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ABSTRACT

A two-space dimensional heat equation perturbed by a white noise driven in a bounded
volume is considered. The equation is perturbed by a non-linearity of the type A : f(AU) :,
where : : means Wick (re)ordering with respect to the free solution; A\, A are small param-
eters, U denotes a solution, f is the Fourier transform of a complex measure with compact
support.

Existence and uniqueness of the solution in a class of Colombeau-Oberguggenberger
generalized functions is proven. An explicit construction of the solution is given and it
is shown that each term of the expansion in a power series in A is associated with an
L2-valued measure when A is a small enough.
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Introduction

The motivation of this article is to consider semi-linear stochastic partial differential
equations of parabolic type which are perturbed by a space-time Gaussian white noise with
space-dimension d > 2. Moreover we are interested in strong (probabilistic) solutions in
the sense that given a probability space (€2, F, P) and a Gaussian space time white noise
(W (t,z), t >0, z € IR?) we would like to construct a solution to

(1) {%—IZJrLU:)\f(AU)XqLW
U(Ov') =Up

where x is a smooth indicator function, L is a symmetric uniformly elliptic operator,
f € Cf°, that is to say f is smooth and all its derivatives are bounded, U, € S'(IR%),
A € IR; A is a small real number.

The first difficulty we encounter is that the sample paths of W are tempered distri-
butions ; the reader can consult [W] for a more precise location of 114 depending on the
dimensions.

To solve problem (1), it means

- to give a reasonable sense to the equation
- to provide non trivial solutions ; if A # 0, and (1) has a solution, this should be for

instance non Gaussian.

Remaining at a formal level, we can smear (1) with respect to a test function in space
¢ € S(IR?) and replace problem (1) with

Ut ) = Un(p) - / ds U (s, L)

A / ds F(AU) (s, L) + /MW AW (5, ) o(y).

If we are interested in solutions being random classical fields (U (¢, z),t > 0,z € IR?) then

Utt.p)= [ dsdyUls.) o), and
[0,t]x R?

F(AU) (s,9) = / dy F(AU) (5,) (y).

But, even if Uy is a continuous functions, by our choice of noise, it will almost never happen
that solutions of (2) are classical random fields; so we will need to give a precise meaning
to f(AU).



We concentrate for a moment on the case A = 0. It is possible to show that equation
(2) has a unique solution with paths in C(IR,S’(IR%)) which is given by

Q X(tp) = (RO (P4 [ W) (Pe) ), o € SURY

where (P;)¢>0 is the semi-group of generator L on S'(IR%). Tt has a density (pg(z,y),t >
0,2,y € IR?) which means that

P, f(x) = / pe(@,9) f(y) dy.

Properties of this semi-group will be stated in section 2.
If Uy = 0 then X is the distributional random field which is associated formally with
the field

(4) X(t,z) = /[0 e pr—s(z,y) dW (s, y).

Unfortunately the latter integral only makes sense if

(5) / p2_(z,y) <oco, Yt>0, zec R
[0,t]x R?

This holds if and only if d = 1.

Let us suppose that Uy is a continuous function (with polynomial growth) in the case
of space dimension d = 1. Then a continuous random field (U(t,x),t > 0,z € IR) solves
(2) if and only if

Ut <(BU) @)+ [ dsdy FAU G0 x)

P—s(T,Y) +/ Pe—s(z,y) dW (s, ).
[0,t] x R4

Using classical fixed point methods, it is possible to show the existence and uniqueness
of a solution for equation (6).

If d > 2 the equivalence between (2) and (6) will only hold at the formal level. For
this reason, we introduce the class of random Colombeau-Oberguggenberger generalized
functions which extends the family of random Schwarz distributions. In this general frame-
work it is possible to state problems (2) and (6) and to show they are equivalent. The
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non-linearity is understood in the sense of Colombeau generalized functions, see [C1], [C2],
o1], [02], [B], [R], [Sc].

In the case d = 1, when Uj is a continuous function, standard generalized functions
techniques allow to show that the unique solution to (1) is L?(Q)-associated, see section
1, to the solution of equation (6).

Coming back to the case d > 2, similar techniques used in [AHR2] can show that the
unique solution of (6) in the framework of random generalized functions is trivial because
associated with the solution X of the free equation (A = 0). This concretely means that,
if regularize the white noise W in space by convoluting with a mollifier ¢° converging to
Dirac measure, then (6) has a solution U® and this solution converges in the sense of the
L?(€2)-valued distributions to X.

This is not astonishing. In order to find a non-trivial solution we need to modify the
non-linearity f by multiplying with an infinite function.

In section 3 we are interested in the following semi-linear equation

(7) {%—?+LU:A:f(AU):X+W
U(Ov'):UO

for which we construct a solution in the framework of random generalized functions. The
Wick reordering is understood with respect to the free (Gaussian) solution (A = 0), see
[GJ], [HKPS].

f will be supposed to be the Fourier transform of a complex measure p with compact

d_1+96
support such that p({0}) = 0. If p = 0-1+ 01

Sine-Gordon type. Of course we need a redefinition of Wick reordering of f(U) when f is
a function of this nature and U a random generalized function.

However the most important part of the paper is constituted by section 4. For A
small we obtain there an asymptotic expansion in powers of A of the solution constructed
in section 3 and we show that the first term of the expansion is the free solution and
all the others are classical square integrable processes which are explicitely given linear
combination of itereated integrals involving Wick-reordered functions of the free solutions.

We discuss now the connection with the literature. Other papers related to random
Colombeau generalized functions and the stochastic wave equation are [OR1;0R2;0R3]. In
particular the first two articles discuss different classes of non linearities producing trivial
solutions.

The model studied here is very close to the stochastic quantization equation of quan-
tum fields in a finite volume. Our method gives a constructive way to build a strong
solution of the stochastic quantization equation of the Sine-Gordon field.

Given a quantum field ® (which is a Borel probability) living on S’(IR?), the problem
of stochastic quantization consists in constructing a stationary process ({(¢),¢ > 0) in
law with value in S’(IR?) whose invariant measure is ®. All the authors have looked for
(&(t),t > 0) as solution of a pseudo-differential stochastic equation of the following type

we obtain f(u) = cosu and (7) is of

ouU 1 ..
(8) =3 L' U+ AL"¢: f(U): +L7 =W,



with L = I — A, A being the Laplacian for the two-dimensional space, ¢ €]0,1]. f is ge-
nerally of polynomial type (stochastic quantization of P(¢)2) or trigonometric (stochastic
quantization of Sine-Gordon) : the most famous example is ¢35 which provides

flu)=—4:u?:

The regularization in (8) is introduced in such a way that the invariant measure does not
depend on .

The case of polynomial interactions has been most extensively studied. Among the
contributions we mention [J-LM], [BCM], [AR], [Do], [BJ-LP], [HK], [GG], [DT]. These
papers give weak solutions (in the sense of probability).
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[J-LM] have the restriction ¢ € }1—0,1[, [GG], [BJ-LP] (which in fact considers a

slightly different equation) and [BCM] have the restriction € €]0, 1[.

[Do] treats the case of a suitable coloured noise in any dimension. The methods of
[BCM] and [AR] are based on the theory of Dirichlet forms. [J-LM], [BCM] and [GG] treat
the finite volume case, [AR] the finite and the infinite volume case. For partial results in
the latter case, see also [BCM].

[AR] also treat the general P(¢$)2 case (general polynomial interaction in two-space
dimension) and in fact it is the only paper which treats the (local) case ¢ = 0. However
this solution is not constructive.

In this paper we are able

1 to construct a strong probabilistic solution (in the pathwise sense);

2 to treat the Sine-Gordon case for which there are only some remarks in [AHPS],
[AHR1] and [ARu];

3 to treat, constructively as well, the SPDE case (¢ = 0) instead of the pseudo SPDE
situation ¢ > 0;

4 to obtain on explicit expression of the solution in terms of iterated integrals of Wick
reordered functions of the free solution.

Concerning other approaches to strong solutions to SPDE’s involving non-linear func-
tions of distributions, let us mention the white noise Wiener distribution approach, see for
instance [HLOUZ, HOUZ, BDP, De]; the second reference concerns elliptic bilinear equa-
tions, the third for the parabolic case, the fourth is related to Burger’s equation. Other
interesting approaches have been performed for the Navier-Stokes equation: see [AC]| for
the stochastic flows approach and [CC] for the non-standard framework.

One Problem however remains open. We are still interested to know if such a solution
is a random distribution; for the moment we only know that the asymptotic expansion in
powers of A is a classical random field.



1. On a class of random tempered generalized functions

This section will introduce a special class of generalized functions which we will call
of Colombeau-Oberguggenberger type. The main difference with the classical Colombeau
framework is that they are only generalized in space but ordinary in time. The correct term
should be: algebra of simplified Fréchet-valued random tempered generalized functions. The
following description is partly inspired by ch. 4 of [C1] and §12 of [O1].

We first recall, see for instance [DS], ch. II, that a Fréchet space F'is a linear topological
space, complete, equipped with a homogeneous metric. Examples of such spaces are S (Rd),
C*(IRY), for k > 0. Given a closed subset B of IR?, S(B) will be the Fréchet space of
the functions in S(IR?) restricted to B. C(B) is the Fréchet space of continuous complex
valued functions on B, equipped with a metric which is equivalent to the sup norm on each
compact. C(B) is also an algebra. C(B;IF) is the Fréchet space of IF-valued continuous
functions on B.

In this paper T" will be a positive number. As far as differentiability is concerned €'
will always be identified with IR?, const will be a generic constant.

The class of generalized functions we introduce, will so consist of objects which are
generalized in space and ordinary functions in time. The starting point is the differential
algebra £(IR?;C(B)) of functions {(t;x,e) — R(t;z,¢),t € B,z € IR* ¢ > 0} which are
complex valued and such that R, : IR> — C(B) is C* for any & > 0, where

R.(z)(t) = R(t;z,e), Vt >0, z € IR*, ¢ >0 .

A function R € £(IR*;C(B)) will be said to have a tempered moderate bound if it
fulfills the following property:

For all compacts By, C B C IR, there exists n € IN such that

(1.1) sup 7|R(t;x’€)|

=0(E™" — 0.
teBroe wEIR? 14 |$|n (6 ) as €

In particular the left hand side quantity in the previous expression is finite for small € > 0.
O is the usual Landau symbol.

The family of R € £(IR*;C(B)) satisfying (1.1) constitutes a (differentiable) subalgebra.
Next we consider the ideal of functions R such that

For each compact By, C B, for all ¢ € IN, there is n € IN such that

(1.2) sup 7|R(t;$’€)|

= 0(e? —0.
I 1+ |.T|n (8 ) as €

Such R are said to have a tempered null bound.

R € £(IR*;C(B)) will be said to be moderate if for any partial derivation operator D,
DR has a temperate moderate bound. The family of moderate R constitutes a differential

subalgebra of £(IR?*;C(B)) and will be denoted by &y (IR?;C(B)).
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R € £y (IR?;C(B)) will be said to be null if for any partial derivation operator D,
DR has a null tempered bound. The family of null elements R constitutes an ideal of
Ev(IR?;C(B)), denoted by N (IR*;C(B)).

