin space with a (nontrivial) measureν which is quasi-invariant
with respect to translations of a dense linear subspace, aν-class of random vari-
ables can have at most one continuous representative. This fact will be essential
for the proof of the well-definedness of the differential operators which is given in
Section 4.

2. Framework

Let (�,B, P ) a complete probability space which satisfies the following condi-
tions:

(H.1) There exists a standard Brownian motion(Bt , t ∈ R+) on (�,B, P );
(H.2) TheP -completion ofσ (Bt, t ∈ R+) is equal toB.

It is well known, e.g., [RY91], Lemma V.3.1, that condition (H.2) implies that
the algebra generated by the (real, imaginary or complex) exponential functions in
the variablesBt1, . . . , Btn , for n ∈ N, t1, . . . , tn ∈ R+, is dense inL2(P ). In fact,
both statements are equivalent, and it is obvious that the same holds just as well for
the algebra of polynomials.

Let us mention two realizations of these assumptions:

(1) Wiener space:� = C0(R+), P is Wiener measure,B is the completion of the
σ -algebra generated by the cylinder sets, andBt(ω) = ω(t) for ω ∈ �.

(2) White noise over the half line, which is discussed in detail in Section 3.

Let (F 0
t , t ∈ R+) be the filtration generated by(Bt , t ∈ R+). Denote by

(Ft , t ∈ R+) its standardµ-augmentation: ifN is the ideal of theµ-null-sets
in B, Ft := F 0

t 4N , t ∈ R+. Then (Ft , t ∈ R+) is right-continuous because
(Bt , t ∈ R+) is strongly Markov (cf. Proposition 2.7.7 in [KS88]). Actually,
(Ft , t ∈ R+) is continuous (e.g., [KS88], Corollary 2.7.8), and for allt , s ∈ R+
with t > s, Bt − Bs is independent ofFs (e.g., [KS88], Theorem 2.7.9), i.e.,
(Bt , t ∈ R+) is a Brownian motion relative to(Ft , t ∈ R+).

Consider the linear mapping

X: C∞c (R+) −→ L2(P )

f 7−→ Xf ,

whereXf :=
∫
R+ f (t)dBt . A trivial application of the Itô isometry shows that

this mapping is continuous, if we giveC∞c (R+) the norm | · |2 of L2(R+) ≡
L2(R+,B(R+), λ), whereλ is the Lebesgue measure. SinceC∞c (R+) is dense in
L2(R+), this mapping extends to a continuous linear mappingX̂ fromL2(R+) into
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L2(P ). If f ∈ L2(R+) is not inC∞c (R+), we mean byXf any representative of
theP -classX̂f . It is clear, that the family(Xf , f ∈ L2(R+)) forms a centered
Gaussian family with covariance given by the inner product ofL2(R+).

I think it is appropriate to call the mappinĝX (Gaussian) white noise, and an
essential part of white noise analysis is really the analysis of this mapping and
its extensions. Consider the Schwartz spaceS(R+) over the half-line as defined in
[DP97], cf. also Section 3, and the dense continuous embeddingS(R+) ⊂ L2(R+).
S(R+) is by construction nuclear, and therefore we have the canonically associated
Gel’fand–Hida triple (e.g., [KL96])

(S+) ⊂ L2(P ) ⊂ (S+)∗,
where(S+)∗ is a space of generalized random variables. Therefore, we may con-
sider nowX̂ as a mapping fromC∞c (R+) into (S+)∗, and it has a continuous linear
extension to the Schwartz space of tempered distributionsS′(R+) over the half–
line (cf. Section 3). In particular, we have fort ∈ R+, X̂δt ∈ (S+)∗ (δt is the
Dirac distribution att), and this iswhite noise at timet . It is customary to denote
this generalized random variable bẏBt , and it is not hard to see that it is indeed
the time derivative of Brownian motion at timet , the derivative being taken in the
strong topology of(S+)∗.

