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1 Introduction 4

Survival analysis is strongly stimulated by the constant evolution of medicine. In 5

particular, new models were developed to take into account the possibility of cure 6

of certain diseases. It is in this context that cure models appear, because they allow 7

the analysis of survival data in which some subjects can eventually experience, and 8

others never experience, the event of interest. An important property of cure models 9

(mixture and non-mixture) is the fact that they have an improper survival function, 10

which is equivalent to the cumulative hazard function being limited. 11

Although, frequently, the cure is not observable, the suspicion is based in some 12

features of the data, namely the existence of many censored observations beyond 13

the last observed survival time. Therefore, a long and stable plateau of the Kaplan– 14

Meier survival curve [5] suggests the applicability of the mixture cure model 15

approach [8]. 16

Usually, in a cure model, we want to estimate the proportion of cured individuals, 17

the survival function of the susceptible individuals and the effect of the covariates, 18

if they have been included in the model. There are several ways of modelling 19

the effect of the covariates, x, on the survival of the susceptible individuals for 20

instance, the accelerated failure time model, that is, Sd .t jx/ D Sd0.te
ˇ0x/, where 21

Sd0.:/ is independent of the covariates and can be formulated either parametrically 22

[9] or non-parametrically [7]. Another possibility is the proportional odds model, 23

which is used when the hazard functions of individuals with different values of their 24
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covariates converge after some time. The most widely used model is undoubtedly 25

the proportional hazards model Sd .t jx/ D Sd0.t/
exp.ˇ0x/ where, usually, Sd0.t/ is 26

non-parametric [10]. Another alternative is to consider a mixture cure model with 27

more than one survival function for susceptible individuals [4]. The logistic regres- 28

sion model is the most common choice to model the effects of the covariates, z, 29

in the cure proportion. 30

In this chapter, we propose a new mixture cure model with covariates based on 31

the Chen distribution [2]. Section 2 describes the general structure of this model, 32

while in Sect. 3 some parameter estimation details are presented. In Sect. 4 the 33

applicability of our model is illustrated with the analysis of leukaemia data and 34

Sect. 5 is reserved to concluding remarks. 35

2 A Cure Model with Covariates 36

In this section we describe the structure of the mixture cure model some features of 37

the Chen distribution and present our new model. 38

2.1 The Mixture Cure Model 39

We denote by T the random variable that represents the survival time in a population 40

where there are susceptible and non-susceptible individuals. Let Y denote a binary 41

random variable indicating that an individual is either susceptible (Y D 1) or not 42

(Y D 0). The mixture cure model can be formulated through the survival function 43

S.t/ D p C .1 � p/Sd .t/; (1)

where p D P.Y D 0/ represents the non-susceptible proportion and Sd .t/ D 44

S.t jY D 1/ is the (proper) survival function of the susceptible individuals. As 45

S.t/ ! p when t ! 1, then S.t/ is an improper survival function. Note that, 46

if an individual has censored survival time, then Y is not observable, so we do not 47

know if that individual is susceptible or not. 48

If we introduce covariates in model (1), we have 49

S.ti jxi ; zi / D p.zi /C .1 � p.zi //Sd .ti jxi /; (2)

where xi and zi are the vectors of covariates associated to the i th individual (i D 50

1; : : : ; n), p.zi / D P.Y D 0jzi / is the probability that the i th individual is non- 51

susceptible given a covariate vector zi and Sd .ti jxi / D P.Ti > ti jYi D 1; xi / is 52

the probability that an individual survives longer than ti , given that the individual is 53

susceptible and has a covariate vector xi . Note that xi and zi can include the same 54

covariates. 55
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2.2 The Chen Distribution 56

The distribution function proposed by Chen [2] is 57

F.t/ D 1 � expŒ�1.1 � exp.t�2 //�; t > 0; �1; �2 > 0; (3)

where �1 is the scale parameter and �2 is the shape parameter. The corresponding 58

survival and hazard functions are, respectively, 59

F .t/ D expŒ�1.1 � exp.t�2 //�; t > 0; (4)

h�.t/ D �1�2t
�2�1 exp.t�2 /; t > 0: 60

The author refers that h�.t/ can be bathtub-shaped when �2 < 1 and that it 61

increases when �2 � 1, which is unusual in most distributions used in survival 62

analysis. In fact, as 63

h�0

.t/ D �1�2t
�2�2 exp.t�2 /..�2 � 1/C �2t

�2 /; 64

for �2 < 1 we have h�.t/ decreasing for t 2 Œ0; . 1
�2

� 1/ 1
�2 � and, for t � . 1

�2
� 1/ 1

�2 , 65

h�.t/ is an increasing function. Hence, the range of the interval where h�.t/ is 66

decreasing will increase as �2 decreases. Therefore, if �2 is near zero, for example, 67