We define G(IR?;C(B)) as the quotient £y, (IR?*;C(B))/N (IR*;C(B)). Any element of
G(IR*;C(B)) will be called a Colombeau-Oberguggenberger tempered C(B)-valued general-
ized function or simply a C(B)-valued generalized function.

S'(IR?) is the space of classical tempered distributions. We denote by S’(IR*;C(B))
the space of linear continuous functionals from S(IR?) to C(B), in other words the C(B)—
valued classical tempered distributions. For the concept of vector valued distributions we
mention, e. g., the early reference [S].

We recall that 7 € S’(IR?) has the following property. There is a continuous function
fec (1R2) with at most polynomial increase and a partial derivation operator D so that
T=Df.

At the same way, if 7 € §'(IR*;C(B)) there is a function F € C(B x IR?), a derivation
operator D such that 7(¢,-) = DF(t,-), D acting on = and the following property is verified:

for every compact Bjo. C B, there is n € IN with

F(t
(1.3) sup L,a:y
tEBoc,zER? 1+ |$|

Let F : B x IR*> - so that  — F(-,z) € C*®°(IR*;C(B)) and F fulfills (1.3). Then
F' can be identified with the C(B)-valued generalized function

Rp(t;z,e) = F(t,x) .

However, if I’ is not smooth in z, there is no canonical identification. We will however
provide a particular one.
Let ¢ € S(IR?) be fixed with

/QS(SU)dSU =1, /a:m¢>($)d:c =0

for any multi-index m over IN? so that |m| > 1, as stated for instance in [O1].

In fact, for such a purpose, it is enough to find ¢, € S(IR) with the same property
and then to take the tensor product with itself. This particular function ¢; can be ob-
tained as the Fourier transform of a function ¢ € S(IR) so that () is identically 1 in a
neighborhhood of ¢ = 0; then ¢(0) = 1 and *)(0) = 0 for every positive integer k; this
gives the desired result for ¢;.

For € > 0, we set



This will help us to embed in the space of C(B)— valued generalized functions, non-smooth
functions with values in C(B), or more generally elements of trace type n : B x S(IR*) —C,
that it to say such that

(1.4) « — (t — n(t,«)) is a linear continuous functional, i.e. a vector valued distribution
from S(IR*) to C(B).
The space of such 7 is a Fréchet space (F-space in the sense of [DS], ch. 2). We remark
in particular that for any compact Bj,e C B and bounded subset S of S(IR?)

sup sup [n(t, )] < o0
aES teBloc

A tempered distribution 7 € S’ (ZRd+2) is said to have the trace property with respect to
the closure of an open subset B of IR? if

(1.5) Vt € B, a € S(IR?), lim (7, 6°(t —-) ® )
e—
exists and it is a continuous function.

There is a one-to-one correspondence between elements of trace type n : S (IRZ) —
C(B) and distributions 7 having the trace property. The relations are given by

mmzémwww
a(t0) = lim (.67t — ) © 0)

Given 7j € §'(IR**?) fulfilling (1.5), the limit 5 will automatically fulfill (1.4). In fact, for
any € > 0, we can consider

a— (t— (¢ (t—)@a))
as a linear map from S(le) to C(le). For any compact Bjoc C IRY, s,t € Bjoe we have

ll¢=(t =) = ¢ (s —)]®a

where the first || - ||,.s norm is a classical Sobolev norm with respect to IR*"2, the second
| - ||p.s is such a norm with respect to IR* and C; is a Lipschitz constant for ¢ . Now,
the generalization of the Banach-Steinaus theorem for Fréchet spaces, see [DS], ch. 2 and
property (1.5) imply that the limit is also a linear continous functional from S(IR) to C(B).

ps S |t - 5|Cs||a||p78 )

Given an element 7 : B x S(IR*) —@ of trace type, the corresponding C(B)-valued
generalized function will be given by

(1.6) Ry(t;m,e) = n(t; 9°(- — ) .
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In particular a continuous function on B x IR? can be identified with an element of the
trace type.

The equality in G(IR*;C(B)) is quite strong; it is just compatible with the algebra
of functions F' € C*°(IR;C(B)) fulfilling (1.3). If the objects are not smooth in x, the
ordinary product is different from the one in G(IR*;C(B)) .

There is a weaker concept of equality, which generalizes the notion of a.e. equality or
equality among distributions having the trace property.

Two generalized functions Gy and Gy in G(IR?*;C(B)) are said to be associated if for
any compact Bjo. C B, a € S(IR?),

lim sup / (Rag, — Rg,) (t;z,e)a(z)dr =0 .
€20teB). JR?

The association defines an equivalence relation in G(IR?;C(B)). The respective quotient
is a linear space; an important subspace is given by the C(B)-valued generalized functions
which are associated with an element of trace type. We remark that there are non null
elements in G(IR*;C(B)) which are associated with zero, see [C1] p. 64. An element of
G(IR?*;C(B)) is at most associated with one element of trace type.

We also remark that G(IR?;C(B)) is an algebra in the following sense:
if G1,Gy € G(IR*;C(B)) then Gy - G5 is the class given by Rg, Rg,. The zero element is
N (IR?;C(B)) and it is absorbing for the product. We observe on the other hand that it
may happen that the product of a generalized function associated with zero and another
generalized function is not associated with zero. However the product of two generalized
functions associated with ordinary functions is associated with the product of ordinary
functions.

Moreover if f € C*°('), with almost polynomial increase at infinity, then f(G) is
represented by (¢;x,e) — f(Ra(t;x,€)).

In (1.6) we have defined one embedding of elements of trace type in an algebra of
generalized functions. Other embeddings are however possible. Consider for instance

Rn(t; z, 8) = n(tv ¢¢(€)( - :U)) )

so that ¢ : IR, — IR; is an increasing continuous function so that i(e) > const e.
Then Rn is associated with R,. We will say that the class of R, and the class of Rn are
indistinguishible or also that they are indistinguishible from 7.

More generally, G1 and Gy € G(IR*;C(B)) are indistinguishible if there are 1y, 1)o
increasing continuous such that 1(0) = 12(0) = 0 and Rg, (-, ¥1(e)) — Ra, (-, ¥2(¢)) is
null. In particular two indistinguishible C(B)-valued generalized functions are associated.

We also denote by S’ (IR?;C(B)) the family of C(B) valued generalized functions which
are indistinguishible from an element having the trace property. In particular for GG in this
space, it is possible to show (similarly as in [C1]) that there is a function F' € C(B x IR?)
and a derivation operator D on x so that

G(t,x) = DF(t,x)
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and G satisfies condition (1.3).

We introduce now the concept of random C(B)-valued generalized function.

Let (Q,F,P) be a probability space. A map Y : Q — G(IR*;C(B)) will be said to be
a random (Colombeau- Oberguggenberger) C(B) valued generalized function if there is
R:Q x B x IR* x )0, 00| so that

i) R(w,-) represents Y (w) a. s. w €

ii) For every € > 0, (w,t,2) = R(w,t;x,¢) is a measurable process
We denote by Go (IR*;C(B)) the algebra of random generalized functions. We say that two
random C(B)-valued generalized functions Y7, Y5 are indistinguishible if there are 1)y,
increasing continuous so that

Ry, (-, 91(€)) — Ry, (-, ¥2(¢))
is null a.s.

The class of such random representatives will be denoted by Exrq(IR*,C(B)). The
random representatives which are null a.s. will be denoted by Nq(IR?,C(B)).

This theory of generalized functions can be generalized to the vector valued case.
In our case the vector space will always be IFF = L2. We can easily define the linear
space of moderate vector valued elements &(IR?;C(B;IF)), the linear subspace of null
elements N (IR*;C(B; IF)) and the quotient G(IR*;C(B; IF)). It is enough to replace the
(C-modulus with the IF' norm or IF' homogeneous distance if we have a Fréchet space like
F =L = ﬂ LP. In fact L~ is a Fréchet algebra; £y, (IR?,C(B; IF)) is an algebra and

p>1
N (IR?*;C(B; IF)) is an ideal.

In the case IF = L2, &)y and A are not algebras but this does not play any role in our
further considerations. G(IR?*;C(B;IF)) is called the space of C(B; IF) valued generalized
functions and it is the quotient of £(IR*;C(B; F)) by N (IR*;C(B; IF)).

Here, a map 7 : B x S(IR?) — IF will be said to be of IF-trace type if 7 is such that
a — (-, a) € S'(IR*;C(B; IF)), that is to say, it is a linear continuous operator from S(IR?)
to C(B; IF). In particular, for any compact C B and any bounded subset S of S(IR?)

(1.7) sup sup |[|n(f, a)l[r < oo,
a€S teEBjoc
where || - || is the homogeneous distance from zero in F.

In fact, an element 7 of IF-trace type can be identified with a C(B; IF')-valued gener-
alized function through relation (1.6). (1.5) allows to relate IF-vector valued distributions
having the trace property and elements of F-trace type.

The concept of association can easily be extended to this situation. Strong derivatives
and Bochner integrals are in such case involved.

An example of a random generalized field is the time integrated white noise (cylindrical
Wiener process). We first recall the concept of (Gaussian) white noise. Formally it is a
Gaussian random field (W (t,z),t € IR,x € IR*) with covariance E(W (t,z)W (s,y)) =
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d(t — s)0(x1 — y1)0(x2 — ya2), 6 being the Dirac measure. Rigorously, it can be realised as
a Hilbert valued orthogonally scattered measure. Formally W (B) = [, W(s,y)dsdy. W
is a Gaussian field such that E(W (B1)W(Bz)) is the Lebesgue measure of By N By. If
ge< LZ(ZR?’), [ g dW is the integral of g with respect to the orthogonal measure W.

The time integrated white noise is defined first as the following martingale measure

(t,a) — ay)dW (s,y), see [W]. So defined, it is an element IR, x IR* — L?(1)
[0,t] x IR?
having the IF'-trace property. However, there is a unique version

W :Q — C(R,; H_,(IR?))

for n > 2, see [W]. Therefore (t,) — W (w)(t)(a), is a.s. of trace type. We observe that

A~

W (w)(t, ) = / a(y)dW (s, 1) as. Vt € Ry, o € S(IR) .
[0,t]x IR?

W can be identified with the random generalized function represented by

(1.8) Ry (w,t:0,€) = W (w) (t:¢°( — 2)) .

W can be identified with the vector valued generalized function represented by

Rwltioe)= [ aW(sp)ély—x).
[0,t] x IR?

W e Go(IR*C(IR,)), W € G(IR*;C(IRy; L*(Q))). However, we observe that nguishible

random (resp. vector valued) generalized functions of W and W can be produced, for

co
1
instance by substituting € with 1 (g), so that ¢y <log —> = v
€

(e)

, where c1, co are positive

constants.

2. The free case. Estimates on the semigroup

The equation (2) in the case A = 0,Uy = 0 will be called the free equation. In this
section, we will make some comments on such equation and obtain estimates on the heat
semigroup.

Let L be a second order differential operator with smooth coefficients with bounded
derivatives of each order. We suppose moreover L to be uniformly elliptic and symmetric
in the L2(IR?,dx) space i. e. L C L*.