LetZ ∈ L2(P ). Define itsS-transformSZ as a function onC∞c (R+) by

SZ(f ) := e−1/2 |f |22 E
(
Z eXf

)
, f ∈ C∞c (R+).

Among other purposes, the factor in front of the expectation serves to normalize
theS-transform so thatS1= 1.

By what has been said above, it is clear that forZ ∈ L2(P ), SZ has a continuous
extension toL2(R+), and we shall not distinguish the two mappings in the sequel.

The S-transform was first introduced in white noise analysis by I. Kubo and
S. Takenaka [KT80], and it is closely related to the Segal–Bargman transform on
Fock space, cf., e.g., [KL96].

TheS-transform is very useful for a number of reasons. Two are:

(i) It ‘diagonalizes’ the Itô integral [DP97], and thereby allows to handle and
extend ‘multiplication by Gaussian (white) noise’ very efficiently.

(ii) Spaces of generalized random variables, like(S+)∗, can be characterized via
theS-transform in a way (e.g., [KL96] and literature quoted there) which is
quite convenient for theoretical work as well as applications.

3. Schwartz Spaces and White Noise on the Half-Line

In this section we construct a white noise probability space over the half-lineR+,
which – according to Section 2 – is to be interpreted as the domain of the time
parameter. The construction and properties are very similar to those of the usual
white noise probability space (e.g., [Hi80, HK93]).
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LetC2∞(R+) denote the set of twice continuously differentiable functionsf on
(0,+∞), which are such that

(i) f and its first two derivatives vanish rapidly (i.e., faster than any power) at
infinity, and

(ii) the first two right derivatives off exist at 0, and they coincide withf ′(0+)
andf ′′(0+), respectively.

Consider the following differential operator

Af (t) := −1

2

d

dt
t

d

dt
f (t)+ 1

4
t f (t), t ∈ R+,

acting onC2∞(R+). It is obvious thatA is symmetric on the dense subspaceC2∞(R+)
of L2(R+). (As usual, we talk about the elements of this Hilbert space as if they
were functions. There will be no danger of confusion.) Introduce the set of La-
guerre functions

lk(t) := e−t/2Lk(t), t ∈ R+, k ∈ N0,

whereLk is the Laguerre polynomial of orderk ∈ N0 (e.g., [Sa77]). It is well-
known that(lk, k ∈ N0) is a complete orthonormal system inL2(R+). The La-
guerre functionslk obviously belong toC2∞(R+), and an elementary calculation
shows that they are the eigenfunctions ofA:

A lk =
(
k + 1

2

)
lk, k ∈ N0.

Therefore it is plain (for example by an application of Nelson’s analytic vector
theorem [RS75]), thatA is essentially self-adjoint onC2∞(R+), and its unique self-
adjoint extension has domain

D(A) :=
{
f ∈ L2(R+); f =

∑
k∈N0

fk lk with
∑
k∈N0

f 2
k k

2 < +∞
}
.

We see that on the half-lineA plays a role which is very similar to the one of the
Hamiltonian of the harmonic oscillator on the full line, and the Laguerre functions
play the role of the Hermite functions. Now we can proceed as in the case of the
full line (e.g., [Hi80, RS72, Si71]). Define

S(R+) :=
⋂
n∈N0

D(An),

and equip this space as usual with the projective limit topology defined by the
Hilbert spacesD(An). Due to the spectral properties ofA, it is obvious thatS(R+)
is a nuclear countable Hilbert space, and as such a Fréchet and a Montel space
(e.g., [Tr67]). In [DP97] an elementary argument was given which shows that the
functionsf in S(R+) are infinitely differentiable on(0,+∞), and thatf together
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with all its derivatives vanishes rapidly at infinity. It is also straightforward to check
that all right derivatives off ∈ S(R+) exist at zero, and that they coincide with the
right limits of the derivatives off at 0. That is,f ∈ S(R+) can be considered as
the restriction of a function inS(R) toR+.