�2 D 0:1, the interval is so large that, from the practical point of view, it is just like 68

having a decreasing hazard function. Reciprocally, as �2 approaches 1, the interval 69

where the hazard function is decreasing is so small that it is almost like if the hazard 70

function was always increasing. 71

2.3 The Cure Model Based on the Chen Distribution 72

with Covariates 73

Admit that the survival time of susceptible individuals follows the Chen distribution, 74

given by Eq. (3). As stated by Abreu and Rocha [1], the cure model obtained by 75

substituting in Eq. (1) Sd .t/ by the expression (4) is 76

S.t/ D p C .1 � p/ expŒ�1.1 � exp.t�2//�; t > 0; �1; �2 > 0: (5)

If the model is defined in terms of hazard function, we have 77

h.t/ D .1 � p/�1�2t�2�1 exp.t�2 / expŒ�1.1 � exp.t�2 //�

p C .1 � p/ expŒ�1.1 � exp.t�2 //�
: 78

Consider the proportional hazards model for the survival time of susceptible 79

individuals. Then we have 80
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Sd .t jx/ D Sd .t jˇ0x; �1; �2/ D Sd0.t j�1; �2/exp.ˇ0x/; 81

where �1 and �2 are the parameters of the Chen distribution corresponding to the 82

baseline survival function, that is, 83

Sd .t jx/ D ŒexpŒ�1.1 � exp.t�2i //��
exp.ˇ0x/: (6)

Let 84

p.z/ D P.Y D 0jz/ D 1

1C exp.� 0z/
(7)

be the function that models the effect of the covariates in the proportion of non- 85

susceptible individuals. In fact, in this context, the logistic regression model is the 86

most commonly used binary regression model. 87

The mixture cure model of proportional hazards specified by Eqs. (2), (6) and (7) 88

can be written in the form 89

S.t jx; z/ D 1

1C exp.� 0z/
C exp.� 0z/
1C exp.� 0z/

ŒexpŒ�1.1 � exp.t�2 //��exp.ˇ0x/: (8)

3 Parameters Estimation 90

In this section, the parameters estimation process for the proposed model is 91

presented. With this purpose, we apply the maximum likelihood method, making 92

use of the EM algorithm [3], since here we are dealing with missing data. 93

3.1 Maximum Likelihood Function 94

Let us assume that censoring is noninformative. Denote the observed survival time 95

for the i th individual by ti , i D 1; : : : ; n. Suppose we have data in the form 96

.ti ; ıi ; xi ; zi /, i D 1; : : : ; n, where ıi D 1 if ti is uncensored and ıi D 0 otherwise, 97

and xi and zi are two covariate vectors. Without loss of generality, suppose that the 98

first m .m < n/ survival times are censored. Then ıi D 0 if 1 � i � m and ıi D 1 99

if mC 1 � i � n. 100

The contribution to the likelihood of an individual for whom the event of interest 101

was observed at ti is .1 � p.zi //fd .ti jxi /; where fd .ti jxi / represents the density 102

function of the susceptible individuals, conditional on the corresponding covariates. 103

If the event of interest is not observed until time ti , then the contribution of the 104

individual to the likelihood is p.zi /C .1 � p.zi //Sd .ti jxi /: 105

Then, the observed likelihood function is 106

LO D
nY

iD1

n�
1 � p.zi /

	
fd .ti jxi /

oıi n
p.zi /C �

1 � p.zi /
	
Sd .ti jxi /

o1�ıi
; 107
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which can be written as 108

LO D
nQ

iD1

n
Œ1 � p.zi /��1�2t

�2�1
i exp.t�2i C ˇ0xi /

˚
expŒ�1.1 � exp.t�2i //�


exp.ˇ0xi /
oıi

�
n˚

expŒ�1.1 � exp.t�2i //�

exp.ˇ0xi /

o1�ıi
109

when the Chen distribution is used for the survival time of susceptible individuals. 110

Let y1; : : : ; yn be such that yi D 1 if the individual is susceptible and yi D 0 111

otherwise. If all y0i s were observed, the complete likelihood would be 112

LC D
nY

iD1

n�
.1 � p.zi //fd .ti jxi /

	yi
oıi n

p.zi /1�yi
�
.1� p.zi //Sd .ti jxi /

	yi
o1�ıi

: 113

Considering q.zi / D 1�p.zi /, after some calculations the previous expression can 114

be rewritten as 115

LC D
nY

iD1
q.zi /yi Œ1 � q.zi /�1�yi

nY

iD1
hd .ti jxi /yi ıi Sd .ti jxi /yi : (9)

The logarithm of Eq. (9) is given by 116

logLC D Pn
iD1Œyi log q.zi /C .1� yi / log.1 � q.zi //C

Pn
iD1 yi ıi loghd .ti j.xi //C yi logSd .ti j.xi //�:

(10)

3.2 EM Algorithm 117

The fact that in most cases cure is not observable, gives origin to an incomplete data 118

situation. In this context, the EM algorithm is a widely used tool for maximizing the 119

likelihood function. In general terms, the maximization of the likelihood is replaced 120

by maximizing its expectation conditional to the current parameter values and 121

the observed data. Thus, the missing values are identified with the corresponding 122

conditional expected value. 123

In fact, the E step of the EM algorithm consists in obtaining the expectation 124

of the logarithm of the complete likelihood with respect to the distribution of the 125

unobserved Yi ’s, given the current parameter values and the observed data O , where 126