We consider the semigroup (P, ¢ > 0) related to the problem

Ow =Lv  on 0, co[xIR?
(2.1) {0(07') =9

11



where g € C°(IR*) N S'(IR?).

Remark 2.1 It is well known that (2.1) has a unique solution v(t,y) = (Ptg)(y). Moreover
the semigroup has a smooth density py(z,y), so that (Pig)(y) = [ pe(z,y)g(x)dx.

Smcg L is symmetric, we have py(x,y) = ps(y, x) for any z,y € IR*. Moreover P,S(IR*) C
S(IR?).

In this section, we are interested in the solution of the free equation

(2.2) {&U:LU—l—W on |0, oo x IR?

U,)=0

Remark 2.2 Let n € S'(IR®) with support in |0, 00[xIR* having the trace property with
respect to IR, see (1.5). Let g € S'(IR*). The problem

U(O? ) =g

is understood in the distributional sense, as in [W], chapter 5. We look for U € S'(IR®)
with support in IR X IR? with the trace property such that for every & € S(R?’)

o (o omon

where U(0, ) is the 1irr(1)<U, ¢°(-—0)® ).
e—

~

Proposition 2.1 Let n be a Radon measure on IR x IR® without atoms. Let U: IR X
S(IR?) — IR vanishing fort < 0 and such that o — U(-, «) is of trace type. Then U solves

(2.4) if and only if

(2.5) Ul(t,a) = /0 dsU (s, La) + /[0 e a(x)dn(s,z) + (g, a) .

We recall that U and U are related through Remark 1.1.

Proof Let # € S(IR), @ € S(IR?). Let us suppose that U solves (2.4), in particular it
fulfills (1.5). Then we can evaluate both members of (2.4) with respect to § ® a. The left
member gives

(2.6) - /Oo dsB (5)U (s, ).

—00

The right member equals
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(2.7) (U,B® La) + / B(s)a(x)dn(s,x) .

R+ x IR?

Fore > 0,t > 0,s € IR, we choose

pua)= [ 2o (=) =o (9] au= [ avso)

where ¢ has been defined in section 1. We have

BLa() =~ ( - t) +2o(9)

[ e vee [ o2 v
= /dWﬁ(v)U(t —ev, ) — (U, ¢°(- — 0) ® a)

e—0

—U(t,a) — (g,a) .

o |w

Then (2.6) gives

On the other hand, (2.7) gives

/_Z %/:O du {QS (u;t> — ¢ (g)] Ul(s, La)
S e [o () -0 )]

) /Ooo o) /Ot_ve dsU (s, La) + /[o,oo[xR2 dn(s,x)@ /Oi dvp(v) + 0(e)

t
H—?/ dsU(s,La)—l—/ dn(s,x)a(z).
0 [0,t] x IR?

Therefore U solves (2.5). Viceversa if U solves (2.5) then by inspection and integration by
parts, U solves (2.4). n

Remark 2.3 Proposition 2.1 also holds for vector valued equations. Consider for instance
a Fréchet space IF' with homogeneous metric d. Let n be a continuous linear functional
from C(IR?) into IF so that d(n(p),0) < [ ¢dv for any ¢ € C(IR®) where v is a non-atomic
Borel measure on IR>. This is the case for a white noise n and IF = L*(%).

The previous proposition allows us to study the form (2.5) instead of (2.4).

Proposition 2.2 Let g € S'(IR?) be a Radon measure on IR, x IR* without atoms. There
is a unique solution U to (2.5) of trace type and it is given by
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(2.8) Ut,a) = /[0 e dn(s,y) /]R2 dxpi—s(x,y)a(x) + (g, Pa) .

Remark 2.4 Remark 2.3 can be extended to the case of Proposition 2.2. Let us suppose
that 1 is as in Remark 2.3. Then, there is a solution to (2.5) U : B x S(IR*) — IF such
that o — U (-, @) is of IF trace type and it is given by (2.8).

Proof: (of the proposition) Let U be given by formula (2.8). Then

t t
/ dsU(s, La) = / ds / dn(u, y)Ps—yLa(y) + (g, PsLa) |
0 0 [0,]x IR?

where

Rﬂ@%i/%@wmwﬂy

Using Fubini theorem, this equals to

t t
/ dn(u, y)/ dsPs_, La(y) —|—/ ds{g, PsLa) .
[0,t] x IR? 0 0

But P;L = LPs; = P so that the previous expression is equal to

/[0 . dn(u,y) {Pr_ua(y) — a(y)} + (g, Pa) — (g, @)

U [ dnya) (g0

This implies existence. Uniqueness is a consequence of the following lemma.

Lemma 2.1 There is only one function V : IRy x S(IR*) — € (resp. IF) such that
a— V(-,a) is of trace (resp. IF-trace) type and

t
(2.9) V(t, a) :/ V(s, La)ds , Ya € S(IR?), ¥t > 0 :
0
it 1s the zero function, i.e. V = 0.

Proof: Let V be a solution to (2.9). We set || - || to be the distance from zero in F. Let
S be a bounded subset in the Fréchet space S(IR?), see [DS], ch 2.

t t
(2.10) |V (¢, )] S/ ||V(S,La)||d8§/ sup ||V (s, B)|ds sup || L] .
0 0 BES a€esS
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Since L : S(IR*) — S(IR?) is continuous, the previous supremum is finite. (2.10) and
Gronwall lemma imply V' = 0. [ ]

Lemma 2.2 Let [ :C x IR x IR> =@ be a continuous function, g € C°(IR*) NS’ (IR?). We
suppose that f(y;t,-) has support in a fized compact subset K C IR*, Yy e, t > 0.

Let u be a function in C(IR. x IR*) with polynomial growth in x € R2. Let v be a
Radon measure without atoms, h € C(IRZ) with compact support. Then u is solution to

(2.11)  u(t,z) = /0 {Lu(s,x) + f(u(s,x);s,2)}ds+ g(x) + / dv(s,y)h(x —y)

[0,t] x IR?

if and only if

u(t,a;):/]m dypt(ﬂfay)g(y)Jr/o dS/Rgpt_s(fc,y)f(U(S,y);say)
(2.12)

—l—/dy(s, z)/pt_s(x,y)h(y—z)dy.

Remark 2.5
a) Taking Fourier transform in space and applying Picard’s method, (2.11) can be shown
to have a unique solution iof f is Lipschitz continous with respect to the first argument
uniformly with respect to (s, ).
b) Lemma 2.2 has a Fréchet vector valued IF version.

Proof (of the lemma 2.2) Let u be a solution to (2.11). We consider the Radon measure
1 defined by

dn(s,x) = f(u(s,x);s,z)dsdx + {/ dv(s,y)h(z — y) }dx.

Then

F(uls, y); 5, y)dsdy + / dv(s, 2)dyh(y — 2) .
[0,t]x R?>x B

(0.8 xB) = [

[0,t]xB

Consequently, U(t, @) = [u(t, z)a(x)dz is of the form (2.5). Proposition 2.2 implies then
that U solves (2.8). Since u is a function, it must have the form (2.12).

Conversely, if v is a function satisfying (2.12), then by symmetric arguments as before,
v solves (2.11). n

We recall that the unique solution X : IR, x S(IR?) — L? to

(2.13) X(t, a):/o X(S,La)ds+/[0 e dW (s,y)a(y)
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is given by

(2.14) X(t,a) = /[0 LY /IR dro(e)pe-s(w,y)

This is the approach proposed for instance by [W], ch. 6.

We go on now with some important estimates on the density semigroup (p:(z,y)).

Proposition 2.3 ([D], ch. 3)
There are constants 61,92, C1,Cy > 0 such that

Cy —|z —yl? Cy —|z —y|?
g < < —= _— .
; exp < 5i < p(x,y) < ; exp 5ot

We recall that the free solution X can formally be written as

X(t,x) = / AW (5, y)po—s (2, y) -
[0,t] x IR?

Therefore Proposition 2.3 says immediately that the variance at each point ¢ > 0, z € IR?

/ dsdyp;_,(z,y)
[0,t] x IR?

is infinite. However the covariance

t1 Ato
COV(t1,$1;t2,!E2) :/ /2dyptl—s(!Ehy)Ptg—s(!Ez,y)
0 R

is finite. It represents E (X (t1,z1) X (t2,x2)) .

Remark 2.6 The symmetry of the kernel and Chapman-Kolmogorov equation give

t1 At
Cov(t1, x1;t2, x2) = / ds Pty +ty—25(21,T2) .
0

The covariance will be estimated in the following proposition.

Proposition 2.4 Let K C IR? be a compact. There are real constants a1,as,as and
positive constants D1, Do, D3 such that
i)

t t
0 S Cov (tl,l'l;tz,a?z) S D1 10g t2 th

+ a1

2 — 11
for every ty,ts €]0,T] so that t; # t2 and x1,24 € K.
ii)
as + D2 10g

< Cov (t,x1;t,22) < Dslog +as

|9 — x| |5 — 1
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wheret =11 =t3 >0, x1,22 € K.

Proof We will suppose t; < t. By the change of variables v = t; + t5 — 2s, Remark 2.6
gives

ta+t1 dv
(216) Cov (tl,.’lfl;tz,xz) = / —pv(zvl,xz).

to—t1 2

i) Proposition 2.3 allows to dominate the right member of (2.16) so that

ta+ty d _ B 9
COV (tl,.’lfl;tz,l'z) S Cz/ _’U exXp (M)

t2—t1 v 62’0

|y — 1
2V

for positive constants Cs,d2 > 0. The change of variables s = says that the

right member equals

s — | w2 =)
(2.17) Cs (E (m) - (m))

where

(2.18) Ei(y):/ ",y > 0.
Yy

We observe that

- E7i is positive and decreasing.
- Ei(y) = ¢(y) — log(y), where

defines a locally bounded positive function.
- Fi(y) behaves as log% when y goes to zero.

We set ¢(y) = SUp,<, ¥(2) We will show that

t t
(219) Cov (tl,l'l;tz,a?z) S D1 10g t2 +h

—|—CL1.
9 —t1

Let R > 0.
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2o —a1 | 2o —a1 |
a) If 52 (52 —t0) < R, then 52 (52T ED)

iC’ov(t xy;t x)<log<t2+t1>+¢ M ) M
02 T ta =t (t2 + ¢1)02 (t2 —t1)02

< log (iﬁ?) + 2(R)

27U

< R and

b) If [22-ml 5 R oand [z2mnls < R then

1 (t2 + t1)02 |z2 —ﬂ71|2 | |2 —ZE1|2
—Cov(ty,x1;te,x0) <log| —— | + ——— |- FEi| ———
Cy (b1, 2152, 2) g < zy — 21| ) v <(t2 +11)02 (ta — t1)d2

< log (%) +P(R)

t t ~
:log< 2 1) + ¢(R) — logR
to — 11

c) If
o — 21| o — 24|
(ts—t1) ~ (t2+t1)

then Cov(t1,x1;t2,x2) < 2Ei(R) and the result follows.
ii) (2.16) and Proposition 2.3 say that

>R

2t dv

Cov (t,z1;t,x2) :/ 71%(3717372)
0

2t e o2
<0 / do o (M)
g U 020
_ i (2ol
2 205t

where Fi has been defined before. Therefore, using the fact that Ev is decreasing, we get

2
— 1
Cov (t, w151, 22) < C2Ei % < D3log ——— +as.
2 w2 — @1

This proves the upper bound. The lower bound is obtained similarly. n

Let ¢ € S(IR?) be as defined in section 1. We consider the object X defined in (2.14).
We recall that it is the solution to (2) with Uy = 0, A = 0 in the sense of distributions.