We denote the dual ofS(R+) by S′(R+), and call itSchwartz space of tempered
distributions over the half-line.

Let us equipS′(R+) with some of the various common topologies, and discuss
its topological properties. The arguments below are all completely standard, and
given here for the convenience of the interested reader.

If we give S′(R+) the strong topology (i.e., the topology of uniform conver-
gence on bounded subsets ofS(R+)), then S′(R+) is reflexive sinceS(R+) is
Montel (e.g., [Tr67], p. 376, Corollary). For example, from the Lemma, p. 166,
in [RS72] we can conclude that the strong and the Mackey topology coincide. (The
Mackey topology is the topology of uniform convergence on the weakly compact,
convex subsets ofS(R+), and it is the finest dual topology onS′(R+), i.e., the
finest locally convex Hausdorff topology onS′(R+) so thatS(R+) is its dual in this
topology. The weak topology onS′(R+) is the topology of pointwise convergence,
and it is the coarsest dual topology onS′(R+). The Mackey–Arens theorem (e.g.,
[RS72]) states that all locally convex dual topologies are between the weak and the
Mackey topology. Furthermore, the strong and the Mackey topology onS′(R+)
also coincide with the topology of uniform convergence on compact subsets of
S(R+) (e.g., [Tr67], p. 357, Proposition 34.5, but it also follows directly from the
definition of a Montel space).

Now we can use Theorem 7 in [S73], p. 112, to conclude thatS′(R+) equipped
with the strong topology is a Lusin space. (One only has to make the trivial remark
that the compact-open topology used forS′(R+) = L(E, F ) there, withE =
S(R+) andF = R, is just the topology of uniform convergence on compact subsets
of S(R+), which had already been identified with the strong topology onS′(R+)
above.)

It is evident from the definition of a Lusin space (e.g., [S73], p. 94), that if
we equipS′(R+) with any topology weaker than the strong topology, it remains a
Lusin space. In particular,S′(R+) equipped withany locally convex dual topology
is a Lusin space, and we consider this case from now on. As a Lusin space,S′(R+)
is also a Suslin space ([S73], p. 96), and it is strongly Lindelöf ([S73], p. 104,
Proposition 3), i.e., every open cover of any open subset ofS′(R+) has a countable
subcover.

Moreover, sinceS′(R+) is Suslin for any dual topology, Corollary 2, p. 101, in
[S73] entails that they all generate the same Borelσ -algebra, which is theσ -algebra
generated by the cylinder sets, because the weak topology is a dual topology on
S′(R+). Let us denote thisσ -algebra byB0.

Consider a total subsetT in S(R+). As a Fréchet spaceS(R+) is barreled.
Therefore we have the Banach–Steinhaus theorem which implies that onS′(R+)
the topology of pointwise convergence onT coincides with the weak topology.
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Consequently, theσ -algebraσ (T ) := σ (〈·, f 〉; f ∈ T ) is equal toB0. For
example, we may choose forT the set of Laguerre functions.

As usual, we may use Minlos’ theorem (e.g., [Hi80]) to introduce the centered
Gaussian measureµ on (S′(R+),B0) via the relation∫

S′(R+)
ei〈ω,f 〉 µ(dω) = e−

1
2 |f |22, f ∈ S(R+),

where 〈·, ·〉 stands for the dual pairing ofS′(R+) and S(R+), and | · |2 for the
norm of L2(R+). We shall callµ the white noise measure on the half line.It
shares almost all properties with the usual white noise measure, and the analysis of
L2(S′(R+),B0, µ) can be done just as in, e.g., [Hi80, HK93]. One aspect, however,
should be recorded here for later use, namely thatµ is quasi-invariant under the
translations by elements inL2(R+) (which we embed in the canonical way into
S′(R+) so that it becomes a dense linear subspace). Here is a quick way to see
this: give the spacesD(Am), m ∈ N, the norms|Am · |2 so that they and their
dualsD(Am)∗ become Hilbert spaces. Choosem ∈ N so that the injection of
D(Am) into L2(R+) is Hilbert–Schmidt. Notice that Minlos’ theorem implies that
µ is carried byD∗(Am) ⊂ S′(R+). Thus(L2(R+),D∗(Am), µ) forms an abstract
Wiener space, and we can use the well-known Cameron–Martin formula derived,
e.g., in [Ku75].

