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Abstract

We construct a class of Euclidean invariant distributions ®, in-
dexed by a function H holomorphic at zero. These generalized func-
tions can be considered as generalized densities w.r.t. the white noise
measure and their moments fulfill all Osterwalder-Schrader axioms
except for reflection positivity.

The case where F(s) = —(H (is)+3s%), s € R, is a Lévy character-
istic is considered in [AGW96]. Under this assumption the moments
of the Euclidean invariant distributions ®; can be represented as mo-
ments of a generalized white noise measure P.

Here we enlarge this class by convolution with kernels G coming
from Euclidean invariant operators . The moments of the result-
ing Euclidean invariant distributions ®¢ also fulfill all Osterwalder-
Schrader axioms except for reflection positivity.

For no nontrivial case we succeeded in proving reflection positiv-
ity. Nevertheless, an analytic extension to Wightman functions can
be performed. These functions fulfill all Wightman axioms except for
the positivity condition. Moreover, we can show that they fulfill the
Hilbert space structure condition and therefore the modified Wight-
man axioms of indefinite metric quantum field theory, see [Str93].
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1 Introduction
This note is motivated by the Euclidean strategy for constructing interact-
ing field theories, see e.g. [Sim74] and the references therein. Formally, the

interacting field theory with interaction V' lives on the same measure space
as the Euclidean free field pp but has measure:

exp (= o VIO ) ) d
Fesp ( = oo V0(0)) 40) )

du, = ) (1)

where ¢(z) is a Gaussian random process at the point x € R¢, d € N. Since
é(z) in general is not an integrable function but rather a generalized function
to define V(¢(z)) leads to the problem of defining powers of ¢(x). Further-
more, (1) cannot hope to be anything but formal if . # o since the only
probability measure absolutely continuous w.r.t. iy and invariant under FEu-
clidean translations is pg itself.

A first step in the direction of giving sense to (1) is to construct Wick
powers : ¢(z)™ :; m € N, of the Gaussian random process ¢ at the point
x € RY. For d > 2 the Wick powers : ¢(x)™ : still are not integrable functions.
Additionally, a so called space cut-off is necessary, i.e., the integration in
(1) is performed only over a bounded subset of R?, and sometimes also an
ultraviolet cut-off, i.e., the Wick powers : ¢(z)™ : are smeared out with
delta sequences. For certain classes of interactions by these renormalizations
integrable densities w.r.t. po have been constructed and then some kind of
limit which removes the cut-offs has been taken; a limit which does not
require the output to be absolute continuous. Examples are: the P(¢)s-
model (the 2 stands for d = 2) where the interaction is given by a Wick
ordered polynomial V' =:P:, semi-bounded from below, see e.g. [Sim74]
and the references therein; the Hgegh-Krohn model, see [Hg71], in d = 2
space-time dimensions where the interaction is given by

Vi(s) = / exp(as) : dv(a),

where v is a finite measure with compact support in the interval (v/27, v/27);
and the Albeverio Hgegh-Krohn model, see [AH73], in d space-time dimen-
sions where the interaction is given by the Fourier transform of a measure v



with bounded support on the real line (and dv(s) = dv(—s)), i.e.,

V(s) = /exp(ias) dv(a).

The Schwinger functions associated to the interacting field theory with
interaction V' are the moments of the measure v,,. But moments one can also
obtain from generalized functions considered as generalized densities w.r.t. a
Gaussian measure y, they only have to have the property that monomials
are test functions. This is the basic idea of our approach. Motivated by the
Euclidean strategy we consider the following generalized white noise func-
tional

b= e (= [ 1)), )

Rd
We assume that the function H is holomorphic at zero and H(0) = 0. The
Wick analytic function H¢(¢(z)) of the Gaussian process ¢ at the point
r € R? coincides with the usual Wick ordered function : H(é(x)):. It turns
out that H°(4(x)) is a generalized function from the Kondratiev space (S)!,
see Section 2.2, and therefore also its integral, if it exists, is in (S)~!. Thus,
in general we can not take its exponential. But in the white noise distribution
space (S)~! there exists the so called Wick calculus, see Section 2.2, hence
we can take its Wick exponential. In the case where H is linear and if we
integrate only over K C R?, K compact (space cut-off), the function @ is
square-integrable and we have direct correspondence between (1) and (2),
ie.,

exp (= [ H(o(0) (o))
Fesp ( = fie Ho) @) ) i

®, =

)

where p is the Gaussian white noise measure. In general, however, there
is no need for the distribution ®, to be positive and for a large class of
functions H there exits no measure which is representing ®,. It turns out
that @, can be represented by a measure if and only if the function F(s) =
—H(is) + %32, s € R, is a Lévy characteristic, see Remark 3.7 (ii). The
associated measures are called generalized white noise measures.



Generalized white noise measures have been considered in [AGW96].
There the authors constructed Euclidean random fields over R? by convolut-
ing generalized white noise with integral kernels G coming from Euclidean
invariant operators. The corresponding moments satisfy all Osterwalder-
Schrader axioms, see [OST73], except for reflection positivity.

For all convoluted generalized white noise measures such that the Lévy
characteristic of the generalized white noise measure has a holomorphic ex-
tension at zero we can give an explicit formula for the generalized density
w.r.t. the white noise measure, see Theorem 3.9. Furthermore, there exists
a large class of generalized function @, as in (2) which do not have an as-
sociated measure, see Remark 3.16. In Theorem 3.9 and Theorem 3.15 we
prove that the Schwinger functions corresponding to the convoluted gener-
alized functions ®¢ also fulfill all Osterwalder-Schrader axioms except for
reflection positivity.

For no nontrivial case we succeeded in proving reflection positivity. In
[AGW96] the authors present a partial negative result on reflection posi-
tivity for the Schwinger functions corresponding to moments of convoluted
generalized white noise. More details about their results we quote in Section
4.1.

Without reflection positivity we can not perform the analytic continua-
tion to Wightman functions via the reconstruction theorem proved in [OS73].
Nevertheless, an analytic continuation can be done. Using results from the
theory of Laplace transforms in [AGWO96]| the authors analytically continued
the Schwinger functions which are given as moments of convoluted gener-
alized white noise to Wightman functions. In general, these functions only
fulfill a part of the Wightman axioms, i.e., positivity (positive definiteness
of the set of Wightman functions [SW64], [Jos65], and [BLT75]) is missing.
We generalized their idea to our case and in Theorem 4.1 we prove that the
Schwinger functions corresponding to convoluted generalized functions ®¢
also have an analytic extension to Wightman functions. These Wightman
functions fulfill all Wightman axioms except for the positivity property. Fur-
thermore, they fulfill the strong spectral condition with mass gap my > 0
and their 2-point functions admit a Kéllen-Lehmann representation. For the
Fourier transform of the truncated Wightman functions in [AGW96] the au-
thors found explicit formulas. Using these formulas and the Jost-Schroer
theorem, in Theorem 4.2 we prove a negative result concerning the positivity
property, see also Remark 4.3.