18



Rx is the representative of the C(IR,; L?)-valued generalized function identified with X
through (1.6). We compute some covariance terms related to Rx. We set

Cove 5 (t1,21;t2,22) = E(Rx(t1;21,)Rx (t2;22,0))

where €,8 > 0, t1,ts > 0, z1, 29 € R%
We recall that

Rx(t;x,e) = /

[0,t] x IR?

AW (5,) / P (22 9) 8 (x — 2)d2

Proposition 2.5 Let b € IR and K C IR* a compact. There are Cy,Cs, D1, Dy > 0 such
that

i)

to +t1]"
exp(b Cove g (t1, x1;ts, Ta)) < Dy |2
’ to — 11
for every ty,ts €]0,T] so that t; # t2 and x1,24 € K.
ii)
dz1dzed(21)P(22)

exp(b Cove 5 (t,x1;t,x2)) < Dz/ | Cab
T2

— 1+ €21 — 02|
where t =t =13 €]0,T], 1,22 € K.

Proof We suppose t; < t5. Using (2.8) and (1.6) we can write

Rx(t1;21,¢€) :/

dW(s,y)/ ptl—s(l'l —6z,y)¢(2)dz
[0,¢1]x IR2 R?

Rx (t2;x2,0) = / dW(s,y)/ Dtr—s(T2 — 02,y)p(2)dz .
[0,t2]><.R2 IR?

Therefore
Cove,5 (t1, w152, %2))
:/ dey//dzldz2¢(21)¢(22)pt1—s($1 — €21, Y)Pty—s (T2 — 022, )
[O,tl]XRQ

(2.20)
:/ ¢(21)¢(22)d21d22/ dS/ dype, —s (1 — €21, Y)Dty—s (T2 — 022, Y)
R2 x R2 [0,1] R?

= / dzleZ COV (tl,l'l — EZ21,; tz, o — (522)(]5(21)(]5(22) .
R? x IR?

i) is now a direct consequence of Proposition 2.4 i).

Concerning ii), Jensen’s inequality and (2.20) say that for ¢t = t; =t
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exp(bCove 5 (t,215t,22)) < / dz1dzap(21)$(22) exp(bCov (t, 11 — €215, 22 — 022)) -
R2xIR?

By Proposition 2.4 ii), it follows that this is smaller than

1
const / dz1dzap @ ¢(21, 22) bC
R2 % IR2 |J;2—.’171—|—621—622| ?

¢ ® P(21, 22)

< const / dz1dzo o
R?x R? |£U2—£U1+€Z1—(522| 2

We discuss now some linear equations in Colombeau sense. First of all we start with
two lemmas.

Lemma 2.3 Let g € C®(IR*;C(IR,)) such that every derivative fulfills property (1.3).
Then

U(t,w)Z/ot ds/;m dype—s(2,9)9(s,y)

has the same property. Moreover, for any given derivation operator D acting on the space
argument x we have

t
Du(t, z) :/ ds/R dypi—s(w,y)Dyg(s,y) -
0 2

Proof By classical arguments of [F], ch. 1, it is possible to prove the existence of a
polynomial P (%, x — y) and a constant > 0 so that

1 —lz—yl?
(2.21) Dpi(z,y) < P (Z,x - y> exp (%) i

Clearly (2.21) implies that

(2.22) /dy Do, 9)| (L+ [y[") < 00, Vn € IN, z € R?, £ >0 .
For fixed t > 0 we set
vs.0) = [ dupsloglsn), s <t
R2
Using (2.22) we get
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/ dy |Dpe_s(z,9)| lg(s,9)| < o0, s<t.

Using the definition of partial derivatives and Lebesgue dominated convergence theorem,
one gets that Dwv exists and

Du(s,z) = /dprt—s('Ta y)g(s,y) .
By integration by parts and using the symmetry of the kernel we get

Do(s,a) = [ dyDpis(y.2)g(s.) = [ dypie(o.9)Dyg(s.)
On the other hand, there is n € IN such that

D
sup | yg(s, y)|

<00 .
s<Tyer? 1+ ly|"

Therefore, using also Proposition 2.3, it follows that

Du(t, z) < /t ds |Dv(s, z)] :/Ot ds/dypt_s(:v,y) 1Dyg(s,y)|

0

t
/ ds/dypt_s(a:,y)(l + |y|™) < const(1+ |z|")
0

for any t € ]0, 7.

Proposition 2.6 Let R € £y, (IR*;C(IR,)) (resp. N(IR*;C(IRy)) ). Then
i) LR(t;x,¢)
ii) f[o 1 dsR(s;z,¢)
iii) Ri(t;2,€) = [ig g me d5dYPe—s (2, y)R(s:y,€)
all belong to the same space Eyr(IR*;C(IR)) (resp. N(IR*;C(IRy))).

Remark 2.7
a) The proposition above says in particular that for U € G(IR*;C(IR,.))

Ui(t,z) = LU (t,x) ,

Uz(t,l') = / deypt—s(xvy)U(svy)
[0,t]x IR?

are well defined.
b) We can replace C(IRy) by C(IR4; F).

Proof (of the proposition) i) If R belongs to £y (resp. A) then all derivatives have
a tempered moderate (resp. null) bound. Since the coefficients of L have a tempered

21



moderate bound then LR belongs to £y (resp. N). ii) is straightforward and iii) is a
consequence of Lemma 2.3. u

Proposition 2.7 The unique solution U € G(IR?*;C(IRy)) to the equation

(2.23) Ut z) = / LU (s, z)dx
[0,t] x IR?

s the zero generalized function.

Proof If U € G(IR*;C(IR.)) solves (2.23), there are Ry € £y (IR?;C(IR,)),
Ry € N(IR?;C(IR,)) so that

Ry(t;z,e) = / dsLRy(s;x,e) + Ro(t; x,¢€) .
[0,2]

By Proposition 2.6

t
Ri(t;z,e) = / dsLRy(s;x,¢)
0
still belongs to N(IR%*; C(IRy)). We now set

Ry(t;z,€) = Ry(t;x,e) — Ro(t; w,€),

getting

t
Ry (t;x,e) = / dsLRy(s;x,e) + Ri(t; z,¢) .
0

According to Lemma, 2.2

t
(2.24) Ra(t;z,¢€) :/ ds/ dypi—s(z,y)R1(s;z,¢€) .
0 R?

Ry belongs to N'(IR?*; C(IR,)) because of Proposition 2.6, therefore the same holds for Ry.
u

Next section will be devoted to the study of the existence and uniqueness of a random
C(IR)-valued generalized function for a non-linear heat equation involving Wick reorder-
ing.

We need first to define some new generalized functions which incorporate ”renormal-
izing coupling constants”. First of all we observe that X defined by (2.13) is an element of
L?(Q)-trace type and through (1.6) it defines a generalized function in G(IR*;C(IR; L?)).
On the other hand it is not difficult to show that there is a random element a.s. of trace

type X such that
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X(t,a) = X(t,a) as. YVt >0, a € S(IR?) .

To X we can also relate a random generalized function (still denoted by X) in
Go(IR*;C(IR,.)), operating according to (1.6).

For a given constant ¢ > 0, we can define another random generalized function X,
through the representative

RXC(t;.T,c‘f) - RX(t7$7¢C(6)) ’

where

(2.25) ele) = (1()_;6)% so that < %1(8))0 _ 1og§ |

In particular

(2.26) Ry (tz,¢) :/

dW(s,y)/ pi—s(2, )% (z — 2)dz a.s.
[0,t]x IR?

R2
Also we can replace Ry by Rx, and define X, as a C(IR,; L?)-valued generalized function.

Remark 2.8 X and X, (resp. X and X.) are indistinguishible random C(IR)-valued
generalized functions (resp. C(IR,; L?)-valued generalized functions).

Lemma 2.4 The elements

Rg(a,t;z,¢) = exp(a®E(R%(t; z,¢)))

Rg,(a,t;z,¢) = exp(a® E(R% (t; x,€)))

belong to Epr(IR*;C(IR x IR,)).
Moreover, for T > 0 and any compact I C IR, there is co > 0 such that for ¢ > cg

1
sup |Rg, (a,t;x,e)| = O <log —) .
a€lt<T,zcR? €

Remark 2.9 The class of G and G define indistinguishible C(IR x IR )-valued generalized
functions.

Proof (of the lemma) The calculation (2.20) and Proposition 2.4 ii) say that there is a
constant C; > 0 such that
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exp(a’E(R% (t;z,¢)))

= exp <a2 / dz1dzod @ ¢(z1,22) Cov (t,z —ezy;t,x — 82:2)>
R?x R?

< exp (/ dz1dz26>C log <82|z—1z|2) ¢(21)¢(22)>
1— 22

1 1
= exp <a201 log ?) exp <a2C’1 / dz1dza¢p(21)P(22) log 7>

|21 — 20|

The second exponential is finite for every a € I and will be denoted by Cs. Therefore

1

a Cl
(2.27) exp(a’E(R% (t;x,¢))) < Co <€—2> = const (T, 1) e ™MBD); vgeT.

M(I) is a positive constant depending on I and const(T, I) is a constant depending on T’
and I. This shows in particular that

exp(a’E(RX (t; 2, ¢))

has a tempered moderate bound with n = M (I).

Let us now discuss the derivatives. Using (2.20) we have

(2.28) E(R%(t;z,¢)) = / dz1dzo¢° @ ¢ (21 — x, 20 — ) Cov (L, 21;t, z2) .
R?xR?

Again by Proposition 2.4 ii)

1
/dzldzz Cov (t, z1;t, z2) < const (/ dz1dzs log ﬁ + 1) :
Z1 — 29

this integral is finite. On the other hand for any given partial derivation operator D with
respect to x we have:

1
|D[¢° @ ¢°)(21 — x, 20 — x)| < o const(¢) ,
for some n, > 0. Therefore

const

DE(R%(t;z,¢)) <

em

Now
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Dexp(a®E(R% (t; x,¢)) = exp(a®E(RX (t; 2,¢))Q

where () is a polynomial in the derivatives of F(R% (t;,€)). It follows that

sup |DR¢, (a,t;x,€)| < const,
a€l t<T,xzcR?

for suitable M (I) > 0.

eM(I)

Remark 2.10 When L has constant coefficients, pi(x,y) is of convolution type, that is to
say there is py such that py(x,y) = pe(x — y). In this case
t
Cov (t,z —ezy;t,x —ezy) = / dspat—2s(€21 — €22)
0

so Rg does not depend on x; so all derivatives with respect to x vanish and the situation
15 in this case simpler.

