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Abstract This article describes the measurement uncertainty evaluation of the dew-
point temperature when using a two-pressure humidity generator as a reference stan-
dard. The estimation of the dew-point temperature involves the solution of a non-linear
equation for which iterative solution techniques, such as the Newton–Raphson method,
are required. Previous studies have already been carried out using the GUM method
and the Monte Carlo method but have not discussed the impact of the approximate
numerical method used to provide the temperature estimation. One of the aims of this
article is to take this approximation into account. Following the guidelines presented
in the GUM Supplement 1, two alternative approaches can be developed: the for-
ward measurement uncertainty propagation by the Monte Carlo method when using
the Newton–Raphson numerical procedure; and the inverse measurement uncertainty
propagation by Bayesian inference, based on prior available information regarding
the usual dispersion of values obtained by the calibration process. The measurement
uncertainties obtained using these two methods can be compared with previous results.
Other relevant issues concerning this research are the broad application to measure-
ments that require hygrometric conditions obtained from two-pressure humidity gen-
erators and, also, the ability to provide a solution that can be applied to similar iterative
models. The research also studied the factors influencing both the use of the Monte
Carlo method (such as the seed value and the convergence parameter) and the inverse
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uncertainty propagation using Bayesian inference (such as the pre-assigned tolerance,
prior estimate, and standard deviation) in terms of their accuracy and adequacy.

Keywords Dew-point temperature · Iterative model · Measurement uncertainty

1 Introduction

The measurement of the dew-point temperature can be made either directly by a con-
densation hygrometer or indirectly using hygrometric instrumentation that measures
input quantities such as the temperature and pressure and uses explicit mathematical
models. Traceability is provided by the calibration process, establishing the link to the
SI and characterizing the instrumentation accuracy level through the stated measure-
ment uncertainty.

Metrology laboratories can provide the connection between the top levels—national
metrology institutes (NMIs) and the BIPM—and lower level laboratories in industry
and, therefore, have an important role in the establishment of the hygrometric traceabil-
ity chains. In some cases, highly accurate reference standards are already available
to be used by secondary metrology laboratories that are able to generate physical
conditions according to the primary definition of the relevant quantities with low
measurement uncertainties, as in the case of hygrometric instrumentation.

Some of these standards, however, are based on complex mathematical models, and
require that the method applied to the evaluation of measurement uncertainty should
be fit to purpose. Knowing that the international framework established by the publica-
tion of the GUM [1] in 1995 is especially suited to linear models while its Supplement
1 [2] is more able to adequately handle non-linear models, the issue of the choice of
methodology is relevant for metrologists.

Nowadays, humidity generators are becoming important reference hygrometric
standards in many metrology laboratories as they provide stable and uniform test con-
ditions. In the case of a two-pressure humidity generator, the dew-point measurement
is obtained indirectly from pressure and temperature measurements and an iterative
mathematical model. The particular nature of this model constitutes a challenge in
terms of measurement uncertainty evaluation.

Some authors, such as [3], have adopted the GUM method to obtain a solution for
this specific problem. An alternative Monte Carlo approach has been proposed [4] as
more suitable to deal with the non-linearity of the mathematical model. The results
obtained from both approaches are very close and show only minor differences. How-
ever, the above-mentioned Monte Carlo approach [4] involves a simplified numerical
method for the determination of the dew-point temperature and does not take into
account the uncertainty related to the saturator efficiency. In this study, this influence
factor is included in the evaluation.

The two alternative approaches proposed in this study were based on GUM Supple-
ment 1 [2]: forward measurement uncertainty propagation by the Monte Carlo method
(MCM) and the inverse measurement uncertainty propagation method by Bayesian
inference (BI).
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The Monte Carlo approach consists of the direct propagation of the measurement
uncertainties identified for the input measurement quantities to the dew-point tem-
perature following a numerical procedure adapted to the use of an iterative mathe-
matical model. A detailed list of input measurement uncertainties was established for
the two-pressure humidity generator under study. This humidity generator uses the
Newton–Raphson method to obtain the dew-point temperature estimate.

The BI approach implemented here consists of a simplified numerical process that
overcomes the implicit nature of the applied mathematical model. Two stages can
be identified in this process. The first stage gives the probabilistic distribution of the
observed water vapor pressure in the test chamber. This is accomplished through the
use of the MCM forward procedure. The second stage uses this measurement and com-
bines it with prior information of the dew-point temperature calibration data (usually
the calibration laboratory knows the typical dispersion of values related to a certain
hygrometer) to perform inverse measurement uncertainty propagation by BI.

