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Abstract

We present a self-adaptive multigrid version of a conservative finite difference scheme

useful for the study of collapse processes in nonlinear Schr€oodinger equations (NLSEs).
As an example we study the character of the focusing singularity of the two-dimensional

critical NLSE.
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1. Introduction

The nonlinear schr€oodinger equation (NLSE) in its many version is one of the
most important models of mathematical physics, with applications in different
fields such as plasma physics, nonlinear optics, water waves bimolecular dy-
namics, to cite only a few cases (see e.g. [1–4]). In many of those examples the
equation appears as an asymptotic limit for a slowly varying dispersive wave
envelope propagating in a nonlinear medium. These are not the only examples
of applications of the NLSE, in fact a new burst of interest on this equation has
been motivated by the recent achievement of Bose–Einstein condensation using
ultracold neutral bosonic gases. In this case the NLSE is obtained as a mean
field model for the dynamics near T ¼ 0 [5]. In this framework, the realization
of experimental systems with unstable (collapsing) properties [6] has further
stimulated theoretical research on collapse phenomena [7] in the framework of
models based on NLSEs.
It is our objective in this paper to present a self-adaptive multigrid version of

a conservative finite difference scheme useful for the study of collapse processes
in NLSEs, whose general form is

iWt þ DW þ f ðjWj2ÞW ¼ 0; ð1Þ
Wðx; 0Þ ¼ W0ðxÞ; ð2Þ

where D ¼ o2=ox21 þ � � � þ o2=ox2n. Many forms of the function f appear in the
applications. The most classical is f ðjWj2Þ ¼ jWj2 which leads to the usual
collapse phenomenon. In nonlinear optics many versions of the so-called sat-
urable nonlinearities appear, e.g. f ðjWj2Þ ¼ jWj2 � ajWj4, f ðjWj2Þ ¼ jWj2=
ð1þ jWj2Þ. In the field of applications to Bose–Einstein condensation other
type of nonlinear terms are possible such as f ðjWj2Þ ¼

R
Kðr � x0ÞjWðx0Þj2 dx0,

f ðjWj2Þ ¼ jWj2 � iajWj4. These are only some examples of the many forms the
nonlinear term may have, each one giving rise to different phenomena such as
collapse inhibition, etc. However, when collapse phenomena are involved one
must be very careful with the related numerical analysis of the problem.
When the nonlinear function f is real the system has several conserved

quantities which include the energy (Hamiltonian), whose explicit form is,

H 	 EðWÞ ¼
Z
dnxj ~rrWj2 �

Z
dnxGðWÞ ¼ KðWÞ þ UðWÞ: ð3Þ

Under very general conditions of f it can be shown that the Cauchy problem
has a unique local solution Wðt; xÞ, with t 2 ½0; T Þ in the energy space X which
is usually the Sobolev space H 1ðRnÞ [8]. A basic problem is whether this solu-
tion can be continued to T ¼ 1, that is, to global solution in X. When the
solution is not global we speak of collapse or blow-up. When the solutions are
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global but develop ‘‘strong peaks’’ (measured in some norm) during evolution,
one speaks of quasi-collapse processes. In the quasi-collapsing examples there
is not a full collapse (mathematically the solution is global in time), but the
amplitude grows in a localized spatial region leading to a spike of the ampli-
tude of the solution, which is difficult to describe using standard numerical
schemes. This is also the case during real collapse processes, where the scheme
must be able to integrate the solution up to the vicinity of the collapse point
and even to detect the existence of the singularity, a fact which is not known a
priori in some cases.
These facts have motivated us to design a fast numerical scheme easy to

implement with many desirable properties which is specially suitable for the
analysis of collapse processes. The purpose of this paper is to study this nu-
merical scheme and its multigrid implementation for the simplest case of the
cubic nonlinearity.
Our plan is as follows: First, the numerical scheme is presented in Section 2,

secondly, we study its advanced implementation using multigrid techniques in
Section 3. As an example of application we have studied a well-documented
case in Section 4, which is the blow-up of the two-dimensional cubic NLSE.
For this problem there is a vast literature concerning the conditions under
which collapse exists and the way the solutions collapse [4]. Finally, in Section
5 we summarize our conclusions.