We discuss the case Rg,. In this case
Rg (a,t;x,e) = Ra(a,t;z,€) .

where € = ¢).(¢). So, by (2.27), there is another constant const(T, I) such that

M(I)
Sup |Rg, (a,t;z,e)| = O (const (T, [)é_M(I)> — const O <(€~—c) . )

a€l t<T ,xeclR?
M(I)
1 c 1 .
=0 <logg> :O<<logg>> if M(I)<c.

We set then ¢y = M (I). u

X (resp. X ) solve the (Gaussian) free equation in distributional sense, see [W], chap.
5. Another C(IR, ; L*)-valued (resp. random C(IR, )-valued) generalized function of interest
will be the solution in Colombeau sense of the free heat equation (2.2), which is driven by
an integrated white noise W (resp. W). It will be denoted by Y (resp. ). In general we
cannot, expect X and Y (resp. X and Y) to coincide in the (strong) generalized functions
sense; in principle they are only equal in the sense of the association: this phenomenon
has been observed in the case of the two-space dimensional white noise driven free wave

equation: see [AHR2| Proposition 3.3.
Y is a C(IR; L?)-valued generalized function represented by

Ry (t;x,e) = /

dW(s,z)/ dypi—s(z,y)9°(y — 2) .
[0,t]x IR? R?

Y is a C(IR,)-valued generalized function such that
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Ry (t;x,e) = Ry (t;z,€) as.

We can also consider Y, (resp. Y,) as for X (resp. X). We define K, K, € G(IR*;C(IR; x
R)), K = K(a,t;z), K. = K.(a,t;x) as

Rk (a,t;x,e) = exp(azEz(Ry(t; z,€)))

R, (a,t;z,¢) = exp(a®E*(Ry, (t; z,¢)))

This definition is possible because of the following lemma:

Lemma 2.5 Ry, Rk, belong to Ey(IR*C(IR x IR,)). Moreover for any compact real
interval I, T > 0, there is ¢y such that for ¢ > ¢y we have

1
sup |Ri_(a,t;z,e)| = O <10g —) .
a€It<T,zcR? €

Proof We observe that

Ry (t;x,e) = /

dW(s,z)/ dyps—s(x, 2 + ey)d(y) -
[0,t]x IR? R?

Therefore

E(Ry (t;x,¢)) =

(2.29)

/ dy1dy2¢ @ ¢(y1,y2) / dsdzpi—s(x, z + ey1)pr—s(z, z + ey2)dz .
R? x IR? [0,t] x IR?

Using the upper bound of Proposition 2.3, the same proof as for Lemma 2.4 applies. ®

Remark 2.11 If the kernel (pi(z,y)) is of convolution type then

E(R%(t;x,€)) = E(R%(t;2,¢))
In this case G = K and G, = K. if they are defined.

Proposition 2.8 If the kernel pi(x,y) is of convolution type then X =Y (resp. X. =Y.)
in the sense of C(IRy; L?)-valued generalized functions.

Proof Similar to Proposition 3.3 in [AHR2]. u
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3. The non-linear heat equation

From now on p will be called complex measure if it is a measure on the Borel real
o— algebra with values in ' such that {0} = 0 and it has compact support.

Let 1 be a complex measure, x € C$°(IR?), f° :@ — € smooth such that all the
derivatives are bounded for each compact of IR, X IR*)\ eC.

This section will be devoted to the study of equation (7) in the framework of random
generalized functions. We can see that (3.1) is a generalization of such an equation. For
simplicity all along this section, we will set A =X =1,U, = 0.

For a given ¢ > 0 we are interested in the following equation in the Colombeau sense

Ul(t,z) =

(3.1) .
3.1 /0 dsLU (s, z) + x(x) {/du(a)fo(aU(s,x))Kc(a, s;x)} LWt ),

where W, is the indistinguishible random generalized function of the integrated white noise
of section 1, defined by

(3.2) Ry, (tz,e) = Ry (62, 1e(€))

bele) = (10_;6)% -

By a solution to (3.1) we mean a random generalized function U € Gq(IR*;C(IR.)
which solves (3.1) and such that U € G(IR?*;C(IRy; L?)).

Remark 3.1

From now on, Rey will stand for the real part of a complex numbery. If f°(y) = exp(iRey),
[ du(a)fo(aU(s, x))Kc(a, s; ) corresponds to : [ du(a)f°(aU) : (s,y). Therefore, if we set
f(y) = [du(a)f°(ay), equation (3.1) corresponds actually to

and

Ult,z) = /0 dsLU (s,z) + x(z) {: f(aU) : (t,2)} + We(t, ) .

In fact (K.(a,s;z)) can be seen as a C(IR x IR, )-valued generalized function repre-
sented by some Rg = Rk, fulfilling

1
(3.3) sup |Ra(a,t;z,e)| = O <log —) .
a€ R t<T,zESUPD X €
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for every compact subset IR, of IR.

From now on, to avoid overcharge of notations, we will replace f by f°.

Remark 3.2 We recall that W (resp. W) is the pathwise version of the L*(Q)-valued
object W (resp. W..).

Remark 3.3 When (pi(x,y)) is of convolution type then we can replace K. by G..
Lemma 3.1 Let U € Go(IR?*C(IRy)) N G(IR*;C(IRy; L?)). U solves (3.1) in L? if and

only if U solves
Ult,z) =

(3.4)

/0 ds /JR dypi-a(,) / du(a) F(al (s, 9) K ola, 5 9)x(y) + Volt, 7) |

where Y is a random C(IRy)-valued generalized function represented by

(3.5) Ry (t5,) = /[ LD [ peso ) = 2y s

and Y, is defined in such a way that

Rf’c (t;'Tag) = R?(t;mv¢c(€)) .

Remark 3.4 Y, solves (3.1) when [ = 0.

Remark 3.5 The notation U € Go(IR*;C(IRy)) N G(IR?*;C(IRy; L?)) means that U is a
random generalized function represented by Ry € £M7Q(R2,C(R+)) which belongs to

Em(R? C(IRy; L?))

as an L?-valued function.
We remark that such Ry € No(IR?; C(IR,)) may not belong to N'(IR*;C(IR; L?)).

Proof (of Lemma 3.1) If U solves (3.4), then there is a representative
Ry € Epro(IR*C(IRy)) N Ex(IR?*;C(IR, 5 L?)) so that

Ry (t;x,e)

(3.6) / / dypes(, y / dyi(a) f (aRu (5:9,€)) R (a 519, )X (0)
o (o

+R )+ Ro(t;x,¢)
where Ry belongs to No(IR*; C(IR,)) N Ep (IR?; C(IR,; L?)). We set
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Ri(t;z,¢) = Ry(t;z,e) — Ro(t; x,¢) .
Now R; solves
t
Ri(t;x,¢) =/ dS/ dypt_s(fﬂ,y)/du(a)f(aRu(S;y,s)
0 R?

+alo(s;y,€)) Rk, (a, 559,€)x(y) + Ry (57, €).

Ro(-,€) belongs to C°(IR*;C(IRy; L?)) and it has polynomial increase; in particular it
belongs to C(IRy x IR; L?)NS'(IR?*;C(IRy; L?)). The extension of Lemma 2.2 to the case
of F = L?(Q)- valued functions and distributions implies that

t
Rl(t;:v,e):/ dsLR;(s;y,¢)
Ot
+/ dS/du(a)f(aRl(S;y,s)+aRo(S;y,s))x(iﬂ)+ch(t;:ﬂ,6) a. s.
0

Since Ry and Ry 4+ Ry are both random representatives of U, then U solves (3.1).

Conversely, let us suppose that U is a solution of (3.1). Let Ry be a representative,
i. e. Ry is a solution of

Ry (t;z,¢) :/0 dsLRU(s;:E,e)—|—/du(a)f(aRU(s;m,s))RKC(a, s;x,e)x(x)

+ Ry, (t2,€) + Ro(t; 2, €)

where Ry € No(IR?*;C(IR;)) N En (IR*;C(IR,; L?)). We set

R(t;x,¢) :/0 ds/lR2 dyps—s(z,y)
/dﬂ(a)f(aRU(S; y,€))Ric.(a,s5y,€)x(y) + Ry (t; 7€)

According to Lemma 2.3, R belongs to Ex7.0(IR?*,C(Ry))NEy (IR C(IRy; L?)). Of course
by additivity and again by Lemma 2.2 we have

t
Ri(t;z,e) = / dsLRy(s;x,€) + Ro(t; x,¢€)
0

for Ry(t;x,e) = Ry(t;x,e) — R(t;xz,¢). Therefore the class of Ry solves (2.23); by Propo-
sition 2.7 the class of R is null and so Ry = R up to a null element. u

The next step will be the proof of the (pathwise) existence and uniqueness for equation
(3.4). We recall that this will solve in L?-sense the initial equation (3.1). For this we will
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need some deterministic estimates. Let us suppose f as before (even if for the present
argument, we really just need f to be Lipschitz continuous). ¢ = 1,2, k;, g, r; are continuous
functions on IR x IR, X IR?, whose support in y is included in a compact subset K of IR?
for any a and s; p is still a complex measure. h; are any continuous functions on IR X IR?
with at most polynomial growth.

We consider the following equations

wi(t,z) = / ds dyp;—s(w, y)
) [0,t] x IR?
(3.71)

{f(aui(sa y))ri(a, S, y)g(av S, y) + ki(av S, y)} + hi(ta 'T)

A suitable contraction principle allows to show existence and uniqueness of solutions
u; € C(IR4 x IR?) having at most polynomial growth in € IR

Lemma 3.2 Let u; be solutions of (3.7i), i = 1,2. Let K be a compact of IR, T > 0.
There are constants a, . ..,as such that, for x € IR>

1)
¢

sup |u;(t,z)| < exp <a1/ sup lg(a, s,y)| |r¢(a,s,y)|ds>
0

t<T,zeK yeK,a€supp p
oo s gatn] o sw )
yeK t<T yEK t<T,a€supp p
b et s o) |
a€supp p,t<T,yecK t<T,ze K
2)
t
sup  |ug — usl| (t,2) < exp (ag/ sup lg(a, s,y)| |ri(a,s,y)] ds)
t<T,ze K 0 a€supp p,yeK
- [ sup {|n<a,t,y>|+ ualt, )|
yeK,t<T,a€supp p
as s = 72l @ 0) + by — kel ) |
b s [ hal 5)]
t<T,z€K
Proof

1) Since f is Lipschitz, there are constants C7,Ce > 0 so that for t < T,z € K

t
wtt o)l < [ds [ dun o) {01 sup |uz-<s,y>|+cz}
0 IR2 cK

Y
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( sup {|g(a,s,y) Ti(a7s7y)|}+|ki(a7s7y)|> +|hi(t7x)|
acsupp u,s<T,yeK

Remark 3.6 The Markov character of the semigroup (Py) implies that

sup sup / pi(z,y)dy = sup Pl=1<o00.
te0,T) zeR? J R? te[0,T]

Gronwall lemma and Remark 3.6 give result 1).
2) Fort <T,z € K, we have

lup — uzl (t, ) g/o ds/dypt_s(a:,y)
{ [ au@ystas.lsants - savatsilras.y
+ flaua(s,y))|r1 — r2|(a, s,y) + [k1 — k2| (a, Svy)} + [h1 — ha| (¢, )

Again the Lipschitz property of f and Gronwall lemma give the result. ]

Proposition 3.1 Let p be a complex measure, f :€ —C' be smooth so that all the
derivatives are bounded, H € G(IR*;C(B)), x € C*®(IR?) support included in some compact
K € IR*. Let G be a real C(B)-valued generalized function fulfilling (3.3).