Considering the use of the two-pressure humidity generator as a dew-point temper-
ature reference standard, this study aims to increase the knowledge about its perfor-
mance, especially discussing the use of the two numerical methods mentioned above
to evaluate the measurement uncertainty and compare it with results from previous
calculations [3,4].

2 Two-Pressure Humidity Generator Iterative Model

The two-pressure humidity generator operation principle consists of air saturation with
water vapor at high pressure followed by an isothermal expansion to lower pressure,
usually to atmospheric pressure. Both the relative humidity and the dew-point tem-
perature are indirectly obtained by measuring the pressure and temperature at the two
main components of the generator: the saturator and the test chamber.

Assuming that the condensation phenomenon does not occur during the expansion
process (the expansion valve temperature is usually controlled to avoid this situation),
the water vapor pressure, pw, in the test chamber is given by

pw = pws (td) fws (pc, td) = pc

ps
pws(ts) fws(ps, ts)η, (1)

where ts and ps are, respectively, the saturator temperature (◦C) and pressure (Pa),
pc corresponds to the test chamber pressure, td is the dew-point temperature, pws is
the saturation vapor pressure, fws is the enhancement factor, and η is the saturator’s
efficiency.

Both the functions pws and fws are widely studied and several alternative mathe-
matical models can be found in the literature [5]. For this study, the Wexler [6] and
Greenspan [7] models are used, including the related measurement uncertainties.

Although the best estimate of the saturator’s efficiency is considered equal to one,
the corresponding measurement uncertainty cannot be neglected since it is possible
that the air coming out of the saturator is not totally saturated by water vapor or, on
the other hand, its temperature may be greater than the saturator temperature due to
insufficient cooling from the pre-saturator to the saturator.
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The evaluation of the dew-point temperature using a two-pressure humidity gener-
ator requires a solution for Eq. 1 through an iterative method. The humidity generator
under study applies the Newton–Raphson numerical method; other methods could be
used [4].

To apply the Newton–Raphson method [8] an initial value (seed) for the dew-point
temperature, td0 , is defined and n iterations are performed until the algorithm converges
to a solution (within a preassigned convergence tolerance) or a limit of iterations is
reached. The iterative step is given by

tdn+1 = tdn − g
(
tdn

)

g′ (tdn

) , (2)

where

g
(
tdn

) = pws(ts) fws(ps, ts)pc

pws(tdn ) fws(pc, tdn )ps
η − 1, (3)

and g′ (tdn

)
is the first derivative of g(tdn ) with respect to tdn .

3 Measurement Uncertainty Evaluation

3.1 Introduction

Several approaches can be used to evaluate the measurement uncertainty. The selection
of the method must consider the nature and complexity of the mathematical model
combined with the effort required for its implementation and the ability of the method
to provide adequate solutions. Table 1 presents some advantages and constraints of
the most common applied methods [9].

Considering the implicit mathematical model nature of the studied problem (dew-
point temperature measurement in the two-pressure humidity generator), both the
Monte Carlo and the Bayesian inference methods can be used to evaluate the measure-
ment uncertainty. Therefore, two procedures were proposed: the forward measurement
uncertainty propagation by the MCM, adapted to the use of an iterative mathemat-
ical model by the Newton–Raphson numerical method (Sect. 3.3); and the inverse
measurement uncertainty propagation (Sect. 3.4), also using the MCM, but following
a simplified numerical Bayesian approach by defining a probabilistic model for the
measurement and using it to update prior available information about the measurand.

3.2 Input Data and Probabilistic Formulation

In order to implement the proposed approaches presented above, it is necessary to
provide experimental data for the input estimates, taking into account the studied
hygrometric conditions presented in Table 2.