O D fobserved y0i s; .ti ; ıi ; xi ; zi /; i D 1; : : : ; ng. However, since logLC is linear in 127

Yi , to compute the expected value of logLC , we only need to replace in Eq. (10) 128

each unobserved Yi by its expected value, denoted by �i . Therefore, we have 129

�i D E.Yi jO/ D P.Yi D 1jTi > ti ; ıi D 0;�/ D Œ1 � p.zi /�Sd .ti jxi /
S.ti jxi ; zi / (11)
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where � D .ˇ; �; �/ is the vector parameter of model (8) and � D .�1; �2/. Thus, in 130

the logarithm of the complete likelihood, each yi is replaced by !i , the probability 131

of the i th individual being susceptible, where !i D 1 if ıi D 1 and !i D �i if 132

ıi D 0. 133

At the M step, we need to maximize the following two components of the 134

expected log-likelihood: 135

logLE1 D Pn
iD1Œ!i log q.zi /C .1 � !i/ log.1 � q.zi //�

D .n�m/ log q.zi /Cm log.1 � q.zi //CPm
iD1 �i Œlog q.zi /� log.1� q.zi //�;

136

137

logLE2 D Pn
iD1Œıi!i loghd .ti jxi /C !i logSd .ti jxi /�

D Pm
iD1 �i logSd .ti jxi /CPn

iDmC1Œloghd .ti jxi /C logSd.ti jxi /�:
138

From logLE1 , after some algebra, we obtain the following explicit expression for 139

the estimate of q.zi / at the (k C 1)th iteration: 140

q.zi /.kC1/ D 1

n

h
.n �m/C

mX

iD1
�
.k/
i

i
; 141

but only in the case where the covariates are not included in the cure proportion. 142

Making use of the Chen distribution for the survival time of the susceptible 143

individuals, by Eq. (11), we get 144

�i D q.zi /
˚

expŒ�1.1 � exp.t�2i //�

exp.ˇ0xi /

1 � q.zi /C q.zi /
˚

expŒ�1.1 � exp.t�2i //�

exp.ˇ0xi /

: (12)

In what concerns logLE2 , since it can be written as 145

logLE2 D �1
Pm

iD1 �iexp.ˇ0xi /Œ1 � exp.t�2i /�C .n �m/.log�1 C log�2/C

.�2 � 1/
Pn

iDmC1 log ti CPn
iDmC1.exp.ˇ0xi /C t

�2
i /C

�1
Pn

iDmC1 exp.ˇ0xi /Œ1 � exp.t�2i /�;

146

after some algebra, we obtain an explicit formula for the estimator of �1, 147

O�1 D n �m
Pm

iD1 �iexp.ˇ0xi /
�

exp.t�2i /� 1
	CPn

iDmC1 exp.ˇ0xi /
�

exp.t�2i /� 1
	 ; 148
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where �i is given by Eq. (13). No explicit formula was obtained for the estimator 149

of �2. Therefore, we recommend using simultaneously another maximization 150

procedure, such as the Newton–Raphson method. 151

4 Application to Leukaemia Data 152

Kersey et al. [6] reported data on patients with refractory acute lymphoblastic 153

leukaemia. Patients receive either an allogeneic transplant (group 1) or an autol- 154

ogous transplant (group 2) and are followed until a recurrence occurs. 155

If we fit model (5) for each group separately, the estimated survival functions are 156

OS1.t/ D 0:2714C 0:7286 � exp.0:76112� .1 � exp.t0:61397/// 157

for group 1 and 158

OS2.t/ D 0:1799C 0:8201� exp.1:15842� .1 � exp.t0:6853/// 159

for group 2. We can consider the data from the two groups jointly and fit the same 160

model. The result is 161

OS.t/ D 0:22739C 0:77261� exp.0:92261� .1 � exp.t0:63706///: 162

For the moment, we restrict our analysis to the case of one binary covariate. So, 163

defining a covariate, x, as the indicator of the patients group, we obtain 164

OS.t jx/ D 0:22821C0:77179�.exp.1:15379�.1�exp.t0:65037////exp.�0:42x/: (13)

This covariate had no significant effect on the non-susceptible proportion, 165

something expected given the proximity of the values in the two previous models. 166

Note that the survival time of the susceptible individuals follows a Chen distribution 167

with parameters �1 and �2 when x D 0 and with parameters �1 � eˇ and �2 168

when x D 1. Due to difficulties in the implementation of the EM algorithm, 169

namely convergence problems, the estimate of ˇ was obtained making use of this 170

characteristic. 171

5 Concluding Remarks 172

The aim of this article is to increase the options for survival distributions when the 173

use of cure models is relevant. The Chen distribution is very versatile, resulting in 174

a good fit in many cases where other parametric models were unsatisfactory. We 175

introduced covariates in the model in order to make it more suitable for practical 176

situations. So far, some issues in the estimation process are not completely solved. 177

Nevertheless, we obtained significant correlation coefficients (rD0.9946, pD0.000 178
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for group 1 and rD0.9512, pD0.000 for group 2) between the Kaplan–Meier 179

estimates and the fitted values obtained using model (13), indicating a good fit for 180

both groups. 181
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