Then the following integral equation has a unique solution in G(IR*;C(B)):

U(t,x) = H(t,z)
e[ dsdypies(ony) [ dp(@) f@Us,)Glassix()
[0,t]x IR?
Proof At the level of representatives, (3.8) can be expressed as follows:

Ry(t;z,e) = Ru(t;x,€)
(3.9)
+ /[o,t]><1R2 ds dypt—s(x,y)/du(a)f(al[%U(s;y,g))RG(a7 s:9,)x(y) .

We now prove the following.

Lemma 3.3 Let D be an | > 1 order derivation operator and R(t;x,e) = DRy (t;x,¢).
Then
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R(twe)= [ dsdypis(ony) [ duta)
[0,t] x IR?

(310) |:X(y)R(Sa Y, g)f(aRU(S; Y, 8))RG((I,, S Y, 6) + P((J,, 55Y, 5)

+ DRH(ta'Tag) )

where P is a polynomial in derivatives of Ry up to order | — 1, as well as in derivatives
of Rg and f;(aRy(s;y,¢€)), where f; is bounded such that all derivatives are bounded, and
Xj € C"X’(Rz) with compact support in K; moreover for every a,s, Pla,s;-,¢) has its
support included in K.

0
Proof (of lemma 3.3). We start with [ = 1. We apply D = Eyet i =1,2 to (3.9), setting
x.

7
R = DRy. Since p; is symmetric, similarly to the proof of Lemma 2.3 we have

R(t;x,¢) :/ deypt—s(xvy)/dll(a)
[0,t]x IR?

D{f(aRU(s; y,€))x(y)Ra(a, s;y, 6)} + DH (t;z,¢) .

Therefore

R(t;x,e) = /[0 e dsdypt_s(x,y)/d,u(a)x(y){af’(aRU(s;y,e))R(s;y,e)Rg(a, $;Y,€)

T f(aRy(s:y.€) DRa(a, 55, e>} + Dy(y) FaRo(s:9,2)) Rola, 5:,)
+ DRy (t;x,¢) .

Therefore (3.10) holds true for [ = 1.
We suppose now (3.10) is valid for an integer [ > 1. Let D! be a first order operator.
Then

D'Rtswe) = [ dsdyps(ony) [ duta)

[0,t] x IR?
{x(y)DlR(S; y,e)f(aRu(s;y,€))Ra(a, s3y,¢€)

+x(y)R(s;y,€) f(aRu(s;y,€)) D' Rg(a, 53y, €)
+x()R(s;y,€) f'(aRy(s;y,€))aD Ry (s; y,€) Ra(a, 53y, €)
+ D*x(y)R(s; y,€) f(aRu(s;y,€))Rala, 83y, €)

+ D'P(a, s; y,e)] + D'DRy(t;x,¢) .
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Therefore (3.10) is now established for [+ 1. R is replaced by D'R; P(a, s;y, €) is replaced
by

R(S;y,é‘){f(aRu(S;yas))Dch;(a,S;y,e)x(y)
+ f’(aRU(s;y,e))aDlRU(s;y,e)Rg(a, s;y,€)x(y)
+ f(aRU(s; y,€))Ra(a, s;y,e)Dlx(y)} + D'P(a,s;y,¢) .

This is a polynomial in the derivatives of Ry up to order I, as well as in derivatives of
R¢ and f;j(aRy(s;y,¢€)), where f; are bounded such that all derivatives are bounded and
smooth functions x; with support in K; moreover the support of previous expression with
respect to the variable y is included in K. n

We are able now to prove that the unique solution of (3.8) exists. For this we need
to prove that the unique solution to (3.9) (whose existence is guaranteed by Remark 2.5)
is moderate. In other words, we will prove that every derivative of any order [ > 0 has a
moderate tempered bound.

We will prove this by induction on [ > 0 by starting with [ = 0. Let n € IN such that
Ry (t;
Sup H( 7 Ly 6)

=0 (e™) .
t<T,z€R? 1“‘|5'7|n (8 )

We can apply Lemma 3.2 1) with w; = Ry, g=Rg, f = f,ri =1, k; =0, h = Ry, where
Ry is the solution of (3.9). Using assumption (3.3), we get the following estimate

TC:
Ry(t: =, 1 11
t<Twemr? 1+ 2] £ e e"

for suitable positive constants Cy, C'i,n € IN and € > 0 is small enough.

We suppose that every derivative of Ry up to order [ — 1 > 1 has a temperate
moderate bound. Let R = DRy where D is a order £ partial derivation. Now, Lemma 3.3
and assumption (3.3) for G say that [ du(a)P(a, s;y,¢) has a temperate moderate bound.

By definition DRy has a temperate moderate bound. We recall that there is a constant
(5 such that

1
(3.11) sup |Re(a,s;y,e)| < Calog — .
aesupp (u),s<T,yeK €

We apply again Lemma 3.2 1) with ¢ = Rq, f(y) = v, ri(a,s,y) = [du(a)f(aRy(s;y,¢€)),
ki(a,s,y) = P;(a, s;y,¢e), h(t,x) = DRy (t;z,¢).
Let us fix n € IN such that

DRy(t;z,¢)
sup ———————=

=0 (™) .
t<T,zeIR2 1“‘|5'7|n (6 )
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Using recurrence assumptions, P;j(a, s;y,¢) can be suitably bounded. Therefore there are
constants C3, Cy, Cs such that

|R(t;,€)|
sup ———
t<Tzem2 1+ |z["

t 1
< exp (Cg/ sup |Rc(a, s; y,€)|d8) <C4 log B + 058_”>
0

a€supp(u),s<t,yeK

and because of (3.11)

CoC3T
Rt 1\ ©2Cs 1
su M < |- Cylog— + Cse™™ ) < const e™™
p 7 &

t<T,x€R? 1+ |z| € c

for some suitable M > 0.

This proves the existence for (3.9) and therefore for (3.8). In order to show uniqueness,
we start with two solutions R{;, RZ of (3.9).

We have to show that R}, — RZ and all their derivatives have a tempered null bound.
For this we apply Lemma 3.3 and Lemma 3.2 2) and we implement a similar procedure
as for the existence part. To achieve this we have to take into account the fact that if
Rl — R% is null then f;(R};) — fj(R%) is also null; on the other hand we recall that the
family of generalized functions with temperate moderate bounds is an algebra and the
family of generalized functions having a tempered null bound is an ideal. ]

An interesting application covers the following mild type equation which includes the
stochastic quantization equation with Sine-Gordon interaction.

Theorem 3.1 Let pi be a complex measure with compact support, f° € Cp°('), x a smooth
function with compact support. G. has been defined in the lemma 2.4 and let X. be the
Gaussian generalized process defined in (2.26) coming from the Walsh [W] solution.

Then, there is a unique solution in Go(IR*;C(IR,.)) of

A

(3.12) cuux>=1/ cwdypps@ayx/duaof%avxay»caausnnx@n+-X4ux»

[0,t]x IR?

Remark 3.7 If f°(y) = Aexp(iARey), f(y) = [exp(iaRey)du(a), equation (3.12) be-

comes

A~

(3.13) . U@@ZAAmMp@@mﬂ@wﬁfmmiﬁwﬂw+Xﬂw)

Proof (of the theorem) We choose ¢y according to Lemma 2.4; this gives us a logarithmic
type estimates (3.3) for G..
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Let Uy, Us be two solutions of (3.12). In particular there are two measurable repre-
sentatives Ry, , Ry, solving w a. s. (3.8) with H(¢t,z) = X.(¢t,x). Proposition 3.1 gives
pathwise uniqueness and therefore Ry, — Ry, € No(IR*;C(IR,)).

In order to get existence we proceed again by Proposition 3.1. Setting H(t,x) =
Y.(t,z), the existence part of this proposition provides Ry € Ep(IR*C(IR,)), w a. s.
We observe that Ry is measurable because it solves (3.9); in fact the contraction principle
says that the solution of (3.9) with Ry = Ry is limit of Picard iterations which are
measurable. [ ]

Remark 3.8 By using the same procedure as in Proposition 3.1 we can show that the
unique solution of (3.12) also belongs to G(IR*;C(IR,;L?)). This is so because Y, €
G(IR* C(Ry; L?)).

Remark 3.9 Let us consider an indistinguishible random generalized function Ge from
G. and X from X. It is not difficult to prove that the two corresponding solutions are
indistinguishible.

Remark 3.10 In fact, the object of this section is equation (3.1). This is equivalent to
(8.12) where we have replaced G, with K. and Xc with Yc. We recall that K and K. have
been defined just before lemma 2.5. In such a case we can of course get the same existence
and uniqueness result as for Theorem 3.1. A priori we cannot compare the two solutions
obtained in these different ways. We know however that in case pi(x,y) is of convolution
type the two solutions are strongly identical (in the generalized functions sense).

In the next section we will proceed to a Taylor expansion of the solution U of (3.13)
with respect to A\. Each term of the expansion will be shown to be associated in the L2-
sense with a classical object; the zero-term is the free solution (A = 0); all the others will
be connected with classical suare integrable processes.

4. Association with random distributions

Let T > 0, g € U L9 ([O,T]N X RzN), A be a positive constant, x € C3°(IR?),
q<2
A = supp x. For given complex measures p;, we define f;(p;) :C =, f; = fj(p;) by

fily) = /JR exp(iaRey)dpu;(a) .

5= (s1,...,5n) and y = (y1,...,yn) will be generic elements of [0, T]N resp. RY.

In this last section X will be again the L2-trace type element X : IR, x S(IR?) — L2,
as in (2.14) and its related C(IRy, L?)-valued generalized function through formulas as

(1.6); on the other hand, we keep in mind the random generalized function X (resp. X,)
defined before Remark 2.8.

We set xV(y) = x(v1)-.-x(yn). Given the L?-valued distribution X an important
object to be defined is
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(4.1) /JRM c[1(AX) s (s1,y1) - - - IN(AX) = (snv,yn)x(y)g(s, y)dy

for a.e. (s1,...sn5) € [0, T]V.
This quantity will be shown to belong to L2(€2 x [0, T]") and the map

g— d§/ D f1(AX) s (s1,91) - IN(AX) 2 (s, yn)x ()9 (s, v)dy
[0, TN R2N

will be shown to be a continuous linear map from ﬂ L9 ([0, TN x ]RZN) to L?(Q).
<2
For Rx being a representative of X (see (1.6)), we set

2A2

cexp(iaARx) : (s;y,€) = exp <z’aARX(s; y,€) + ¢ E(Rx(s; y,e))2>
(4.2)

F(ARx): (s59:9) = [ duj(a) s exp iaARx) s (510.)