2. The numerical scheme: Conservation properties, stability and convergence

2.1. Finite difference scheme and conserved quantities

For the sake of simplicity we will concentrate in this work on radially
symmetric problems in two dimensions so that the Cauchy problem we are
interested on is

i
oW
ot

þ 1
r
o

or
r
o

or

� �
W þ f ðjWj2ÞW ¼ 0; ð4Þ

with initial data W0ðrÞ on Rþ and boundary conditions

dW
dr

����
r¼0

¼ 0; lim
r!1

Wðt; rÞ ¼ 0: ð5Þ

This model has been shown to retain most of the interesting features of the
critical collapse phenomenon even in systems without symmetry [9]. This
equation has two conserved quantities, namely the energy and L2 norm, which
are,
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E ¼ 2p
Z
dr r

"
� oW

or

����
����
2

þ GðjWj2Þ
#
; ð6aÞ

N ¼ 2p
Z
dr rjWðr; tÞj2: ð6bÞ

Many numerical schemes are used to simulate the NLSE [10,11] including finite
difference [12–18], finite element [19,20] and pseudoespectral [21–25] schemes.
It is commonly accepted that to simulate Hamiltonian wave processes sym-
plectic and conservative schemes are preferred over conventional ones because
of their better global stability and long time behavior. In our case we have
chosen to follow the ideas of [15], because the construction of a three-level
difference conservative scheme allows the discrete problem to be linearly im-
plicit and thus a computationally economic choice while preserving some in-
tegral quantities.
To approximate the above problem using finite differences we define the grid

Xh ¼ fjhgMh
j¼0 and the time step s. The numerical scheme we propose for the

integration of Eq. (4) is the following,

i
wnþ1

j � wn�1
j

2s

 !
þ

wnþ1
jþ1 � 2w

nþ1
j þ wnþ1

j�1

2h2
þ

wn�1
jþ1 � 2w

n�1
j þ wn�1

j�1

2h2

þ 1

hj

wnþ1
jþ1 � wnþ1

j�1

4h

 !
þ 1

hj

wn�1
jþ1 � wn�1

j�1

4h

 !
þ 1
2
f ðjwn

j j
2Þðwnþ1

j þ wn�1
j Þ

¼ 0; ð7Þ

where wn
j is an approximation to the solution at the point rj ¼ jh, tn ¼ ns.

Scheme (7) is a finite difference three-level linearly implicit scheme. To compute
the solution at the second level in time it is necessary to use any other method.
In our case we have used a second-order nonlinearly implicit Crank–Nicholson
method, which is solved by iteration. In fact, to minimize the effect of the
nonconservative character of the Crank–Nicholson scheme we have initialized
the scheme with a time step ten times smaller than the original one and then
scheme (7) is applied to iterate the remaining 9 steps to complete the second
time step. Performing Taylor expansions around wn

j , which is the central value,
it can be seen that due to the symmetry of the expression the truncation error of
the scheme is Oðs2 þ h2Þ (see for instance [26] for a similar result).
The most striking property of the scheme is that it has a discrete analogous

of Eq. (6b) that is conserved exactly, whenever the continuous one is also
conserved. The discrete conservation law is obtained following the ideas de-
scribed in [27]. Multiplying (7) by ð �wwnþ1

j þ �wwn�1
j Þ=2, where the bar denotes

complex conjugation. Taking the imaginary part and summing for all values of
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j in the spatial mesh, and rearranging properly the terms, one gets that Nn is
conserved by the time iteration, being:

Nn ¼
XM
j¼1

hðhjÞ
jwnþ1

j j2 þ jwn
j j
2

2
: ð8Þ

Special conditions are necessary to be fulfilled for all n considered:

wn
0 ¼ wn

1; wn
M ¼ 0: ð9Þ

They are just a translation to discrete level of the boundary conditions (5).
For the most relevant case of cubic nonlinearity, f ðjwj2Þ ¼ jwj2, the discrete

preserved energy may be obtained in a similar way as Nn and it may be written
in the form

En ¼ �
XM�1

j¼1
h hj
�

þ h
2

�
1

2

wnþ1
jþ1 � wnþ1

j

h

�����
�����
2

0
@ þ

wn
jþ1 � wn

j

h

����
����
2
1
A

þ
XM
j¼1

hðhjÞjwnþ1
j j2

jwn
j j
2

2
: ð10Þ

The existence of the conservation law for Nn ensures a good behaviour of the
scheme. Following the ideas of Zhang et al. [15], let us study the convergence of
the scheme. First we represent by WnðrÞ the exact solution at time t ¼ ns, wnðrÞ
the numerical solution and gnðrÞ the error at time ns. We have,

wnðrÞ ¼ WnðrÞ þ gnðrÞ: ð11Þ

Let us define the following innerproduct and associated norm for any functions
uðrÞ and vðrÞ:

hu; vi ¼
XM
j¼1

h2j�uujvj; ð12Þ

kuk2 ¼
XM
j¼1

h2jjujj2: ð13Þ

From the conservation law (8) we have

kwnk26Nn ¼ N 0 ¼ kW0k2 þ kW1k2: ð14Þ

The error can be estimated through

kgnk2 ¼ kwn � Wnk26 2kwnk2 þ 2kWnk2

6 2ðkW0k2 þ kW1k2Þ þ N
p
þ 2N 0 þ N

p
; ð15Þ
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since

kWnk26
Z
dr rjWðr; nsÞj2 ¼ N

2p
: ð16Þ

On the other hand we have that Wn satisfies Eq. (7) with a local truncation
error F n

j of order Oðs2 þ h2Þ, combining that with (7) we obtain the following
equation for the errors:

i
gnþ1
j � gn�1

j

2s

 !
þ

gnþ1
jþ1 � 2gnþ1

j þ gnþ1
j�1

2h2
þ

gn�1
jþ1 � 2gn�1

j þ gn�1
j�1

2h2

þ 1

hj

gnþ1
jþ1 � gnþ1

j�1

4h

 !
þ 1

hj

gn�1
jþ1 � gn�1

j�1

4h

 !
þ 1
2
Gðjgn

j j
2Þðgnþ1

j þ gn�1
j Þ

¼ Gn
j þ F n

j ; ð17Þ

where

Gn
j ¼

1

2
½GðjWn

j j
2Þ � Gðjwn

j j
2Þ�ðWnþ1

j þ Wn�1
j Þ þ 1

2
½Gðjgn

j j
2Þ � Gðjwn

j j
2Þ�

� ðgnþ1
j þ gn�1

j Þ: ð18Þ

We now multiply expression (17) by ð�ggnþ1
j þ �ggn�1

j Þ=2, take the imaginary part
and sum for all values of j in the spatial mesh to obtain

kgnþ1k2 � kgn�1k2

2s
¼ Im hgnþ1

j

�
þ gn�1

j ;Gn þ F ni
�
: ð19Þ

From here we get

kgnþ1k2 ¼kgn�1k2 þ 2s Im hgnþ1
j

�h
þ gn�1

j ;Gni
�

þ Im hgnþ1
j

�
þ gn�1

j ; F ni
�i

; ð20Þ

and finally,

kgnþ1k26 ð1þ 2sÞkgn�1k2 þ 2skgnþ1
j k2 þ skF nk2 þ skGnk2: ð21Þ

Let us now focus on the analysis of the last term of Eq. (21). Let us decompose

Gn
j ¼ An

j þ Bn
j ; ð22Þ

where

An
j ¼

1

2
½GðjWn

j j
2Þ � Gðjwn

j j
2Þ�ðWnþ1

j þ Wn�1
j Þ ð23Þ

and,

Bn
j ¼

1

2
½Gðjgn

j j
2Þ � Gðjwn

j j
2Þ�ðgnþ1

j þ gn�1
j Þ: ð24Þ
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Let us suppose, for instance, that the function G is Lipschitz with constant L
(this is a fairly general situation and furthermore this holds in the special cubic
case we deal with below). We have