Our next step is to quote a very useful result by S. Albeverio and M. Röckner
[AR90].

Consider a Suslin topological vector spaceE over the reals, equipped with its
Borel σ -algebra, denoted again byB0. Assume thatν is a measure on(E,B0)

which is not identically zero. Define an open subsetV of E as the union of all
open subsets which haveν-measure zero. Since by constructionV is covered by
open subsets of zero measure, the fact thatE is strongly Lindelöf (s.a.) tells us, that
V has a countable subcover byν-null sets, and consequently has itselfν-measure
zero. HenceV is the largest open subset ofE which has zeroν-measure. Albeverio
and Röckner define supp(ν) := E \ V .

Let k ∈ E. ν is calledk-quasi-invariant ifν is quasi-invariant w.r.t. translations
by the elements of the one-dimensional subspace generated byk, i.e., for every
A ∈ B0, and allλ ∈ R, ν(A) = 0 impliesν(A+ λk) = 0. Albeverio and Röckner
prove in [AR90] the following

PROPOSITION.LetK := {k ∈ E; ν is k-quasi-invariant}. ThenK is a linear
space. IfK is dense inE thensupp(ν) = E.

For the convenience of the reader – and with the permission of the authors – I
repeat the proof given in [AR90] here:

The fact thatK is linear follows directly from the definition ofk-quasi-invariance.
Assume thatK is dense inE, and letz ∈ supp(ν). (Suchz exists, otherwiseν
would be the zero measure.) We want to show then that every elementz′′ ∈ E of
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the formz′′ = z + α z′, z′ ∈ E, belongs to supp(ν), and consequently also every
z′′ ∈ E. First we show this forz′′ = z + k with k ∈ K: Let Vz+k be an open
neighborhood ofz + k. ThenVz := Vz+k − k is an open neighborhood ofz. Thus
we must haveν(Vz) > 0, andk-quasi-invariance ofν implies thatν(Vz+k) > 0.
Hencez + k ∈ supp(ν). Now let z′ ∈ E, and choose a net(ki, i ∈ I ) in K which
converges toz′. Thenz+ α z′ = limi (z+ α ki). We havez+ α ki ∈ supp(ν) for all
i ∈ I . supp(ν) is closed, and thus we getz+ α z′ ∈ supp(ν). 2

In other words: ifν is quasi-invariant with respect to the translations of a dense
linear subset, then every nonempty open set has nonvanishingν-measure. Assume
now thatf andg are continuous mappings fromE into a Hausdorff topological
spaceF , which areν-a.e. equal. Ifν is k-quasi-invariant for allk in a dense setK,
then they must be equal: The set{ω; f (ω) 6= g(ω)} is open, and the assumption
that it is nonempty leads to a contradiction. For the white noise measureµ on
(S′(R+),B0) we get therefore the following conclusion.

COROLLARY. Letf andg be two mappings fromS′(R+) into a Hausdorff topo-
logical space which are continuous w.r.t. any dual topology onS′(R+), and which
are such thatf = g µ-a.s. Thenf = g. In particular, aµ-class of real or com-
plex valued random variables on(S′(R+),B0, µ) can only have one continuous
representative.