The object (4.2) does not define in principle a C (IR, , L?)-valued generalized function. But,
for 0 < ¢ < ¢y small enough, then : f;(ARx,) : defined as in (4.2) by replacing X with
the indistinguishible X, is moderate (with values in C(IR,,L?)) and so it introduces a
C(IRy, L*)-valued generalized function.

Furthermore, at least for small A, (4.1) will be a square integrable random variable,
introduced as the L? limit of

(4.3) /ﬂ{2N XN(Q) t f1(ARx) : (s1391,6) ...t [N(ARX) : (sniyn,€)g(s, y)dy -

Now (4.3) equals

/ dﬁ(a)/ XN(Q) cexp(idai1Rx) : (s1;y1,€) .. exp(iAanRx) : (SN; YN, €)
R2N R2N

where g =1 ® ... ® uny. We set

He(s,y,b) = xN(y) : exp(ib1Rx) : (s1;y1,€) ... : exp(ibvRx) : (s53yn,€)

b= (by,...,bx) € RN. Moreover, we set
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F<(g)(s,b) = /Hs(ﬁ;g,b)g(ﬁ,g)dy

Proposition 4.1 Let p > 2. There is by > 0 small enough such that if 0 < |b] < by we
have the following:

a) For any real function g € ﬂ L9([0, TN x AN), F2(g)(s,b) is L?(Q)-Cauchy, s €
q<2
0,71V, be RYN, |b] < bo.
b) The following quantity

)
/ ds sup E{/ dydgE{‘Hs(&y,b)Hs(ﬁ;y,b)‘ }}
(0,7 e<1,]b|<bg AN AN L Jg

s finite.
Proof We start with a).
Let s € [0, TV, b e IRYN. For ¢,6 > 0 we have

(4.4) E[F(g)(s,) — F°(9)(5,0)|" = ¢°° — 2¢°° + ¢ ,

where

= E { HE (51, ) F (5 2. D)9 (5, )/ (5. @dyc@}
AQN - - -

= / dydzg (s, y)g(s,z)x™ (y)x" (z)

E {exp (iij [Rx (sj;y5,€) — Rx (s5; 25, 5)]) }

j=1

exp (Zbg [E(RX(Sj; yj75))2 + E(Rx(s5; 75, 5))2]>

= / dydzg(s,y)g(s, 2)x™ (y)x" (z)

N
exp -2 Z bjblE(Rx(Sj;yj,é‘)Rx(Sl;yl,E))
JI=1,5<l
N

—2 Z bjblE(Rx(Sj;.Tj,(S)Rx(Sl;l'l,(S))

J,l=1,5<1

N

+ 2 Z bibiE(Rx (s5;yj5,¢)Rx (s1;21,0))

J,l=1
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1 1
Let p > 2 and ¢ < 2 such that — + — = 1. Holder’s inequality says that the previous
P q

expression is smaller than

Q

times
N
/ expd —2p Y bibiCov (55, y; 50 01)
A2N . .
Jl=1,35<l
N
(47) — 2p Z bjbl COV 5’5(8]',.1']';51,.7][)
j7l:17j<l

N
+ 2p Z bibi Cov ¢ 5(s5,yj; 51, %1) dydz
=1

(4.6) is finite. (4.7) can be rewritten as

N

/ _dydzexp  2p > bibi(Cov < s(s5,y5550m1) — Cov o o(s5,55 50 01))
A2 ) s
JI=1,5<1

N

(4.8) exp | 2p Z bibi(Cov 5.e(s5, 25 s1,y1) — Cov 55(s5, 253 51,21))
Hl=1,5<1

N

exp QPZbJZCOV 676(Sj7yj;8j7xj)
7=1

Taking in account the fact that the covariance expressions are non-negative and using
Proposition 2.5, there are constants C1,C5,C3 > 0 so that the previous expression is
bounded by

N 2|bib; |pC
Sj _|_ Sl | 7 l|p 1
const dydx | | -
= 5;— 8
AT s T
times
1

/dz1d22¢(21)¢(22) H

& — yj + ez — 020
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The first contribution comes from the product of the two first exponential terms in (4.8);
the second term from the third exponential term. This gives a bound of the form

b;b | pC
S]+8l |] l|p 1

N
t dyd,
cons/NNgg H

Gl=1,5#1

S5 — 81

(4.9) times

al 1
/ dz1d22q3 211 H

b2C
—yj+821—522| i®

We need here a technical lemma.

Lemma 4.1

N s s N! N 9
g ;
(4.10) L E:g(p) -
j,t=1:[,j¢t sitsl o pD g §j + 5P(j)

where P: (1,...,N) — (P(1),...P(N)) is a permutation and §(P) is the signature.

Proof We set t; = —s; and we rewrite the first member of (4.10) as

Il -

(4.11)

‘HH 1:J<l )(t _tl

_]l 1(

By [DL], p. 2600, (2.2), the first absolute value of (4.11), equals

1
det .
j,lzl,...,N S _tj

H = det{Diag (s; —t;)} -

On the other hand

By the property of determinants products, (4.10) equals

1 —t;
det, ( > - Diag (s; — t;) :det<8177>
St=1j /)1 SL=15 /1
N! N Py
— 5(P) ( J J >
pzzzl ]H:l SP(j) — Uj
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This establishes (4.10). u

We are in fact interested in bounding

N |b, by |pC
Si + 8]
(4.12) I =
ji=1,g1 159 0
(4.12) is smaller than
N b5 pC1 —bpC1
H (sj—f—sl) _ H(sj—sl>
. . S; — 81 Si + 51
gil=1,5#1 ~7 g#EL
where by = sup; |b;|. By lemma 4.1 this equals
N N 5 —b5pCh
S .
(4.13) s(P) || —X—
Pz::l El 85 + Sp(j)

But 2 — %P1 is a convex function on a IR,. So by Jensen’s inequality applied to the
uniform probability measure on {1,..., N!}, (4.13) is equal to

N ~b5pC:
—5(P)2N N! ( )
I—"z::l N! H 85 + SP(J)

—b3pCy

1
— |6(P)2V N1 ( )
! H 55 + SP(J)

N b2pC
o 9—Nb3pCi H sit+sei \ 0
(N) 1+b2pC1 S;

IN
2 TjMz

P=1 j=1
< bo, N, T) !
const (bo, H b2p o
j=195 i
This function is integrable with respect to dsy, ..., dsy provided by is small enough. There-
fore (4.9) is bounded by
const, (bg, N, T) i 1
gy DR dadeapeie) [ dye]] o
[ Sjop ! A2N iy —yj ez — 0z
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This integral is bounded by

/ dydz H G, < const (bg,p, N, T)
AT 1y — 'TJ|

loc

where A;,. is a suitable compact subset of IR? containing A. Finally, we have been able
to show that

1

(4.7) < const (bg, N,T) . T
(Hj:l 5]’)

This shows that
i) The exponential term in (4.7) is bounded in L? for some p > 2 with respect to the
measure dydzg(s,y)g(s,z) uniformly with respect to e, > 0.
In particular this shows the uniform integrability of the exponential term in (4.7) with

respect to dydzg(s,y)g(s. 2)
ii) On the other hand

Cov 65(t]_,l']_,t2,.’172) t)OCOV (t17x17t27$2)

so that for a.e. y,z and for fixed s € [0,T]", the exponential term in (4.7) converges
to

exp -2 Z b]bl Cov (Sjvyj;slvyl)
J.bi<l
-2 ijbl Cov (Sj, ;s 81, xl)
Jg<i
N

+ 2 Z bib; Cov (sj,y;; s1,27)
J,i=1

i) and ii) allow to say that

lim
e, 6—>0q

exists and part a) of Proposition 4.1 is established. Property b) follows easily from the
inequality

sup E{/ dydzF H5(§,y,b)m
|5|§17|b|§b0 AN AN = J

P const (bg, N, T)
< B2pCi
[T, s

which we have already given after (4.7). u
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We denote for the moment by F(g)(s,b) the limit obtained in a). It exists for b
sufficiently small and a.e. s € [0, T]".

Remark 4.1 For a sufficiently small real number A, the iterated integral in (4.1) can be
defined as

/]RN dp(a) F(g)(s, Ag) -

Taking into account Proposition 4.1 b), the quantity

/ ds/ du(a (s, Aa)
[0, TN RN

can be understood as a ds L?(Q)-valued Bochner integral.

Proposition 4.2 For A small enough,

a)
/ /d,u 5Aa—>/ /du g)(s, Aa)
0,7~ 0,1V

Vg e (VL9 ([0,.T]Y x AV).
<2
b) The map g — f[o T ds [ du(a)F(g)(s, Aa) is continuous from the Fréchet space

(L9 (0. 7] x AN) to L*(2).

Proof For fixed ¢ > 0, (4.6) and (4.7) tell that

g—>/ds/du YF(g)(s, Aa)

is continuous. This, a) and the extension of the Banach-Steinaus theorem to the case of
Fréchet spaces (see e.g. [DS], ch.2) imply the result b).

It remains to check a). We have to check that

(4.15) /OT ds/du (9)(s, Aa) — F(g)(s, Aa))> =% .

According to part a) of Proposition 4.1, the expectation in (4.15) converges to zero, for
any s,a a. e. Moreover it is bounded by
(4.16) 2E |F*(g)(s, Aa)|” + 2B |F(g) (s, Aa)|”

In order to obtain (4.15) with the help of the dominated convergence theorem it is useful
to check the existence of Ay > 0 such that for |A| < Ay
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sup  E|F¢(g)(-, Aa)|?
le|<1,]al<ao

is integrable on [0, T]" for small ag > 0.
ii)
[ dsin@E F(g)(s Aa)* < .
c . 1 1
We start with i). Let p > 2 and ¢ < 2 such that — + — = 1. For A small enough, and

p q
almost every s, a, Holder’s inequality gives

i@ A0l =5 { [y [ el 0 sy 0Tz A0

(4.17) < {/AM dydz g]" (s, y) |9/ (ﬁ,i)}q

1
P

{ [y |y a0 TGz A0 ]

Therefore

/ ds s E|F*(g)(s Ag)?
[0,T]2N le|<1,]a|<ao

is finite because of Proposition 4.1 b). This proves a).

Concerning ii), Proposition 4.1 a) implies that

(4.18) E|F*(9)(s, Aa)|" — E |F(9)(s, Aa)|” .
On the other hand, for p > 2, Ay small enough, and |A| < Ay
(4.19)
| ds [ duta) (BIF ) s A0)) <comst [ ds sup  BIF ()b
[0, 71~ N 0,71V [e|<1,]b|<bo
where by = Agdiam (supp (p)). By a similar argument as in (4.17) and a Holder’s inequal-

'}

ity, we can bound the latter expression by

(4.20) const/ ds sup E{/ dydﬂ‘Ha(ﬁ,y,b)m
(0,71~ e<1,]b|<bg AZN T = g
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where p > p’ > 2. Again Proposition 4.1 b) implies that (4.20) and therefore (4.19) is
bounded for ¢ €]0,1].