jAn
j j6

1

2
L jWn

j j
2

��� � jwn
j j
2
��� Wnþ1

j

��� þ Wn�1
j

���
6
1

2
Ljgn

j j jWn
j j

�
þ jwn

j j
�

Wnþ1
j

��� þ Wn�1
j

���: ð25Þ

From here we have

kAnk26 1

4

L2

h4
kgnk2kjWn

j j þ jwn
j jk

2kWnþ1
j þ Wn�1

j k2

6
1

4

L2

h4
kgnk2 kWn

jk
�

þ kwn
jk
�2

kWnþ1
j k2

�
þ kWn�1

j k2
�

6
1

4

L2

h4
kgnk2

ffiffiffiffiffiffi
N
2p

r 
þ

ffiffiffiffiffiffi
N 0

p
!2

2N
2p

: ð26Þ

On the other hand

jBn
j j6

1

2
L jgn

j j
2

��� � jwn
j j
2
��� gnþ1

j

��� þ gn�1
j

���
6
1

2
LjWnj jgn

j j
�

þ jwn
j j
�

gnþ1
j

��� þ gn�1
j

���; ð27Þ

and we have

kBnk6 1

4

L2

h4
kWnk2kjgnj þ jwnjk2kgnþ1 þ gn�1k2

6
1

4

L2

h4
kWnk2ðkgnk þ kwnkÞ2ðkgnþ1k2 þ kgn�1k2Þ

6
1

2

L2

h4
N
2p

ðkgnk2 þ N 0Þðkgnþ1k2 þ kgn�1k2Þ: ð28Þ

So finally

kGnk26 1

4

L2

h4
kgnk2

ffiffiffiffiffiffi
N
2p

r 
þ

ffiffiffiffiffiffi
N 0

p
!2

2N
2p

þ 1
2

L2

h4
N
2p

ðkgnk2 þ N 0Þ

� ðkgnþ1k2 þ kgn�1k2Þ

¼ C1
h4

kgnk2 þ C2
h4

ðkgnþ1k2 þ kgn�1k2Þ þ C3
h4

kgnk2ðkgnþ1k2 þ kgn�1k2Þ:

ð29Þ
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Substituting in (21) we have

kgnþ1k26 ð1þ 2sÞkgn�1k2 þ 2skgnþ1
j k2 þ skF nk2 þ sC1

h4
kgnk2 þ sC2

h4

� ðkgnþ1k2 þ kgn�1k2Þ þ sC3
h4

kgnk2ðkgnþ1k2 þ kgn�1k2Þ: ð30Þ

We now sum up this expression from n ¼ 1 to some final value n ¼ J � 1, and
rearranging terms we get

ð1� sj1ÞkgJk2 þ ð1þ sj1ÞkgJ�1k2 þ sj2kgJk2kgJ�1k2

6 ð1� sj1Þkg1k2 þ ð1þ sj1Þkg0k2 þ sj2kg1k2kg0k2

þ 2sj2
XJ
n¼2

kgnk2kgn�1k2 þ sj3
XJ�1
n¼1

kgnk2 þ s
XJ�1
n¼1

kF nk2; ð31Þ

with

j1 ¼ 2

�
þ C2

h4

�
; j2 ¼

C3
h4

; j3 ¼ 4

�
þ C1 þ 2C2

h4

�
: ð32Þ

Using (15) we have

kgJk26 kg1k2 þ 1þ sj1
1� sj1

kg0k2 þ s
j2

1� sj1
kg1k2kg0k2 þ s

1

1� sj1

�
XJ�1
n¼1

kF nk2 þ s
j3 þ j4
1� sj1

XJ�1
n¼1

kgnk2; ð33Þ

with

j4 ¼ 2j2 2N 0

�
þ N

p

�
: ð34Þ

Finally let us consider the following Lemma [26]:

Lemma 1. Let xðkÞ and qðkÞ be nonnegative mesh functions. If C > 0 and qðkÞ is
nondecreasing, and the inequality,

xðkÞ6 qðkÞ þ sC
Xk�1
j¼0

xðjÞ;

holds for all k, then for all k

xðkÞ6 qðkÞeCkt:

We apply the Lemma with
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k ¼ J ; xðJÞ ¼ kgJk2; C ¼ j3 þ j4
1� sj1

;

qðJÞ ¼ kg1k2 þ 1þ sj1
1� sj1

kg0k2 þ s
j2

1� sj1
kg1k2kg0k2 þ s

1

1� sj1

�
XJ�1
n¼1

kF nk2: ð35Þ

We conclude that if s is small enough so that C > 0, we have

kgJk26 kg1k2
�

þ 1þ sj1
1� sj1

kg0k2 þ s
j2

1� sj1
kg1k2kg0k2

�
eCJt: ð36Þ

This means that the numerical error is bounded by the initial and truncation
errors, so the scheme is convergent. The stability with respect to initial and
roundoff errors can be established in a similar way.

3. The self-adaptive algorithm

Up to this point we have developed a conservative, second-order numerical
scheme which is linearly implicit and has good convergence properties. This
point is very important and it was one of our goals since nonlinearly implicit
schemes need an inner iteration which requires several times more computation
and generates the problem of the proper choice of the method of solution of the
system of nonlinear equations. On the contrary, our implicit method requires
the solution of only one linear system per step. This fact, together with the
good properties of the system matrix, may be used to solve the problem using a
multigrid algorithm.
Additionally, to follow collapse (or quasi-collapse) events with high preci-

sion, one must be able to keep information at the same time on the very small
scale where the spike is localized and on the large scale which hosts the non-
collapsing part of the solution. Very fine grids, which are needed in order to
obtain accurate and reliable numerical solutions require a very large number
of operations and memory requirements. However, the discretization error is
usually different in different parts of the simulation domain, as in problems
with singularities, boundary layers, etc., so the use of globally uniform grids
involves a waste of computational resources. Therefore, high accuracy may be
obtained by using finer grids in the regions of the computational domain where
it is necessary and maintaining coarser grids covering the whole domain. This
approach considerably reduces the computer time requirements of a simulation
code. Also the time step must be controlled when the amplitude of the solution
is growing very fast in a particular region of the computational domain. We
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have implemented all of these features in a code which we now describe and
whose general view is shown in Fig. 1.
The fully self-adaptive method used to study the behavior of the solution in

the neighborhood of the singularity, combines automatic generation of girds,
multigrid techniques and a self-adaptive time step. A refinement criterion
places finer grids where the solution is difficult to approximate, maintaining
coarser grids on the rest of the simulation region. So, the solution is reached
with much lower computational work and memory requirements for a given
accuracy. As a matter of fact, it allows us to perform simulations with accuracy
not obtainable on current computers using global grids. This technique has
been previously applied by some of us to solve efficiently other physical
problems also related to the NLSE [28].
A hierarchy of global grids is typically designed as X1;X2; . . . ;Xm, where 2

m

is the number of points in the grid. Our approach uses a hierarchy of grids
designed as X0;X0

2; . . . ;X
0
m, where Xm � X0

m (i.e. X0
m covers part of Xm). This

hierarchy of partial grids is constructed in a fully automatic way under a re-
finement criterion. The process starts from two coarser grids that cover the
whole domain. The refinement criterion decides the part of the domain that the
next finer grid must cover. This decision is made by estimating the truncation
error with the solution on current and next coarser grids. Following this rule,
the error is compared with a tolerance given as an input parameter to the code.
This refinement process is successively performed until the criterion is globally

Fig. 1. Schematic view of the code implementing the numerical scheme.