Since the appearance of gauge theories it has become natural to con-



sider (local) quantum field theory (QFT) in which not all Wightman axioms
are satisfied. Such a consideration has in particular been natural and also
necessary for the study of “charged” fields interacting with gauge fields, be-
cause their description conflicts either with locality or with positivity. The
physical reason for this is that in such theories one must use observables of
the charged type which obey a Gaussian law, see e.g. Morchio and Stroc-
chi [MS80], instead of using the usual local observables. Actually, from the
study of fields such as e.g. a-gauge type Higgs models which do not satisfy
positivity, see e.g. [JS88] and references therein, it turns out that it is better
to keep the locality condition and to give up the positivity condition. This
leads to the so called modified Wightman axioms of indefinite metric QFT,
see [Str93]. The difference between indefinite metric QF T and standard QFT
is that the axiom of positivity in the latter is replaced by the so called Hilbert
space structure condition in the former which permits the construction of a
Hilbert space and a field operator associated to a given collection of functions
fulfilling the modified Wightman axioms.

In [AGW9T7a] the authors proved that the Wightman functions which
are analytic continuations of the moments of convoluted generalized white
noise fulfill the Hilbert space structure condition and therefore the modified
Wightman axioms. Again it was possible to generalize their proof to our
case and in Theorem 4.5 we prove that the Wightman functions which are
analytic continuation of the moments of convoluted generalized functions ®¢
also fulfill the modified Wightman axioms.

The paper is organized as follows. In Section 2 we introduce the concepts
of Gaussian and white noise analysis as far as necessary for our considera-
tions. For a detailed exposition we refer to the monographs [Hid80], [BK95],
[HKPS93|, [Oba94], [HOUZ96], and [Kuo96]. In the framework of white
noise analysis various aspects of QFT have been discussed, see [AHP"90a],
[AHPT90b], [AHPS89], [PS90], and [HKPS93]. Section 3 of this note is
attended to represent Euclidean QFT in the framework of white noise anal-
ysis. In Sections 3.1 we show how to check the Osterwalder-Schrader axioms
(OS axioms) in terms of the T-transform (the T-transform is an infinite di-
mensional generalization of the Fourier-transform). The T-transform of a
generalized function gives us the generating functionals of the correspond-
ing Schwinger functions. Properties of generating functionals have also been
discussed in [Fro74a] and [Fr677]. Having this tool in hands in Section 3.2
we construct the Euclidean invariant distributions ®%. In Section 4 we dis-
cuss the reflection positivity, analytic continuation and QFT with indefinite
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metric.

2 Gaussian analysis

2.1 (Gaussian spaces

We start by considering the Gel'fand triple
S(RY) c H c S'(RY),

where S(R?) is the space of rapidly decreasing, smooth test functions on R?.
We assume S(R?) to be equiped with its standard locally convex topology
such that it is a nuclear space. H is a real separable Hilbert space containing
S(R?) as a dense and topological subspace. For instance, # can be chosen
as the space of real valued square integrable functions w.r.t. the Lebesgue
measure on R? or as a Sobolev space on R?. As is well-known, see e.g. [Pie72]
and [Sch71], S = S(R?) is the projective limit of a family of Hilbert spaces
(Hp)penys Ho = H, such that for all p;,p, € N there exists p € N such that
H, C Hp, and H, C H,, and the embeddings are of Hilbert-Schmidt class.
L.e., S is a countably Hilbert space in the sense of [GV68]. The dual space
space S’ is the space of tempered distributions. It is given as the inductive
limit the spaces (H_,)pen, Which are dual to the spaces (H,)pen w.r.t. #. We
denote by (-,-) the dual pairings between #, and H_, and between S and
S’ given by the extension of the inner product (-,-) on H. Furthermore, |- |,
denote the norms on H, and H_, respectively and we preserve this notation
for the norms on the complexifications H, ¢ and H_, ¢ and tensor powers of
these spaces.

Additionally, we introduce the notion of symmetric tensor power of the
nuclear space S. The simplest way to do this is to start from usual symmetric
tensor powers Hf}m, n € N, of Hilbert spaces. Using the definition

o= prlim ’Hf}”
peEN

one can prove, see e.g [Pie72] and [Sch71], that S® is a nuclear space which

is called the n-th symmetric tensor power of S. The dual space S'€" can be
written as

S"¥" = indlim H*".
peN
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The space S'(R*)®" is canonically isomorphic to S@), the space of sym-
metric tempered distributions on R™. All the results quoted above also hold
for complex spaces.

In order to introduce a probability measure on the vector space S’ we con-
sider the o-algebra C,(S") generated by cylinder sets. The canonical Gaussian
measure £ on (S',C,(S")) is given by its characteristic function

| expliw. £) dufe) =exp(-311P), €5,

via Minlos’ theorem, see e.g. [BK95], [Hid80] and [HKPS93]. If we chose
H = L?*(R?), the space of real valued square-integrable functions w.r.t. the
Lebesgue measure on R?, this is the Gaussian white noise measure. For
H = H Y?(R?), the Sobolev space of order (—1,2), this is the measure
corresponding to the Euclidean free field with mass 1 in d dimensions.

The central space in our setup is the space of complex valued functions
which are square-integrable w.r.t. this measure L*(p) = L*(S",C,(S"), ). An
element of this space is the Wick exponential

N N
I ey TS )
= %( w® L fOm.

n=0

E, denotes the expectation w.r.t. y and the map S’ > w +: w®" 1€ §'®"
n € N, is called the n-th Wick power of w € S ((: w®? :, f®0) := f®0 .= 1),
see e.g. [BK95] or [HKPS93]. For any o™ € Sg”, n €N, ¢ € C, we define
the smooth Wick monomial of order n corresponding to the kernel p™ as
follows:

)W) = (w5 g™), weS, neN,

Smooth Wick monomials of different order are orthogonal w.r.t. the standard
inner product in L?(u). Furthermore, we can construct Wick monomials
I(f™) with kernels f® € HE" in the sense of measurable functions by

gn))jeN c Sg"

which converges to f( in ’Hg’” we have the convergence of I(¢o™) to I(f™)
in any LP(u),p > 1, see e.g. [BK95]. We use I(f™) = (: w®" :, f(M) as a

using an approximation. More precisely, for any sequence (¢

8



formal notation for the monomial introduced above. For Wick monomials
associated to the kernels f(® ¢ HE™ and hm) € HE™, n,m € Ny, we have
the following orthogonality property:

(1m0 = [ TR w0 H) du)

L2 ()

= pmn! (f™, ") (4)
(0p,m is the Kronecker delta).
Consider the space P(S’) of smooth Wick polynomial on S”:

N
P(sl) — {gp‘gp(w) = Z( W& :,(,0(”)>,(,0(n) € Sgn,w c S,,N c NO}-
n=0

This space is dense in L?(u) and, as a consequence, for any f € L*(u) we
have It6-Segal-Wiener chaos decomposition

F=3"1(F0), fenugn,
n=0

2.2 Generalized functions

For our considerations the space L?(u) is too small. A convenient way to
solve this problem is to introduce a space of test functions in L*(p) and to
use its larger dual space. In Gaussian analysis there exist various triples of
test and generalized functions with L?(u) as a central space, here we choose
the Kondratiev triple

()" € L*(p) € (5)7,

see [KLS96]. In order to construct these spaces of test and generalized func-
tions, we define for any given p,q € Z the following Hilbertian norm for the
smooth Wick polynomials o(w) = 320 (: w® 1, ™) w € S

oo

[l |15 g0:= D (n))?2%

n=0

2
go(")

p

Then for p,q € Ny, we define the Hilbert space (H,), as the completion of

P(S") w.r.t. || - ||pg1- Or, equivalently,
(Hy)y = {1 € L] Fw) = 3w o SO, |1 £ 1 gu< o0}
n=0



Finally, the space of test functions (S)' is defined as the projective limit of

the spaces (),

1,4>0

Let (H_p)~4 be the dual w.r.t. L2(p) of (H,)}: and let (S)~! be the dual

q
w.r.t. L*(p) of (S)'. We know from general duality theory that

p,4>0

The bilinear dual pairing (-, -)) between (S)' and (S)~! is connected to the
sesquilinear inner product on L?(u) by

(f.o) = (F @)z, f€L*n), e (S). (5)

Since the constant function 1 is in (S)! we may extend the notion of expec-
tation from integrable functions to distributions ® € (S) %

E,(®) := (,1).

The chaos decomposition introduces the following natural decomposition
of ® € (S)7!. Let ®™ € S'2" be given. Then there exists a distribution
I(®™) acting on test functions ¢ € (S)! as

<<]((1)(n)), S0>> — <q>(n), so(")>-

We use I(®™) = (: w® :,®™)  as a formal notation for the distribution
introduced above. Any ® € (S)~! then has the unique decomposition

b= (0 0M), (6)
where the sum converges in (S)~! and we have

(@,0) = _nl (@M, o), pe(9),
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see [KLS96]. Now it is not hard to see that (#_,)_, is a Hilbert space which
can be described as follows:

(H )y ={®e(s)!

D € St || @ |y, g 1< 00}

An useful tool in order to characterize (S)~! is the S-transform. The
S-transform of elements from (S)~! is defined as the dual paring with the
Wick exponential, see (3). Since the Wick exponential is not an element of
(S)! the S-transform of an element ® from (S)~! is defined only locally, i.e.,

S®(g) == (@,: exp((-,9)) :), g€UC Sc,

where U is an open neighborhood of zero depending on ® € (S)~'.
In order to characterize (S)~! we need to define holomorphic functions.

Definition 2.1 Let U C Sc be an open neighborhood of zero in Sc. We say
that

F:U—C

s holomorphic in U if it satisfies the following two properties:
(i) For each gy € U, g € Sc, there exists a neighborhood Vg, , around zero in
C such that

z > F(go + 29)

1s holomorphic.
(ii) For each g € U there exists an open set V C U containing g such that
F(V) is bounded.

Furthermore, if we identify two functions F; and F), coinciding on a neigh-
borhood of zero, we can define Holy(S¢) as the space of germs of functions
with the above properties.

The proof of the following characterization theorem is given in [KLS96].

Theorem 2.2 (i) If ® € (S)~!, then S® € Holy(Sc).
(ii) For any F' € Holy(Sc) there exists a unique ® € (S)™" such that S® = F.

As a consequence of this characterization we have the following corollary,
for a proof we again refer to [KLS96].
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Corollary 2.3 Let (A, A,v) be a measure space and X — ®) a mapping
from A to (S)~'. We assume that there exists an open neighborhood U C Sc
of zero such that

(i) S®y, X € A, is holomorphic on U,

(ii) the mapping X\ — S®,(g) is measurable for every g € U, and

(iii) there exists C € L'(A,v) such that |S®y(g)] < C(A) for all g € U and
for v-almost all X € A.

Then there are p,q € Ny such that ®. is Bochner integrable on (’H_p):;. In
particular:

/ By dv(\) € ().

Later on we also use the T-transform of generalized functions. This trans-
form can be defined as

T®(g) := exp(—3lg*) - SP(ig), @€ ()™, gel. (7)
An elementary calculation shows that the T-transform is also given by

To(g) = (P,vexp((-9))), gel. (8)

The characterization theorem and its corollary are also valid for the 7-
transform.
For elements from (S)~' we can define the Wick product:

Definition 2.4 Let ®, ¥ € (S)~'. Then we define the Wick product by
DoV =SSP SV).

This is well-defined because Holy(Sc) is an algebra and thus by the charac-
terization theorem in (S)~! there exists an element ®oW such that S(PoW) =
S® - SU. Clearly, this multiplication is associative.

By induction, we can define Wick powers

o = 57((59)")

in (S)~! and by taking finite linear combinations of them also Wick poly-
nomials of finite order 32| a,,®*" can be defined in (S)~'. Moreover, it is
even possible to define Wick analytic functions in (S)~' under very general
assumptions.

12



Theorem 2.5 Let F' be analytic in a neighborhood of the point zy = E, (P)
in C, ® € (S)™'. Then F°(®) defined as F°(®) := ST (F(S®)) erxists in
(S)~.

For a proof we refer to [KLS96].

Remark 2.6 Let F' be analytic at zg = E,(®), ® € (S) ', i.e., F has the
power series representation F(z) = Y a,(2 — 20)", z,a, € C. Then the
Wick series ., an(® — 29)°™ converges in S™' and

Fo(@) =) an(® — 2)°"

3 Euclidean QFT in the framework of white
noise analysis

3.1 OS axioms in terms of the 7T-transform

In 1973, E. Nelson [Nel73] showed how to construct a relativistic QFT from a
Euclidean Markov field. Inspired by this, in [OS73] and [OS75] Osterwalder
and Schrader (see also [Gla74], [Heg74], [Zin95]) gave a set of axioms, where
Schwinger functions (S, )nen, defined on the Euclidean space-time can be an-
alytically continued to Wightman distributions, i.e., to vacuum expectation
values of a relativistic QF'T. The OS axioms are:

OS1 (temperedness) The sequence (S, )nen, is a sequence of tempered distri-
butions, where S,, € Si(R¥) and Sy = 1. There exists p € N and a sequence
(0n)nen of factorial growth such that for all n € N the Schwinger functions
fulfill the growth condition

i=1

where fi,..., fn € Sc(R?). A sequence (0,)nen of positive numbers is said
to be of factorial growth if the exist constants a, 3 € R* such that

on < a(n!)?, VneN.