This, a uniform integrability argument and (4.18) allow to conclude the proof of
statement a) of Proposition 4.2. u

We go back to the stochastic non-linear heat equation in its mild form. Let ¢ > 0,
A €C. We denote by U = U(), -) the solution in the sense of Colombeau of

U(t,z) =

4.21 ' )
(4.21) )\/[ | dsdyx(y)pt—s(z, y) /d,u(a) exp (iaU(s,y)) Ge(a, t;z,e) + X (t, x)
0,t]x A
where t > 0, € IR? and p is again a complex measure defined on the Borel sets of IR and

having compact support. We recall that X, has been defined in (2.26) and G, at lemma
2.4.

Remark 4.2 If p;(z,y) is of convolution type we recall that U solves in the L2-sense the
following equation

Ult,z) = /Ot ds {LU(S,:U) + )\/du(a) exp (iaU (s, x)) G.(a, s; x,e)} + W,(t, z)

U can be represented by the solution Ry of the following equation

Ry(t;z,e) = / dsdyx (y)pi—s(, y)
[0,£]x D

(4.22)

/d,u(a) exp <iaReRU(s; Y,€) + %E(RXC(S; y,e))2> + Ry (tiz,e).
Using classical arguments and the fact that [du(a)exp(iaRe.) is real analytical, it is

possible to prove that Ry = Ry (A, t;z,¢) is real analytical in A\. Therefore it admits the
following convergent expansion

Ry(\ tyz,e) = i

om RGRU
o\

L
—' tCE'8

where

R, (t;x,¢e) = (A t;z,

&)|szo-
According to [C1], definition 3.3.3.

n

A
Z ) class R, (t;z,¢)

n>0
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defines an approximate expansion.

The most important result of the paper is the following.
Theorem 4.1 The asymptotic expansion of U is L*(Q)- associated with elements of
L?(Q)-trace type. This means the following: let \g €C, m € IN,

m )\n

E 20 class R,
n!

n=0

is L2-associated with an L?(Q)-trace type element.

Remark 4.3 We recall that an L*(Q)-trace type element is a continuous linear functional
S(IR*) — C(IR4;L*(Y)). Following the proof we can even show that this element is a
linear continuous map from Cy(IR*) — C(IRy; L?*(Q)), that is to say it is a vector valued
measure.

Remark 4.4 If n =0, Ry = Ry and it is one representative of the free solution. This is
obviously associated with an L*(Q)- trace type element, given by

a— (t — /[o,t]le2 dW (s,y) /1%2 pt_s(x,y)a(x)dac) :

Proof We will partially follow the scheme of [AHR2]. It is enough to show that for any
n € IN, the class R,, is L?-associated with an L?-trace type element. Given a complex
measure g with compact support and a real valued A we denote by f :C' —, the (p -
dependent ) function

fly) = /d,u(a) exp(iaRey) .

Given a representative of a random generalized function Ry, for ¢ > 0, A € IR, we consider
the Wick reordering : f(ARy) : with respect to X, defined by

(4.23) : f(ARy) : (t;x,¢e) = /dp,(a) exp {iaAReRU(t;:U,e) + %ZAZE(RXC (t;x,e))z} :

We need a technical lemma.

Lemma 4.2 Let ¢ > 0 and n > 1, then there are polynomials P} and P!, in the variables

8RU 82RU 87ﬂLRU
ARe—— Re——— ,.... R
“ox T Taxr M e
and in the variables
ORy 82RU 8n_1RU
A ... —
Re I , Re EIVER , Re 1
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such that each monomial multiplies a term : f,(ARy) : (with dependence on 1) and

3”
@20 SoRulee) = [ dsdypes(o) OGP+ P (un)x(0)
[0,t]x A

Proof (of the lemma) For simplicity of the notation, we will write Rey := ReRy. We first
observe that

0

- fn(ARy) :=: fnt1(ARy) : AiReU :

(4.25) Y

We operate now by induction. For n = 1, the derivation of (4.21) gives

0
ﬁRU(taxﬂg) -
0

(4.26)
[ s o) s AR (9 (AA—ReU@;y,e) i 1) |
[0,t]xA OA

so that (4.24) is confirmed.
Let us suppose by induction that (4.24) holds for some integer n — 1 > 1. Then

oo N
(4.27) S BU = 5y {/[0 o ds dyps_s(z,y) (APIZ1 + PI23) (s,y)x(y)}

Using (4.25), we remark that the derivative of each monomial with respect to A gives a
term

0
: ARy): A—Re
fa(ARY) s A= Rey
times the monomial plus a term : f,_1(ARy) : times the derivative of the monomial; in
this latter derivative, the maximal order of derivation with respect to A increases by one
unit.

Therefore 9 9
Pn—l _ P’n Pn—l _ P’n
3}\ n—1 n o a)\ n—2 n—1

Consequently, (4.26) gives

o Pl . -
Ry = ds dyps—s(z,y) [ A—2 P : d
o U /[O,T]XA s dyps—s(x y)( ax TPt | (s u)x(y)dy

= / ds dypi—s(z,y) ()\P: + P,Tf_l) (s,y) .
[0, T1xA
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We consider the following family F¢ of functions IR x A — L? which is constituted by
linear combinations of H : IR, x A — L? such there are f; (depending on y;),4=1,--+, N,
with

H(t;z,¢) :/ dsy dynpi—sy (z,yn) : fn(ARx,) : (Sn; YN, €)
[0,t]xA

/ dsy_1 dyN—lpsj(Nfl)—SN_1(yj(N—1)7yN—l)
[O,S]‘(N,1>]XA
(4.28)

D fNo1(ARx,) : (SN—13UN—1,€)

../[0 ea dsy dylpsj(l)—81(yj(1)7y1) : f1(ARx,) : (51;?/1,6)XN(Q)
»S5(1) X

where t = sy, ¥y = y;vy and j(I) € {{+1,...,N}.
Remark 4.5 F° is a vector algebra.
Proposition 4.3 Every R,, belongs to ¢, n > 1.

Proof (of the proposition) The case n = 1 is a direct consequence of (4.26) and Remark
4.4. Let us suppose that Proposition 4.1 holds for 1 <k <n—1,n—1> 1. Then Ry € F¢,
for any 1 <k <n — 1. Lemma 4.2 says that there is a polynomial P ; in the variables

8R6U
oA

8n_1R€U

A -
\—0 8)\11 1

’

A=0

such that each monomial multiplies a term of the type : f,(ARy) : and

8"R€U
on

R, (t;z,e) = (t;x,¢)

= / ds dyx(y)pe—s(x, y)Pr_(s,y) .
A=0 [0,T]xA

By the induction hypothesis and by Remark 4.5 all monomials belong to F¢. Therefore,
R, is a linear combination of terms of the following type

/ ds dyx(y)pe—s(2,y) : F(ARx) : (5;9,€)®%(s;9,€) ,
[0,t]xA
where ®°¢ € F*¢. By definition, the latter integral still belongs to F*. n

The proof of the theorem will be completed after proving the following

Proposition 4.4 Let ®¢ € F¢. Then for small A the L?> — lim._,o ®¢ exists and it is an
element ® of L*(Q)- trace type. Moreover, ® is a linear combination of elements of the
form
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(4.29) H(t,x) = /[0 T]XAdsdygtm@ XN (W)t IN(AX) (s, un) -t f1(AX) 2 (51,91)

where

gt,m(ﬁa g) = l[O,t]xA(SNa yN)pt—sN (337 yN)l[O,sj(N_l)]xA(SN—la yN—1)
(4.30)

Psjin_1y—sn-1 (?Jj(N—1), YN-1)--- 1[0,sj(1)]><A(517 Y1) Ps;1y—s1 (yj(1)7 Y1)

with t = s;(ny, © = Yjv—1) and j(I) € {I,I+1,...,N}.

Remark 4.6 It will be enough to show that an object of the form (4.28) type converges to
an element of the form (4.29).

Since X and X, are indistinguishible, we can replace Rx, by Rx in (4.28).
Before proceeding to the proof of Proposition 4.4, we need to state the following
lemma.

Lemma 4.3 Let q < 2, then

sup

xAN) < 00 .
t<T,ze

Proof For t < T, x € A we set s;n) =, yjn) = v. We have

N o
a ' 8j(i) . 4
/AN dg/[O’T]N ds |gea(s,y)|" = E/Adyl/o dsi {Ds; 1) —s: Us ;0 Yi) }

According to Proposition 2.3 this is dominated by

0 ‘ys- H T y¢\2q
C / dyl/ ds;———— exp —L>
H ‘SJ(,) ‘q ( 5(53'(1') - Sz’)

where C, 9 are positive constants. Let R > 0 such that A is included in a zero centered
ball with radius R. The latter expression is dominated by
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2
S0 s, Vs, — Vi| 4
C / / — ' _ exp |- -
H B(0,R) (55() — 5i)¢ ( (s — Si)
$5(i) 2R 2
pq
<C / / dpp exp (—7>
H (850) — Sz)q 0 6(sji) — si)
- CH/S“ ’ 0(sj(s) — 51) (1 — exp (—74}%2" ))
(sj@y —s)7 24 Xsjw) —5i) /)

N

-~

<1

SAN L rsich sT2-a \N
<C||— / ClSZSZ — S; 1—q§0<7) )
- (261> 1;[1 0 (556) = 1) 2¢(2 - q)

which establishes the lemma. ]

Proof (of Proposition 4.4) For € > 0 an element H of the form (4.28), defines a L2-trace
type element S(IR?*) — C(IR,; L?(Q)) by

a— (t—) /a(x)H(t;x,e)dac) :
For t < T, a € S(IR?), according to the notation of the beginning of the section we have
/ dea(x)H(t;z,e) = / dra(x) / /d,u “(gt.2) (s, Aa)
R? R2 [0,T]N
= [ s [autwrre ( / a(x)gt,mdx> (s, Aa)
(0,71 N

where g; , has been defined in (4.30). Using Proposition 4.2 a), the latter expression
converges in L2 to

Z(t,a) = /M]N ds / du(a) F ( / oz(x)gmdx) (s, Aa) .

It remains to check the fact that Z is of the L2-trace type.
Let o € C(IR?*),t < T, ty < T, q < 2. Using Proposition 4.2 b) we get

1Z(t, @) = Z(to, @) L2() =

(4.31) I . ds/dﬂ (/a(l’)(gt,m - gto,m)dﬂﬁ) (s, Aa)|z2

< const (q) /d.’ECY(-'L')Hgt,m — Gto,x

|La([0,T]N xAN) -
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Now 1tlintl gt.2(s,y) converges (z,s,y) a.e. Lemma 4.3 and uniform integrability arguments
—to — —

imply that the right hand side of (4.31), is bounded by

t—t
|Lq([o,T]NxAN)190 .

(4.32) const, ()]l / P

This proves Proposition 4.4 and finally Theorem 4.1. n

Remark 4.7 From the proof of Theorem 4.1, we observe that the asymptotic expansion of
U in powers of X is associated with an L?-trace type element which is the sum of the free
solution and a classical process IRy x A — L? which is a linear combination of iterated
integrals of type (4.29) which involves non-linearities of the solution X of the free equation.
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