Table 3 presents the measurement uncertainties related to the input quantities,
namely, the source of uncertainty, adopted probability distribution functions (PDFs),
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Table 1 Measurement uncertainty evaluation methods

Method Advantages Constraints

Analytical Provides “exact” solutions for the
propagation of measurement
uncertainties from input quantities
to output quantities considering
both linear and non-linear
mathematical models

The convolution process generally
increases the complexity of the
calculus

Mainstream GUM Generally provides adequate
solutions for measurement
uncertainty propagation for linear
or linearizable models

When applied to strongly non-linear
mathematical models, it gives
approximate solutions that can be
highly inaccurate. It requires the
use of symmetrical probability
distribution functions

Monte Carlo Numerical method that allows
approximate solutions that
converge to the “exact” solutions.
Allows a good probabilistic
formulation of the input quantities
since both symmetrical and
non-symmetrical probability
density functions can be used

The knowledge about physical limits
of the measurand is treated in a
functional way. The obtained
results may differ from the ones
originated by alternative
approaches such as Bayesian
inference

Bayesian inference It considers prior information of the
measurand, including physical
constraints

Can be dependent on the quality of
the available prior information

Table 2 Input data for the studied hygrometric conditions

Temperature Dew-point
temperature

Relative
humidity

Saturator
pressure

Saturator
temperature

Test chamber
pressure

(◦C) (◦C) (%) (kPa) (◦C) (kPa)

20 1.92 30 339.3 19.99 101.3

9.30 50 202.5 19.99 101.3

19.24 95 106.2 20.00 101.4

and typical values for the standard uncertainties usually associated with the humidity
generator under consideration.

3.3 Forward Measurement Uncertainty Propagation by the Monte Carlo Method

The forward measurement uncertainty propagation process requires MCM simulation
according to the guidelines presented in the GUM Supplement 1 [2]. The computa-
tional process implies the generation of a set of numerical sequences of input quantities
(test chamber pressure, saturator temperature, pressure, efficiency, saturation vapor
pressure, and enhancement factor functions), i.e., the individual pseudo-random gen-
erated numbers combined with a dew-point temperature seed value to perform an
iterative process based on Eqs. 2 and 3.
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Table 3 Measurement
uncertainty of the input
quantities

Source of uncertainty PDF Standard uncertainty

Saturator temperature, ts

Calibration Gaussian 0.007 5 ◦C

Drift Triangular 0.006 1 ◦C

Self-heating Uniform 0.005 8 ◦C

Resolution Uniform 0.002 9 ◦C

Homogeneity Uniform 0.012 ◦C

Stability Gaussian 0.002 ◦C

Repeatability Gaussian 0.005 ◦C

Saturator pressure, ps

Calibration Gaussian 130 Pa

Drift Triangular 112 Pa

Resolution Uniform 2 Pa

Internal pressure difference Uniform 100 Pa

Stability Gaussian 60 Pa

Pressure transducer location Uniform 12 Pa

Test chamber pressure, pc

Calibration Gaussian 130 Pa

Drift Triangular 90 Pa

Resolution Uniform 2 Pa

Stability Gaussian 20 Pa

Reversibility or hysteresis Uniform 69 Pa

Saturation vapor pressure, pws Uniform 0.002 9 %

Enhancement factor function, fws Uniform 0.002 9 %

Saturator efficiency, η Triangular 0.001 4

The output dew-point temperature obtained at the end of the iterative process is then
considered an element of the numerical sequence representing the output quantity. A
representation of this process can be seen in Fig. 1.

The seed and convergence parameters related to the iterative process should be
considered as possible influence quantities to the output results and, consequently,
a parametric study of those effects must be carried out. With this purpose, several
seed and convergence values were applied and the corresponding output results were
compared.

It must be emphasized that the accuracy of the solutions obtained through this
approach is strongly dependent on the quality of the tools used to perform the compu-
tational calculations. Our studies used validated tools such as the Mersenne-Twister
pseudo-random number generator [10], known PDF sequence converters, and an opti-
mized sorting algorithm [11]. The obtained individual sequences were composed of
106 elements and the computational accuracy level of the numerical simulations was
achieved using the methodology described by Cox et al. [12], setting a maximum
computational accuracy level of ±0.005 ◦C, for a 95 % confidence interval.
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Fig. 1 Forward measurement uncertainty propagation

3.4 Inverse Measurement Uncertainty Propagation by Bayesian Inference

The proposed approach, named inverse measurement uncertainty propagation [13],
is based on Bayesian inference since it provides a way to obtain a numerical sam-
ple from an approximation to the dew-point temperature posterior PDF, p(td|pws),
based on the specification of a prior PDF, p(td), expressing the existing probabilistic
knowledge about the measurand before the calibration test (supported by previous
calibration results of the same hygrometer), and a likelihood, p(pws|td), representing
the probability of observing pws if the true dew-point temperature is td. In this case,
Bayes’ theorem can be stated as

p(td|pws) ∝ p(pws|td) p(td). (4)