Our next task is to introduce a Brownian motion on(S′(R+),B0, µ), and we
shall follow the usual constructions. One way to do this is as follows: Consider
the linear mappinĝX·: S(R+) → L2(µ) whereX̂f is theµ-class of the random
variable given byXf (ω) := 〈ω, f 〉 for f ∈ S(R+),ω ∈ S′(R+). It follows directly
from the definition ofµ that this mapping is continuous, ifS(R+) is equipped
with the norm ofL2(R+). Therefore, it has a unique linear continuous extension to
L2(R+), which we continue to denote bŷX·, and byXf we mean any representative
of X̂f if f ∈ L2(R+) \ S(R+). It is clear that(Xf ; f ∈ L2(R+)) is a centered
Gaussian family whose covariance is given by the inner product inL2(R+). Choose
for t ∈ R+, f = 1[0,t ], and set̃Bt := X1[0,t] . Then it is plain to check, that the
process(B̃t; t ∈ R+) has the same finite-dimensional distributions as a Brownian
motion. Therefore, we can apply the Kolmogorov–Chentsov lemma to find a mod-
ification of (B̃t; t ∈ R+) with a.s. continuous sample paths. This modification is a
standard Brownian motion, and it will be denoted by(Bt; t ∈ R+).

Alternatively, we can mimic the Lévy–Ciesielski construction, e.g., [MK69].
To this end, we considerL2([0,1]) (with Lebesgue measure) as embedded into
L2(R+). Let (sn,k; n ∈ N0, k = 1,3, . . . ,2n−1 − 1) be the system of Schauder
functions on[0,1]. That is, fort ∈ R+, sn,k(t) :=

∫ t
0 fn,k(s)ds, wherefn,k is the

Haar function of index(n, k), which is 2(n−1)/2 on the interval[(k − 1)/2n, k/2n),
−2(n−1)/2 on [k/2n, (k+1)/2n) and zero otherwise. Recall that the system of Haar
functions forms a complete orthonormal system onL2([0,1]) (e.g., [MK69]). It is
clear thatsn,k is continuous on[0,1].
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Now choose any CONS(e0
n,k; n ∈ N0, k = 1,3, . . . ,2n−1 − 1) of L2([0,1])

in C∞c ([0,1]). Let Nn,k(ω) := 〈ω, e0
n,k〉. Then the family

(
Nn,k; n ∈ N0, k =

1,3, . . . ,2n−1 − 1
)

is an i.i.d. system of everywhere defined standard normal ran-
dom variables. Define

Bt := t N0,1+
∑
n,k

sn,k(t) Nn,k, t ∈ [0,1].

Then we are in the same situation as in [MK69], p. 7, and can use the Borel–
Cantelli lemma to prove that this series converges a.s. absolutely anduniformly in
t ∈ [0,1]. Therefore, the processBt , t ∈ [0,1], has a.s. continuous sample paths.
It is obvious thatBt is centered Gaussian, and to check that the covariance ofBs,
Bt is s ∧ t is an easy exercise. Thus(Bt , t ∈ [0,1]) is a standard Brownian motion
over[0,1].

For anyN ∈ Nwe can now repeat the same construction on the interval[N,N+
1] with a CONS(eNn,k, n ∈ N0, k = 1,3, . . . ,2n−1 − 1) of L2([N,N + 1]) in
C∞c ([N,N + 1]), and obtain an independent standard Brownian motion indexed
by t ∈ [N,N + 1]. Gluing these Brownian motions continuously together, we
obtain a standard Brownian motion indexed by the half-line.

Let us denote theµ-completion ofB0 by B. (The extension ofµ to B will be
denoted by the same symbol.)

Consider our first construction of Brownian motion(Bt , t ∈ R+), i.e., by modi-
fication of the random variables̃Bt , t ∈ R+. We want to show that theµ-completion
σµ(Bt, t ∈ R+) of σ (Bt, t ∈ R+) generated by it is equal toB. First we prove the
following result which is almost obvious.

LEMMA. Let T be any subset ofS(R+) which is total inS(R+) with respect
to the norm ofL2(R+) restricted toS(R+). Then theµ-completion ofσ (T ) :=
σ (Xf , f ∈ T ) coincides withB.