13



OS2 (Euclidean invariance) Each S, is Euclidean invariant, i.e.,

Sn(E(a,A)f) = Sn(f)a Vf € SC(Rdn)’

for all (a,A) € ET(R?), the proper Euclidean group where

Eanf(o,... 2,) = f(A 2y —a),..., A7 (z, —a)),

fora e Ry A € SO(d).
OS3 (reflection positivity) For each sequence (f,)nen, where f, € Sc(R%™),
fo € C, and each k € Ny

k
Z Sn-l—m((efn)* ® fm) 2 07

n,m=0

where (0f,)(t1, 715 it @0) = fu(—t1, 20 .. .5 —tn, 20), t; € Ry2; € R
(time reflection), fr(z1,...,2,) == fu(Zn,...,21) and the bar denotes com-
plex conjugation. The space Sc(R%") is the space of Schwartz test functions
having support in R := {(t1,27; ... ;tn, @) € R0 <t < ... <t}

0S4 (symmetry) For n > 2 and all 7 € X,,, the permutation group

Sn(fl ®...Q0 fn) = Sn(fw(l) ®...Q fw(n))a

where fi,..., f, € Sc(R%).
OS5 (cluster property) For all a € R, a # 0, and m,n > 1

lim (Sm+n(f1 ® ... ® i ® Epa,)(fr1 ® - .. @ frngn))

A—00
a1 @ ® f)Su(frr ® ... ® fm+n)) —0,

where fi,..., fmin € Sc(R?).

Remark 3.1 The assumptions in aziom (OS1) can be slightly weakened, see
[OS875]. For technical reasons this formulation for us is convenient and since
the sequences of generalized functions we consider fulfill (OS1) we do not
loose anything by this slightly stronger formulation.

In the case of Euclidean Markov fields and also in the more general case of
Euclidean reflection positivity fields [Fro74b], Schwinger functions fulfilling

14



(OS1)-(OS5) are obtained as the moments of the Euclidean field. In this
section we construct Schwinger functions (8®),cn, which are moments of
generalized functions ® € (S)~! with E,(®) = 1. The moments (S?),en, in
general do not satisfy all axioms (OS1)-(OS5). Nevertheless, we call them
Schwinger functions because our aim is to work out a class of generalized
functions ® € (S)~! such that their moments fulfill all or a part of the OS
axioms.

Definition 3.2 Let fi,..., f, € S(R?), n € N. We define the n-th Schwin-
ger function corresponding to ® € (S)™ 1, E,(®) =1, by

Sf(fl(g) ®fn) = <<q)’<waf1> et <wafn>>>a
and 8§ =E,(®) = 1.

Since P(S") C (S)! the dual paring in the above definition is well-defined.
The Schwinger functions corresponding to ® € (S)~' can be calculated
under use of their T-transform, see (8).

Proposition 3.3 (Wick theorem) Let fi,..., f, € S(R?), n € N. Then
the n-th Schwinger functions corresponding to ® € (S)~! is given by

an

[} _ (_A\n

t1=...t, =0

Proof: By construction every distribution ® € (S)~! is of finite order, i.e.,

for each @ € (S) ! there exist p, ¢ € Ny such that ® € (H_,)_.. Furthermore,
a straight forward calculation shows that for each f € S(R?) there exists
to > 0 such that exp(it(-, f)) € (H,), for all 0 <t < ty, and

i explitt, )] = ()

w.r.t. the Hilbert space norm in (’Hp);. From this we can conclude that

— _Z'E«(I), exp(it(-, f)))

t=0 dt =0

d
St(f) = —i= TO(¢f)

Since (S)! is an algebra under multiplication and this multiplication is con-
tinuous we can define the point-wise product @ - p € (S)~! of a distribution
® € (S)~! with a test function ¢ € (S)! via the dual paring. Utilizing this
product the proposition follows by an induction argument. [
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Proposition 3.4 For each generalized function ® € (S)~" with E,(®) =1
the Schwinger functions (S%),en, fulfill the axioms (0S1) and (0S4). Fur-
thermore, (0S2) is fulfilled if T® is Fuclidean invariant.

Proof: The Schwinger functions (S?),en, are symmetric by definition. Tem-
peredness and factorial growth follows immediately from the fact that & €
(S)~!'. Thus, (OS1) and (OS4) are fulfilled.

Assume that T'® is Euclidean invariant. Then we apply Proposition 3.3
to calculate the n-th Schwinger function corresponding to ®, of course, it is
also Euclidean invariant. |

3.2 Euclidean invariant distributions

In this section we construct a class of Euclidean invariant generalized func-
tions. Generalized functions from (S)~! we call Euclidean invariant if their
T-transform is Euclidean invariant. Our construction is motivated by the
Euclidean strategy for constructing interacting field theories, see e.g. [Sim74|
and the references therein. In the framework of white noise analysis we can
define the Gaussian random process indexed by H = L?(R?) as

¢(h) := (-,h), he L*RY).

As discussed in Section 2.1 ¢(h) is an element of L?(u) for all h € L?(R?).
We are interested in the Gaussian random process ¢ at time the ¢ € R and
at the point ¥ € R here we write z € R? as x = (£, ). ¢(t,Z) does not
exist as a square-integrable function but we can define

o(t, %) == (-,0.5), € (9)7",

see (6), where 0,z € S'(R?) is the Dirac delta function at point (¢, #) € R?.

Assume that H(z) = Y2 5 Hz*, 2 € U C C, is a holomorphic function
in U where U is an open neighborhood of E,(¢(¢,Z)) = 0. Then by using
Theorem 2.5 we can define

— - 1 —\ O, —
He(o(t,7) = Y Heo(t, D) € ()
k=0
1 ®k ®k
= Zka(:w L0z ),
k=0
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see also Remark 2.6.
Next we want to define the integral

H°(¢(x)) d"x. (9)
Rd
This can only be possible if we assume Hy = 0.

Theorem 3.5 Let H be holomorphic at zero such that H(0) = 0, then (9)
exists as a Bochner integral in a subspace of (S)!.

Proof: Our aim is to apply Corollary 2.3. Let a > 0 be in the radius of
convergence of H. We define

U={g € S Sélﬂgl{(l + [2[*)g(@)| + g(2)[} < a}.