This approach makes use of the MCM in two stages (see Fig. 2). In the first stage,
an MCM forward measurement uncertainty can be used to provide the numerical
sequence representing the observed water vapor pressure, pw, in the test chamber. In
this case, the MCM is used to characterize the likelihood p(pws|td). In the second stage,
the MCM allows generation of numerical samples of dew-point temperatures, td,q ,
from p(td) and then saturation vapor pressure values, pws,q , from p(pws|td,q). At this
stage the pairs (td,q , pws,q) represent samples from the joint distribution p(pws, td) =
p(pws|td)p(td). A sample from the posterior distribution p(td|pws) is generated by
choosing those samples td,q for which the corresponding pws,q is close to the observed
pw, i.e., for some tolerance τ ,

{
td,q : ∣∣pws,q − pw

∣∣ < τ
}
. (5)
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Fig. 2 Forward and inverse measurement uncertainty propagation

The tolerance parameter mentioned above has an important role in this second stage
because of its direct relation to the output sequence, namely, its dimension (number
of elements) and computational accuracy level. Due to the relevance of this assigned
condition, several reasonable values were applied to quantify their effect on the final
results.

The prior probabilistic knowledge about the measurand (estimate and measurement
uncertainty) is also an assigned condition influencing the output results. With the pur-
pose of evaluating its influence and assuming that a Gaussian PDF was adopted to
describe the prior state of knowledge of the dew-point temperature quantity, two sets
of values of prior estimates (9.10 ◦C, 9.30 ◦C, and 9.50 ◦C) and standard deviations
(0.05 ◦C, 0.1 ◦C, 0.5 ◦C, 1.0 ◦C, and 1.5 ◦C) were applied.

The maximum computational accuracy level of 0.005 ◦C (with a 95 % confidence
interval) was taken from Sect. 3.3 for the posterior PDF numerical sample.

4 Results

4.1 Forward Measurement Uncertainty Propagation

The MCM approach was applied to several hygrometric conditions: relative humid-
ity of 30 %, 50 %, and 95 %, considering a temperature of 20 ◦C. Table 4 presents
the output results of the dew-point temperature estimates, expanded measurement
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Table 4 Forward measurement uncertainty approach output results

Dew-point temperature
estimate
(◦C)

Dew-point temperature
measurement uncertainty
(95 % confidence interval)
(◦C)

Computational accuracy level
(95 % confidence interval)
(◦C)

1.935 0.069 0.001 2

9.315 0.077 0.001 3

19.257 0.098 0.001 6

Fig. 3 Output PDF for a reference condition of 20 ◦C and 95 %rh

uncertainties, and computational accuracy levels (for 95 % confidence interval). A
seed value of 10 ◦C and a convergence parameter of 0.001 ◦C were considered.

The obtained results show that the expanded measurement uncertainty changes
between ±0.069 ◦C and ±0.098 ◦C for the measuring interval of 1.935 ◦C to
19.257 ◦C. The related computational accuracy level is less than ±0.002 ◦C in all
cases and complies with the pre-defined maximum value of 0.005 ◦C.

Figure 3 presents the PDF of the dew-point temperature quantity for a reference
condition of 20 ◦C and 95 %rh. Its shape is close to that of a Gaussian PDF, as expected
under the central limit theorem.

A comparison with previous results shows that the measurement uncertainties
obtained by the proposed approach produce a higher magnitude. In fact, the appli-
cation of the GUM method [3] revealed that expanded measurement uncertainties
are between 0.034 ◦C and 0.040 ◦C for a dew-point temperature measuring range of
0.66 ◦C to 25 ◦C. The use of the MCM described in [4], without considering the use
of the Newton–Raphson method or the saturator’s efficiency, provided measurement
uncertainty values from 0.032 ◦C to 0.035 ◦C for dew-point temperature estimates
between 10 ◦C and 95 ◦C.

In order to study the reasons for these differences, a GUM approach [1] was imple-
mented (using the complex-step method [14,15] to evaluate all partial derivatives)
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Fig. 4 Relation between seed parameter and output simulation results

based on the same input probabilistic information presented in Table 3. The obtained
results are very close to the measurement uncertainties presented in Table 4, produced
by the forward MCM approach. This fact confirms that for this example, when using
the same input data, both the GUM and the MCM approaches give similar results.
The non-linearity of the underlying mathematical model is not sufficiently strong to
invalidate the results obtained by the GUM approach.