Proof. Since all linear combinations of random variables of the formXf with
f ∈ T areσ (T )-measurable, we may assume without loss of generality thatT is
a dense linear subspace ofS(R+) with respect to| · |2. Letf ∈ S(R+), and choose
a sequence(fn, n ∈ N0) in T so that|f − fn|2→ 0. ThenXfn converges in mean
square toXf . By choosing a subsequence if necessary, we may assume thatXfn
converges toXf µ-a.s. This implies thatXf has a modification, say

X̃f := lim sup
n∈N

Xfn,

which is measurable with respect to theσ -algebra generated by the random vari-
ablesXfn , n ∈ N. In particular, X̃f is σ (T )-measurable, and thereforeXf is
measurable with respect to theµ-completionσµ(T ) of the σ -algebraσ (T ). On
the other hand, the random variablesXf , f ∈ S(R+), generateB0, so that we have
the following inclusions

B0 ⊂ σµ(T ) ⊂ B.
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Consequentlyσµ(T ) = B. 2
Let f ∈ C∞c (R+), and consider the random variableXf . Define the following

sequence

Xn
f :=

∞∑
k=0

f (snk )
(
Bsnk+1

− Bsnk
)
, n ∈ N,

wheresnk = k/2n. Observe that for eachn ∈ N, the series above has only a finite
number of terms. It is straightforward to check thatXn

f converges toXf in mean
square sense. By an argument similar to the one in the proof of the lemma, we find
thatXf is measurable with respect toσµ(Bt, t ∈ R+). This holds for everyf in
the subspaceC∞c (R+) of S(R+), which is dense w.r.t. the norm| · |2. Using the
lemma withT = C∞c (R+) we therefore get the following inclusions:

σ
(
C∞c (R+)

) ⊂ σµ(Bt, t ∈ R+) ⊂ B = σµ(C∞c (R+)),
where the lastσ -algebra is theµ-completion ofσ (C∞c (R+)). Hence we can con-
clude that

σµ(Bt, t ∈ R+) = B.

For the Brownian motion defined by the Lévy–Ciesielski construction we obtain
the same result – more easily – in a similar way.

Thus we have completed our discussion of a realization of the hypotheses (H.1),
(H.2) in the setting of the white noise space over the half-line.

We conclude this section with the following remark. Instead ofS(R+) we could
as well have chosen the smaller spaceS0(R+) which is defined as the closure of
C∞c (R+) in S(R) (or in S(R+), which leads to the same space). It is clear that
S(R+) is the subspace of those functions ofS(R) which are supported inR+ (or
those functions inS(R+) which together with all their derivatives vanish at the
origin). As a linear subspace ofS(R) or S(R+), S0(R+) is again nuclear. There-
fore, we can repeat the preceding discussion almost word by word, with obvious
modifications here and there.

4. Differential Operators

Consider a random variableY on (�,B, P ). If � is a topological vector space (or
admits some suitable notion of translations), like in the case of the two realizations
mentioned in Section 2, it is obvious how to define directional derivatives. Since
in the general case such a structure is not available, we introduce directional deriv-
atives by imitating the chain rule. This has been done in [DP97], but the question
whether the derivatives are well-defined had been left open. We start with this
question here.
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For n ∈ N, denote byC∞e (Rn) the space of infinitely often continuously dif-
ferentiable functions onRn which – together with all their derivatives – have at
most exponential growth. It will be convenient to denote theith partial derivative
of f ∈ C∞e (Rn) atx ∈ Rn by f,i(x).

By C∞fi,e(�) we mean the space of all random variablesY for which there exist
n ∈ N, h1, . . . , hn ∈ C∞c (R+), andf ∈ C∞e (Rn) so that

Y = f (Xh1, . . . , Xhn).

Note thatC∞fi,e(�) ⊂ Lp(P ) for all p > 1, and these inclusions are dense.