It is easy to check that U/ is an open neighborhood of zero. For g € U we
have

1 > a*
WZ |Hk|H~ (10)
k=1

Obviously, S(H°(¢(+)))(g) is measurable for all ¢ € Y. Having the estimate
(10) in hands holomorphy of S(H°(¢(z))) is clear. Since (1+]z|?)~% € L'(R?)
all assumptions required in Corollary 2.3 are fulfilled and the theorem is
proved. [ |

Corollary 3.6 Let the function H be as in Theorem 3.5. Then the general-
ized function

Rd

0, et (= [ #0000 )
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is an element of (S)~'. Its T-transform is given by

19, (0) =exp (= [ Hliglo) + bota) ')

Rd

for all g in a neighborhood U C Sc of zero. In particular, E,(®,) = 1.

Proof: This corollary is an immediate consequence of Theorem 2.5. For the
calculation of the T-transform we used (7). Observe, that E, (®,) = T®,(0).
|

Remark 3.7 (i) Since the Lebesgue measure on RY is Fuclidean invariant
T®, is Fuclidean invariant.
(it) Consider the case in which the function F(s) := —(H(is) + 55%), s € R,
15 a Lévy characteristic, i.e.,

2.2

o°s irs
F(s) =1as — +/ exp(irs) — 1 — dv(r), seR,
() 5 L (et = 1= 5 ) i

where a € R, 0 > 0 and the measure v satisfies the following condition:

/ min{1, 7’} dv(r) < co.
R\{0}

Then by the Lévy-Khinchine theorem, see e.g. [Luk70], we know that there
exists a probability measure Py on S'(R?) such that

T(I)H(f):/s,(Rd) exp(iw, f)) dPa(w), f € S(RY).

This implies that the Schwinger functions (S2H),en, are the moments of the
measure Py. These measures are called generalized white noise measures.

Next we enlarge the class of Euclidean invariant distributions. We do
this by convolution with kernels associated to Euclidean invariant operators.
This idea is inspired by the method used in [AGW96]. There the authors
started with Euclidean invariant measures from the Lévy-Khinchine class
and then they constructed image measures by convoluting the corresponding
generalized white noise with kernels associated to Euclidean invariant oper-
ators. These image measures are called convoluted generalized white noise
measures.

18



Let G : S(RY) — S(R?) be a linear continuous mapping. Then by the
well-known kernel theorem there exists a distribution K € S’(R??), hereafter
called the kernel of G, such that

Gfw)= | K.y)fwdy, feSR) ek,
in the distributional sense. It is clear that the adjoint operator G* : S'(R%) —
S’'(R?) is a measurable transformation from (S'(R?),C,(S’(R?))) into itself.
Furthermore, we assume that G is Euclidean invariant, i.e., GE(4n) = E(,0)G
for all B, ) € EY (R?). This implies that G is translation invariant, thus, its
kernel K has the form K(z,y) = G(xz — y), see [SW64]. The action of G on
test functions from S(R?) (and by duality on S'(R?)) is by convolution

Gf(x)= | Glz—y)f(y)dy, [feSRY), xR

Rd

We can also write Gf as G % f. From now on we assume G to be essentially
self-adjoint in L?(R?) with S(R?) as a core. Then the convolution of the
Gaussian random process ¢ with G we define as

(Gxd)(h)(w) = (Gxw, f)={(w,Gxf), weS'RY, feSR.

This definition can also be generalized from test functions f to tempered
distributions. Then the process is in (S)7'.

Example 3.8 Let A be the Laplace operator on RY. Let K (z,y) = Go(z—y)
be the Green function of the pseudo differential operator G, = (—A + m3)™®
for some arbitrary mo > 0 and 0 < a. It is given by

1 exp(ikx) i
G, = dk, R*,
() = Gy / (TP +mg)e €

where the integral has to be understood in the sense of a Fourier transform of
a tempered distribution. Easily on proves that G, : S(R?) — S(R?) is contin-
uous, essentially self-adjoint in L*(R?) with S(RY) as a core, and Euclidean
mnvariant.

Let ® € (S)™! be a generalized function. We define its convolution with
an Euclidean invariant kernel G by

T®(g) :=T®(G *g), geU C Sc(RY),
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where U/ is an open neighborhood of zero. Since the operator G is linear and
continuous, by characterization, ®¢ is a well-defined and unique element in

($)~".

Theorem 3.9 Let H be as in Theorem 3.5 and the operator G continuous in
S(R?), essentially self-adjoint in L*(R?) with S(R?) as a core, and Euclidean
invariant. Then the generalized function ®% € (S)™! is Euclidean invariant
and can be written as

¢ = exp® < — | H°(G*¢(x))d'z+1(: ¥, (G¥* — 1)TT>>, (11)

Rd
here Tr € S'(RY)®2 denotes the trace kernel defined by (Tr, f @ g) = (f,9),
f,g € S(RY). The Schwinger functions (87 en, (from now on we use the

n

abbreviation 8™° = 8% ) fulfill the azioms (081), (052), and (0S4).

Remark 3.10 In the case where F s a Lévy characteristic, see Remark
3.7(ii), the measure PS corresponding to the distribution ®¢ is a image
measures of the measure Py, more concretely, PS(A) = Py(G'A), A €

Cr(S'(RY)).

Proof of Theorem 3.9: The formula (11) is clear among taking its 7-
transform. Euclidean invariance follows from the Euclidean invariance of G
and ®,. Obviously, E,(®,) = 1, thus the theorem follows by an application
of Proposition 3.3. [ |

Example 3.11 The choice H = 0 and G/ = (—A + m2)~Y? gives us the

free Euclidean field with mass mg > 0, see Example 3.8. Theorem 3.9 implies
. Gi/o . .

that the corresponding measure Py, "* has the generalized density

o = exp®(L(: 2 1, (GE2 — 1)T)),

w.r.t. the Gaussian white noise measure.

Remark 3.12 Consider the Hilbert space N,,, which is defined as the closure
of S(RY) w.r.t. the Hilbert space norm |- |, given by the scalar product

(fs @) mo = g f@)(~A+md)g(@)ds, f g SR, my>0.
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The random process indexed by H = Ny, :
d(h) == hymg,  h € Ny,

is the free Euclidean field with mass my. Since Ny, fulfills the assumptions
on the Hilbert space H required in Section 2.1, it is also possible to take
the measure corresponding to the free Fuclidean field as reference measure
for the Euclidean invariant distributions constructed above (this is the usual
choice in constructive Euclidean QFT). Here we have chosen the white noise
measure because it has the identity operator as covariance operator. This for
our approach by convolution with operators kernels G is a reasonable choice.