The study of the relation between the seed and convergence parameters with the
output results given by the forward measurement uncertainty approach was made for
the hygrometric condition of 20 ◦C and 50 %rh. In the first case (seed parameter versus
output results), the convergence parameter was constant, equal to 0.001 ◦C, while in
the second case (convergence parameter versus output results), a seed value of 10 ◦C
was used. The results are shown in Figs. 4 and 5, respectively, with the dew-point tem-
perature output estimate equal to 9.30 ◦C for all the studied cases. The computational
accuracy levels of the output numerical simulations were approximately identical and
again less than 0.002 ◦C.

Figure 4 shows that the seed parameter has a small influence and random behavior
on the measurement uncertainty, with a maximum observable variation of 0.000 5 ◦C
(considering the set of seed values).

From Fig. 5 it is possible to observe that the measurement uncertainty decreases
when considering tighter convergence parameters, i.e., close to 0.000 05 ◦C. Although
the variations have a magnitude close to the computational accuracy level of the numer-
ical simulations, this systematic effect cannot be neglected.

4.2 Inverse Measurement Uncertainty Propagation

The Bayesian approach was implemented for a hygrometric reference condition of
50 %rh, considering a temperature equal to 20 ◦C and assuming a dew-point tempera-
ture Gaussian prior distribution centered at 9.3 ◦C with a standard deviation of 0.5 ◦C,
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Fig. 5 Relation between convergence parameter and output simulation results

Table 5 Influence of the preassigned tolerance parameter on the output simulation results

Tolerance
(Pa)

Dew-point
temperature
estimate
(◦C)

Dew-point temperature
measurement uncertainty
(95 % confidence interval)
(◦C)

Computational
accuracy level
(95 % confidence
interval)
(◦C)

Dimension of the
output numerical
sequence

130 9.30 0.98 0.005 6 998 805

100 9.30 0.94 0.004 7 988 048

70 9.29 0.77 0.002 6 922 227

50 9.29 0.58 0.001 6 792 712

40 9.29 0.47 0.001 2 685 966

30 9.29 0.36 0.001 1 550 373

20 9.30 0.25 0.001 0 385 553

10 9.30 0.14 0.001 1 199 225

5 9.30 0.091 0.001 5 100 041

1 9.30 0.062 0.002 2 20 133

0.5 9.30 0.060 0.003 4 10 290

0.1 9.30 0.062 0.006 5 1 979

which represents the available laboratory knowledge about the measurand. Several
values of the preassigned tolerance parameter were applied in the performed numeri-
cal simulations to determine its influence on the output sequence. The obtained results
are presented in Table 5.

Although the dew-point temperature estimate remains indifferent to the influence
of the preassigned tolerance, both the corresponding measurement uncertainty and the
dimension (number of elements) of the output numerical sequence change when using
different values for this input parameter. The use of a smaller preassigned tolerance
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Fig. 6 Effect of the preassigned tolerance on the computational accuracy level

Fig. 7 Posterior PDF for a 0.1 Pa preassigned tolerance

value gives a better numerical approximation to the posterior PDF (closer to the pos-
terior PDF eventually obtained through an analytical procedure), but leads to a smaller
sample and, hence, a less valid inference. Conversely, setting a larger tolerance yields
a higher output sequence dimension and, therefore, a more valid inference, although
a less accurate approximation to the posterior PDF. A balance can be made through
the obtained computational accuracy level related to the output numerical sequence,
represented in Fig. 6, where a minimum value is found for a tolerance close to 20 Pa.

The use of the MCM allows visualization of the influence of the preassigned toler-
ance parameter on the spread and shape of the output PDFs (Figs. 7, 8, 9).

From the PDFs presented above, it is possible to consider that the use of higher
tolerances leads to an output PDF with a Gaussian shape.
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Fig. 8 Posterior PDF for a 20 Pa preassigned tolerance

Fig. 9 Posterior PDF for a 130 Pa preassigned tolerance

The study of the influence of prior knowledge about the measurand, which included
both the prior estimate and the standard deviation of the adopted Gaussian PDF, was
made considering the preassigned tolerance corresponding to the best computational
accuracy level achieved (in the present case 20 Pa) for the output numerical simulation.