LEMMA 1. Assume thatY ∈ C∞fi,e(�) has two representations of the form

Y = f (Xh1, . . . , Xhn)

= g(Xk1, . . . , Xkm)

with n, m ∈ N, h1, . . . , hn, k1, . . . , km ∈ C∞c (R+), and f ∈ C∞e (Rn), g ∈
C∞e (Rm). Then for allu ∈ L2(R+),

n∑
i=1

f,i(Xh1, . . . , Xhn) (u, hi)L2(R+)

=
m∑
j=1

g,j (Xk1, . . . , Xkm) (u, kj )L2(R+), P -a.s.

Proof.By assumption, we have for alll ∈ C∞c (R+),(
f (Xh1, . . . , Xhn)− g(Xk1, . . . , Xkm)

)
eXl = 0,

and in particular the law of this random variable is the Dirac measureε0 at 0.
Now consider the Gaussian random variablesZh1, . . . , Zhn ,Zk1, . . . , Zkm ,Zl in

the white noise realization on(S′(R+),B, µ) of Section 3. That is,Zη(ω) = 〈ω, η〉
for η ∈ S(R+),ω ∈ S′(R+). The random variablesZh1, . . . , Zl have the same joint
distribution asXh1, . . . , Xl. Therefore also the random variable(

f (Zh1, . . . , Zhn)− g(Zk1, . . . , Zkm)
)

eZl

hasε0 as its law. Since this is true for everyl ∈ C∞c (R+), this implies that the
S-transform of

f (Zh1, . . . , Zhn)− g(Zk1, . . . , Zkm)

is zero. Because of the injectivity of theS-transform we conclude that

f (Zh1, . . . , Zhn) = g(Zk1, . . . , Zkm), µ-a.s.

By construction, both sides of the last equality are weakly continuous onS′(R+).
The corollary of Section 3 entails that these two random variables are equalevery-
whereon S′(R+). Hence we may compute the directional derivative of both sides
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in directionu ∈ L2(R+) ⊂ S′(R+) as follows:

Du f (Zh1, . . . , Zhn) =
n∑
i=1

f,i(Zh1, . . . , Zhn) (u, hi)L2(R+)

= Du g(Zk1, . . . , Zkm)

=
m∑
j=1

g,j (Zk1, . . . , Zkm) (u, kj )L2(R+),

because forη ∈ S(R+), ω, u ∈ S′(R+),

Du Zη(ω) = d

dλ
〈ω + λu, η〉

∣∣∣∣
λ=0

= (u, η)L2(R+).

Consequently, we have for alll ∈ C∞c (R+) that(
n∑
i=1

f,i(Zh1, . . . , Zhn) (u, hi)L2(R+)−

−
m∑
j=1

g,j (Zk1, . . . , Zkm) (u, kj )L2(R+)

)
eZl

hasε0 as its law. Now we go back to the original probability space, i.e., replace
the Gaussian random variablesZh1, etc., byXh1, etc. Then we obtain that theS-
transform of

n∑
i=1

f,i(Xh1, . . . , Xhn) (u, hi)L2(R+) −
m∑
j=1

g,j (Xk1, . . . , Xkm) (u, kj )L2(R+)

is zero, and hence this random variable isP -a.s. zero. 2
The preceding lemma justifies the following

DEFINITION. LetY ∈ C∞fi,e(�) be given by

Y = f (Xh1, . . . , Xhn),

with n ∈ N, h1, . . . , hn ∈ C∞c (R+), andf ∈ C∞e (Rn). For all u ∈ L2(R+), the
random variable inC∞fi,e(�) defined by

DuY :=
n∑
i=1

f,i(Xh1, . . . , Xhn) (u, hi)L2(R+)

is called thederivative ofY in directionu.
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For everyu ∈ L2(R+),Du is a densely defined operator onL2(P ). Thus it has
an adjointD∗u with domainD(D∗u). It is not very difficult to check thatC∞fi,e(�) is
a subset ofD(D∗u), and that onY ∈ C∞fi,e(�) it acts as

D∗uY = Xu Y −DuY.