In [AGWO96] the authors studied Schwinger functions (S7“),en, which
are moments of the measures PS5 corresponding to the generalized functions
®¢ where F(s) = —(H(is)+3s%), s € R, is a Lévy characteristic, see Remark
3.7(ii) and Remark 3.10. For the truncated Schwinger functions the authors
worked out explicit formulas. Before we give them lets us recall the definition
of truncated Schwinger functions.

A partition of the ordered set {1,...,n} is a family of ordered subsets
I, = {ila---ik(l)}a---a[l = {le’l;e(l)} so that 11 < ... < Zk(l),,lll <
... <y and so that Uicjql; = {1,...,n}and ;N 1, =0, j # q. The set
of all partitions of {1,...,n} we denote P(™.

Definition 3.13 The truncated Schwinger functions (S, r)nen, correspond-
ing to a given sequence of Schwinger functions (S,)nen, are defined recur-
swwely by the relation

= Zsk(l),T(fil ... fi,c(l)) Sy (fr @@ fr ),

k(D)
pn)
where fi,..., f, € S(RY), n > 1.
Proposition 3.14 Let H(z) = Y.°° L H, 2", 2 € U C C, and G be as in

n=0 n!
Theorem 8.9 and fi,..., fn € S(R?), n > 1. Then the truncated Schwinger
functions (S:EZ[G)%N are given by

S’rf{”TG(f1®"'®fn) = —H, RdG*ﬁ(x)-...-G*fn(x)ddx, n#2,

S (fi®f) = (—Hy+1) RdG*fl(x)-G*fg(x)ddx. (12)
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Proof: In the case where F(s) = —(H(is) + 1s%), s € R, is a Lévy charac-
teristic this follows from Proposition 3.9. in [AGW96] and the uniqueness of
the truncated Schwinger functions. The coefficients in front of the integrals
corresponding to the n-th truncated Schwinger function in (12) are just the
n-th derivative of the Lévy characteristic divided by ¢". Hence, for a general
H as in Theorem 3.9 these coefficients are given by the n-th derivative of
—(H(iz) + 32%), z € U. u

In Corollary 4.7. of [AGW96]| the authors have proved the cluster property
of the Schwinger functions (S7),cn, coming from measures. The proof given
there easy generalizes to our case.

Theorem 3.15 Let ¢ € (S)™! be as in Theorem 3.9. Then the correspond-
ing Schwinger functions (S8%)nen, fulfill the cluster property (0S5), i.e., for
alla € R, a #0, and m,n > 1

lim (Srﬁfn(fl ... fm ® E()\a,O)(ferl ... fm+n))

A—00
~SEOFL @ ® f)SE (fni1 @ © frin)) =0,
where f1,..., fmin € S(RY).

Proof: See the proof of Corollary 4.7. in [AGW96]|. There the authors
proved the cluster property in the case where F(s) = —(H (is) + 35%), s € R,
is a Lévy characteristic. The idea is to express the cluster property of the
Schwinger functions as an equivalent property of the truncated Schwinger
functions. Since their proof works independent of the coefficients in front
of the integrals corresponding to the n-th truncated Schwinger function, see
(12), it easy generalizes to our case. |

Remark 3.16 The class of Schwinger functions (S*°)nen, corresponding
to the distributions ®5 € (S)™! as in Theorem 3.9 differs from the class of
Schwinger functions corresponding to the convoluted generalized white noise
measures in [AGW96]. Let us compare the properties of the Lévy character-
istics F' have been used in [AGW96] with the properties of the functions H
we utilize, where F(s) = —(H (is) + £5%), s € O CR.

We need that the function H is holomorphic at zero and H(0) = 0. This
15 our restriction in choosing the coefficients in front of the integrals corre-

sponding to the n-th truncated Schwinger function, see (12).
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In [AGWY6] the authors need that the measure v in the representation of
the Lévy characteristic, see Remark 3.7(ii), has all moments. This implies
that F € C*(R), but F does not have to have a holomorphic extension.
Furthermore, also F(0) = 0 and F can not be a polynomial of order larger
than 2. ILe., if only finite many H,, n € N, different from zero than all
H,,n > 3, have to be zero. Furthermore, the constant —H, is the n-th
moment of the measure v for n > 3.

4 On reflection positivity, analytic continua-
tion, and QFT with indefinite metric

4.1 Reflection positivity

In Section 3.2 we proved all OS axioms for Schwinger functions (S7¢),cn,
corresponding to the distributions ®¢ € (S)™!, H,G as in Theorem 3.9,
except for reflection positivity.

In [AGW96] the authors present a partial negative result on reflection pos-
itivity of Schwinger functions (S/¢),cn, which are moments of convoluted
generalized white noise PS. Consider a Lévy characteristic represented as in
Remark 3.7(ii). The part arising from the measure v is called Poisson part
and the other part is called Gaussian part (the reason for these names and
decomposition lies in the properties of the corresponding measures). For the
Schwinger functions (S¢),cn, which are moments of convoluted generalized
white noises PJ with nonzero Poisson in part in [AGW96] some examples
have been constructed which do not have the reflection positivity property.
Roughly speaking, the Schwinger functions (S7“),ecn, do not have the reflec-
tion positivity property, if the terms in S7“ emerging from the “interaction”
(Poisson part) are large in comparison with the “free” terms (Gaussian part).
More details on this considerations can be found in [AGW96], Remark 5.12.

The question, whether reflection positivity holds or does not hold we
discuss in the next section in terms of the Wightman functions, see Theorem

4.2 and Remark 4.3.

4.2 Analytic continuation to Wightman functions

If a sequence of Schwinger functions fulfills all OS axioms one can perform the
analytic continuation to Wightman functions via the reconstruction theorem

23



proved in [OS73]. These Wightman functions fulfill the Wightman axioms:

W1 (temperedness) The sequence (W),),en, is a sequence of tempered dis-
tributions, where W, € Si(R%™) and W, = 1. These functions fulfill the
Hermiticity condition

Wa(f) = Wa(f").
W2 (Poincaré invariance) Each W, is Poincaré invariant, i.e.,
Wn(P(a,A)f) = Wn(f)a vf € S(C(Rdn)’

for all (a, A) € P}(R*) where PI(R?) is the proper, orthochronous Poincaré
group. The definition of P a)f is analog to the definition of Euclidean
transformations in Sc(R?"), see (0S2).

W3 (positivity) For each sequence (f,)nen, where f, € Sc(R™), f, € C,
and each k£ € Ny

k

n,m=0

W4 (locality) If for n > 2 for some 1 < j <n—1: (z;41 — x;)* <0, then

Wox1, .o Ty Tty ey ) = W@, .0, 2541, T4, o0, Tn),
where 2?2 = (z,2)y = t* — |7|?, * = (t,%) € R%, is the Minkowski inner
product.