In the first case, several prior dew-point temperature estimated values were tested
in the interval of 9.10 ◦C to 9.50 ◦C. The obtained results show that both the mea-
surement uncertainty and the computational accuracy levels remain approximately
constant, 0.25 ◦C and 0.001 ◦C, respectively. However, a small shift in the output
temperature estimate is noticed. As the prior dew-point estimate was increased from
9.10 ◦C to 9.50 ◦C, while maintaining the prior standard deviation constant and equal
to 0.5 ◦C, the output dew-point estimate increased from 9.28 ◦C to 9.31 ◦C.

In the second case, a prior dew-point temperature estimate of 9.3 ◦C was assumed
and several prior standard deviations values from 0.05 ◦C to 1.5 ◦C were applied in
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Table 6 Influence of the prior dew-point temperature standard deviation in the output results

Prior dew-point
temperature
standard deviation
(◦C)

Dew-point
temperature
estimate
(◦C)

Dew-point temperature
measurement uncertainty
(95 % confidence interval)
(◦C)

Computational
accuracy level
(95 % confidence
interval)
(◦C)

Dimension of the
numerical
sequence
(◦C)

0.05 9.30 0.10 0.000 6 999 964

0.1 9.30 0.19 0.000 8 983 920

0.5 9.30 0.25 0.001 0 385 218

1.0 9.29 0.25 0.001 5 198 873

1.5 9.30 0.25 0.001 8 133 487

the performed numerical simulations. The simulation output results are presented in
Table 6.

Although the obtained estimate remains constant for the several standard deviation
values tested, it is possible to observe an increase of the measurement uncertainty from
±0.10 ◦C to ±0.25 ◦C when considering higher standard deviations values, and hence,
weak prior knowledge about the measurand. It is also possible to observe that a higher
prior standard deviation give an output sequence with a lower number of elements
and thus a worst computational accuracy level is achieved, making the approach less
efficient.

5 Conclusions and Future Developments

This article shows how two different approaches—forward and inverse measurement
uncertainty propagation—can be used to evaluate the measurement uncertainty of
the dew-point temperature indirectly measured by a two-pressure humidity generator
through the use of an iterative mathematical model.

The MCM forward approach produced measurement uncertainties higher than the
previous known values obtained by the use of the GUM method [3] or the MCM in [4].
In order to make a reliable comparison, a GUM approach was implemented, using the
same input data as the MCM forward approach. The results confirmed the magnitude
of the obtained measurement uncertainties, revealing that the GUM approach is suffi-
ciently accurate to perform a measurement uncertainty evaluation for the two-pressure
humidity generator and, therefore, should be preferred due to its simplicity.

Regarding the influence factors of the MCM forward approach, this study indicates
that the seed value has limited influence on the obtained dew-point temperature mea-
surement uncertainty. However, the convergence parameter has a clear influence and
a tight value should be used to reduce its impact on the final results.

The BI inverse approach avoids the iterative process by assuming a probabilistic
model for the dew-point measurement used to update prior information about the
measurand and thus obtaining the posterior PDF, in the present case, by a simplified
numerical method based on Monte Carlo simulations. The preassigned tolerance, used
in the implementation of the proposed numerical approach, has a major influence on
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both the obtained measurement uncertainties and the computational accuracy level.
Other influence factors found are the prior estimate and standard deviation which can
change the output estimate and related measurement uncertainty.

These limitations make the simplified BI inverse approach much less robust, obtain-
ing results that differ significantly from the other two studied approaches (MCM and
GUM). The potential advantage of the simplified BI approach is that it can be imple-
mented by sampling from standard distributions (as does the MCM). The disadvantages
are that it is computationally expensive in that nearly all generated samples are thrown
away and secondly, the validity of the posterior distribution depends on the tolerance
parameter.

Due to these limitations, future developments will be focused on alternative calcula-
tion approaches to implementing a Bayesian approach. Alternative and more advanced
numerical procedures should be studied (i.e., Monte Carlo sampling methods based
on Markov chains), making possible the use of a more efficient Bayesian approach
and comparing it with the results presented in this study. However, it has already been
mentioned that the nonlinearities in the underlying model do not have a large effect on
the evaluated uncertainties. In this case, the Bayesian posterior distribution is likely
to be similar to that derived using the GUM and MCM approaches.
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