In particular,Du is closable onL2(P ), and we denote its closure by(Du, D(Du)).
At this point we can repeat all arguments, as, e.g., given in [HK93], to show that
actually

D(Du) = D(D∗u) = D(Xu·) = D(N1/2),

whereN is the number operator, which can – for example – be defined on the core
C∞fi,e(�) by the formula

N =
∑
k∈N

D∗ek Dek ,

with a CONS(ek, k ∈ N) of L2(R+).
The following result will be useful.

LEMMA 2. For everyu ∈ L2(R+), Du commutes with theS-transform in the
sense that for allY ∈ D(N1/2), f ∈ L2(R+),

S(DuY )(f ) = Du(SY )(f ),

where the right-hand side is the usual Gâteaux derivative of a function onL2(R+).
Proof.Compute

S(DuY )(f ) = E
(
DuY : eXf :

)
= E

(
Y D∗u : eXf :

)
= E

(
Y
(
Xu − (u, f )

) : eXf : ),
where we have set

: eXf : = eXf−1/2 |f |22.

On the other hand, we have

Du(SY )(f ) = ∂

∂λ
(SY )(f + λ u)

∣∣∣∣
λ=0

= ∂

∂λ
E
(
Y : eXf+λu : )∣∣∣∣

λ=0

= ∂

∂λ
E
(
Y eXf+λXu−1/2 |f+λ u|22)∣∣∣∣

λ=0

= E
(
Y
(
Xu − (f, u)

) : eXf : ),
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where the interchange of the derivative w.r.t.λ and the expectation is readily justi-
fied, e.g., by an application of the dominated convergence theorem. 2

Consider again the formula forDu Y with Y ∈ C∞fi,e(�). We may write it as
follows

DuY =
∫
R+
(∂tY ) u(t)dt,

where we have put

∂tY :=
n∑
i=1

f,i(Xh1, . . . , Xhn) hi(t).

The integral above could of course be interpreted pointwise on�, but we shall take
in the sense of anL2(P )-valued Pettis integral (e.g., [HP57]). Therefore we have
for all Z ∈ L2(P ) the relation

E
(
Z

∫
R+
(∂tY ) u(t)dt

)
=
∫
R+
E
(
Z (∂tY )

)
u(t)dt.

Choosing in particularZ = exp(Xf − 1
2|f |22) with f ∈ C∞c (R+), we find that

S(DuY )(f ) =
∫
R+
S(∂tY )(f ) u(t)dt.

We are interested to compute theS-transform of∂t Y . To this end, let us prove
first the following result

LEMMA 3. For all f ∈ C∞c (R+), Y ∈ C∞fi,e(�), the mapping

u 7→ Du(SY )(f )

fromL2(R+) intoR is linear and continuous.
Proof.That for allY ∈ C∞fi,e(�), the mappingu 7→ DuY is linear and continuous

fromL2(R+) intoL2(P ), is obvious from the definition. On the other hand, theS-
transform of a random variable is itsL2(P )-inner product with exp(Xf − 1

2 |f |22),
and hence it is clear that this is a continuous linear map fromL2(P ) into R. Thus
u 7→ S(Du Y )(f ) is linear and continuous fromL2(R+) into R. The proof is
finished by an application of Lemma 2. 2

From Lemma 3 we conclude that for givenY ∈ C∞fi,e(�), f ∈ C∞c (R+), there
exists an element inL2(R+) which we denote by

t 7→ δ

δf (t)
SY (f )
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so that for allu ∈ L2(R+),

Du(SY )(f ) =
∫
R+

δ

δf (t)
SY (f ) u(t)dt.

δ SY (f )/δf (t) is also called theFréchet functional derivative ofSY at f . If we use
again the fact thatDu andS commute, we arrive at the following (slightly informal)
intertwining relation for∂t andS

∂t = S−1 δ

δf (t)
S,

which is essentially T. Hida’s original definition of∂t in the ground-breaking paper
[Hi75].
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