We remark that by (W2) every W, is actually a distribution in the differ-
ence variables, i.e., there is a tempered distribution w, € Sk(R¥™~1) defined
as

Wy (T — Xoy ooy T — X)) = Wo(Ty, ..., ).

The Fourier transform on Sc(R%) and S (R?"), respectively, we denote by
F or " and is taken w.r.t. the Minkowski inner product. The forward mass
cone of mass myg is defined as

ano = {p € Rd|p2 > mga pO = <p7 60>M < 0}7 my > 07

where e = (1,0,0,0). By V%" we denote its closure and V" is called forward
light cone. The backward mass cone is defined by V,-. := 8V} where  again
denotes the time reflection.
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W5 (spectral condition) For any n € N the Fourier transform @, is supported
in the backward light cones (V;)"~'. (A different sign convention on the
Fourier transform in a part of the physical literature leads to the interchange
of forward and backward cones.)

W6 (cluster property) For any n,m € N and any space like a € R?, i.e
a’? <0

lim (Wm+n(f1 ®...® frn ® Tna(frn1 ® ... ® frngn))

A—00
_Wm(fl XR...RQ fm)Wn(fm-H ... fm—l—n)) - 07

for fi,..., fmin € Sc(R?), where T), denotes the translation by \a.

Without reflection positivity we can not perform the analytic contin-
uation to Wightman functions via the reconstruction theorem. Neverthe-
less, an analytic continuation can be done. Using results from the theory of
Laplace transforms in [AGW96] the authors analytically continued the trun-
cated Schwinger functions (S, 5 Yneny, Which are moments of convoluted
generalized white noise, to truncated Wightman functions (Wz’TG‘*)neNO for
a € (0,1/2], see Example 3.8. The truncated Wightman functions are re-
lated to the Wightman functions in the same way as truncated Schwinger
functions are related to Schwinger functions, see Definition 3.13. In particu-
lar, the authors found an explicit formula for Wf 7, the Fourier transform
of the n-th truncated Wightman function. Before we can give these formulas
we have to introduce the notations

_ . 1
M;(p) = (2m) 42 sin(ra) 1{p2>mg,p0>o}(p)m, D€ Rd, mgy > 0,
0
_ _ ) 1
Mo (p) - (27T) 4/2 SlIl(?TOz) 1{p2>mg,p0<0} (p)ma o€ (Oa 1/2]a
_ 1
Ma(p) = (27T) d/Z(COS(ﬂ—O‘) 1{p2>mg}(p) + 1{p2<mg}(p)) |p2 — m%|aa

where 1, is the indicator function of the subset A C R?. In Proposition
7.12. and Corollary 7.13. in [AGW96] it is proved that in the case when
F(s) = —(H(is) + 3s%), s € R, is a Lévy characteristic and o € (0,1/2]
the Fourier transform of the n-th truncated Wightman function for n > 3 is
given by

n j—1 n
W;Z;a =—H, (27r d2n 1) (ZHMa pl Mo p] H Ma pl >6<Zpl>(13)
=1

j=1 1=1 I=j+1
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In the case n = 2 one has to distinguish between the case o € (0,1/2) and
a =1/2. For a € (0,1/2) the 2-point function is given by

Wi = (= Ha + 1)2m)"2 (1a(p)id (02) + 12 (p1)1a(p2) ) 601 +p2) (14)

and
friCie

Wyr ? = (—Hy + 1) (2m) ™ 100y (p1)8 (0} — m5)0(p1 + p2) (15)

is the Fourier transform of the well-known 2-point function of the relativistic
free field.

The truncated Wightman function Wf 7 is an analytic continuation of
the truncated Schwinger function Sfﬁ" in the sense that

n

Sur” (32 R(2), -, S(2) R(Z)) = LWr“ (2), z€CL,  (16)

where £ denotes the Laplace transform and

Co = {(2), 45 5 2m 4) € C™IS(2) —204,) <0, =1,...,n—1,
%(z}-)zo,%(zg)zo,j: ,oo.,n}

(R(z) is the real part and J(z) is the imaginary part of a (vector valued)
complex variable z). The function W,"5" is determined uniquely by this

requirement. Furthermore, W57 (R(z2)) is the boundary value of EWfTC“ (2)

for I(z; — zj41) — 0 inside T™, i.e., the relation

lim LG (2) = WL (R(2)) (17)

FB%(Z]' 7Zj+1)~>0

holds in the sense of tempered distributions in the argument R(z) € R?. Here
T™ is the tubular domain in C¥ with base V| i.e.,

T" = {(21,.+y20) €EC™|2zj — ;1 ER* +iV, , j=1,...,n—1}
and [' C V; is a sub-cone of V;~ such that I'U {0} is closed in R?.

Theorem 4.1 Let H be as in Theorem 3.5 and G, as in Example 3.8, o €
(0,1/2].

(i) The Schwinger functions (8% ),en, can be analytically extended to
Wightman functions (W6, cn, in the sense of (16) and (17).

n
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(ii) The sequence (W, %), cn, satisfies the azioms (W1), (W2), and (W4)-
(W6).

(11i) The Fourier transform of the truncated Wightman functions are given
by the formulas (13), (14), and (15), respectively.

(iv) For 0 < a < 1/2, Hy = 0, Hy < 1, W% = WQI}G“ admits a Kdllen-
Lehmann representation. Therefore, the corresponding Gaussian Fuclidean
field with covariance function S,”* is reflection positive but not Markov. For
a = 1/2 the corresponding Gaussian Euclidean field is the Markov free field
of mass my.

(v) er,ca fulfills the strong spectral condition with mass gap myg, i.e., W
is supported in the backward mass cones (V)" ~'.

Proof: (i): Let us consider the Fourier transformed truncated Wightman
functions in (13), (14), and (15). If we now chose coefficients H,, correspond-
ing to a general function H as in the theorem assumed then the corresponding
truncated Wightman functions Wf ;5 are analytic continuations of the trun-
cated Schwinger functions S, in the sense of (16) and (17). Of course, the
corresponding Wightman functions W,>“« are analytic continuations of the
truncated Schwinger functions §°“> in the same sense.

(ii)-(v): In the case where the Wightman functions correspond to Schwinger
functions obtained from convoluted generalized white noise this was proved
in [AGWO96], Section 7.5. Since in our case we only have different coefficient
H,, the same is true for a general function H as in the theorem assumed. B

Now let us return to the question whether positivity holds or not. In terms
of the Schwinger functions this question has been discussed in [AGW96], see
Section 4.1. The following theorem is an immediate consequence of the Jost-
Schroer theorem, see e.g. [Jos61], [FJ60], [Poh69], and [Ste82].

Theorem 4.2 Let H be as in Theorem 3.5, Hy = 0, Hy < 1. Then the
following statements are equivalent:

(i) The sequence of Wightman functions (Wf’al/z)neNO fulfills the positivity
condition (W3).

(ii) For n > 3 vanish the truncated Wightman functions, i.e.,

H,Gy/y

Wn,T =0, n>3.

Proof: Since the 2-point function W, *“* is the 2-point function of the

relativistic free field with mass mg and the sequence of Wightman functions

27



(Wi 72 e, fulfills (W1), (W2), and (W4)-(W6), see Theorem 4.1, the
statement of Theorem 4.2 is just the statement of the Jost-Schroer theorem.
[ |

Remark 4.3 (i) Theorem 4.2 implies together with the explicit formulas for
the Fourier transform of the truncated Wightman functions, see (13), that in
the case o = 1/2 positivity holds if and only if H, =0, n > 3.

(ii) For o = 1/2 Theorem 4.2 implies the negative result on reflection posi-
tivity of the Schwinger functions derived in [AGW96], see Section 4.1.

(iii) Under certain assumptions on the measure in the Kdillen-Lehmann repre-
sentation one can also prove a Jost-Schroer theorem for generalized free fields.
It is still an open question, whether this generalization of the Jost-Schroer the-
orem can be applied to the sequence of Wightman functions (W ),en,, o €
(0,1/2), see Theorem 4.1. One has to check, whether one can prove a Jost-
Schroer theorem for generalized free fields having a Kdillen-Lehmann repre-
sentation as the 2-point functions W;}G“, a € (0,1/2), see Theorem 4.1(iv).

4.3 QFT with indefinite metric

In Section 4.2 we performed the analytic continuation from Schwinger func-
tions to Wightman functions. The main interesting object, however, is the
underlying quantum field theory. Given a family (W,,),en obeying (W1) -
(W6), by the Wightman reconstruction theorem, see [Wigh6|, there exists
an essentially unique field theory obeying the Garding-Wightman axioms for
single Hermitian scalar fields. Since for no nontrivial cases we proved posi-
tivity of the sequence of tempered distributions (W,7“*),cn, as in Theorem
4.1, we can not reconstruct the field theory by the Wightman reconstruction
theorem. The positivity conditions is used in order to construct a the physi-
cal Hilbert space as the closure of the Borchers algebra. This is not possible
without the positivity condition.

Morchio and Strocchi, see e.g. [MS80] and [Str76], considered quantum
field theories in which not all Wightman axioms are satisfied. For Wightman
functions not fulfilling the positivity condition Morchio and Strocchi intro-
duced the so called modified Wightman axioms of indefinite metric QFT.
In their set of axioms the positivity condition is substituted by the weaker
Hilbert space structure condition (HSSC):

28



W’'3 (HSSC) There exists a sequence (py)nen, where for all n € N, p, :
S(R"®) — [0, 00) is a Hilbert semi-norm, such that

|Wm+n(f* ® g)| < pm(f)pn(g)

for all f € Sc(R¥™) and g € Sc(R™), n,m € N.

The HSSC permits the construction of a Hilbert space I and a quantum
field ¢ associated to a given collection of tempered distributions (W),),en,
fulfilling the modified Wightman axioms (W1), (W2), (W'3), (W4), and
(W5). Moreover, in [MS80] the following theorem is proved.

Theorem 4.4 Let (W,,)nen, be a sequence of Wightman functions which ful-
fill (W1), (W2), (W'3), (W4), and (W5). Then there exists

(1) a Hilbert space KC with scalar product (-, )i, a distinguished vacuum vector
Q € K and an indefinite inner product (-,-)r which differs from (-,-)x only
by a self-adjoint metric operator T with T? =1, i.e., (,)7 = (-, T*)x;

(ii) a T-symmetric and local quantum field ¢, which is a distribution valued
field operator ¢(z) acting on a dense core D C K with adjoint ¢*(x) =
To(x)T and commutator

[6(x), ¢(y)] = 0

for x and y space-like separated. Furthermore, ¢ is connected with the Wight-
man functions of the theory by

Wiz, ..oy z) = (2, 0(x1) ... ¢(x,) Q)75

(11i) a T unitary representation U of the orthochonous Poincaré group on K,
i.e., a representation with TU*T = U™, such that Q is invariant under U
and ¢(z) transforms covariantely

Ula, N\)p(z)U(a, A)™" = ¢(A (& —a)), (a,A) € PI(RY).

Furthermore, U fulfills the following spectral condition:
/ (U1, U(a,1)Vs)rexp(iga) da Y¥, ¥y € D,
Rd
ifa¢ Vs
A quadruple ((KC, (-, )k, ), T, ¢, U) is called a QFT in indefinite metric.
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Theorem 4.5 The Wightman functions (W), cn, as obtained in Theo-
rem 4.1 fulfill the modified Wightman azioms (W1), (W2), (W'3), (W4),
and (W5) (of Morchio and Strocchi).

Proof: In [AGW97a], Theorem 4.1, this is proved for the Wightman func-
tions corresponding to the moments of convoluted generalized white noise.
The proof is done under use of explicit formulas for the Fourier transform of
the truncated Wightman functions and works for an arbitrary sequence of
coefficients (H,)nen, see (13), (14), and (15). Thus, also in our case. |

In general the semi-norms in the HSSC are not invariant under transfor-
mations of the orthochonous Poincaré group. Hence, in general the metric
operator T' does not commute with #(a, A), (a,A) € PI(R?), and the rep-
resentation of the orthochonous Poincaré group on A is not unitary. In our
case, however, the semi-norms in the HSSC at least can be chosen transla-
tions invariant.

Theorem 4.6 For the sequence of Wightman functions (W% ),cn, as in
Theorem 4.5 the Hilbert semi-norms in the HSSC can be chosen translations
invariant. Thus, there exists a Hilbert space structure such that [U(a,1),T]| =
0, a € RY, and the representation of the translation group U(a,1) is unitary.
If P denotes the generator of U(a, 1) then spec(P) C V.

Proof: In [AGW97b]|, Theorem 4.3, this is proved for the Wightman func-
tions corresponding to the moments of convoluted generalized white noise.
By the same arguments as in the proof of Theorem 4.5 their proof generalizes
to our case. [

Remark 4.7 (i) We remark that the cluster property of Wightman functions
s not an item of the modified Wightman azioms, since, in general, it does
not imply the uniqueness of the vacuum and irreducibility of the field algebra
as it does in the standard QFT.

(ii) The uniqueness of the vacuum cannot hold if T commutes with U(a, 1),
a € R, and TQ ¢ CQ, since in this case TS) is translations invariant.

(iii) We observe that there exist sequences of Wightman functions, associated
to sequences of Schwinger functions which are not moments of measures,
fulfilling the modified Wightman axioms of Morchio and Strocchi.
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