280 S. Jim�eenez et al. / Appl. Math. Comput. 134 (2003) 271–291



satisfied. This grid is always extended to build a power of two grid in order to
implement a multigrid algorithm (Fig. 2).
The discrete operator is solved on each partial grid considering the extreme

points as boundary conditions, with an initial guess given by the interpolation
of the solution in the next coarser grid. The tridiagonal system of equations is
solved by a multigrid-type iterative method. So, the global algorithm is similar
to a full multigrid method but refining just where higher accuracy is required.
The multigrid algorithm is used as an internal solver due to its optimal com-
plexity and architectural properties (parallelism and data locality) [29]. The
code has been parallelized with the standard OpenMP directives for shared-
memory parallel computing on a 32-processor SGI Origin 2000. Other solvers
like the Thomas algorithm (tridiagonal Gaussian elimination) could be applied
on a sequential computer. The algorithm is not as efficient as the MLAT
method [30] because the boundary conditions for a partial grid remain fixed in
the correction process.
The time-dependence of the partial differential equations adds a difficulty in

the self-adaptive resolution process. The numerical method needs the solution
in the two previous time steps to compute the new time step. We have to
consider that the adaptive grids are dynamically constructed in execution time
and so a different adaptive grid hierarchy is used in each step. The numerical
scheme may need the solution in a given grid level of a part of the domain that
was not computed in previous time steps. This is why our scheme also incor-
porates interpolation operators to estimate the solution on the points which are
required and where not computed previously.
As simulation time tends to the blow-up time, the solution collapses and

approaches the singularity. A fixed time step ðsÞ is not capable of following the
solution in the neighborhood of the singularity because the simulation exceeds
the blow-up time. Our algorithm uses a self-adaptive time step algorithm to
guide the simulation near the singularity. The decision of when the time step is
refined is made by comparing the growth rate of the amplitude of the discrete
solution in the two previous time steps. If the rate decreases (this is the coarsest
way to know that something goes wrong), the time step is adapted and the last
time steps are undone (Fig. 1). Another way to control the step could be the use
of the virial identities to be presented later.

Fig. 2. The multigrid algorithm.
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4. Applications to the cubic nonlinearity case

4.1. The test problem

To evaluate the behaviour of the numerical scheme we have chosen a
problem for which many things are known despite its nonintegrable character,
which is that of the collapse in the two-dimensional cubic NLSE. In this way
we may evaluate the applicability of the method for the solution of other, less
known problems. Thus we will concentrate in the cubic nonlinearity case,
f ðjWj2Þ ¼ jWj2 and n ¼ 2.

4.2. Generalities

Particular global solutions of Eq. (2) are nonlinear bound states of the form

Wxðx; tÞ ¼ uxðxÞeixt: ð37Þ

In order to guarantee the existence of nonlinear bound states the potential
UðWÞ has to be attractive, i.e., UðWÞ < 0 for someW 2 X . Of particular interest
are the so-called ground states which are nonlinear bound states which can be
obtained by solving an appropriate minimization problem and have least
energy among all nontrivial quasi-stationary solutions of the form (37).
If we consider the particular case of the power nonlinearity f ðWÞ ¼ jWj2p,

since the energy EðWÞ, and norm NðWÞ are conserved, all the solutions W 2 X
satisfy

KðWÞ ¼ EðW0Þ � UðWÞ � EðW0Þ þ cNðW0ÞbpKðWÞð1�bÞpþ1
;

c > 0; b ¼ 1

p
� n� 2

2
; ð38Þ

by H€oolder’s and Sobolev’s inequalities [31]. We obtain then the following in-
equality:

KðtÞ � E
KðnpÞ=2 6 cN ðpþ1�ðnpÞ=2Þ: ð39Þ

It is clear that if pn < 2, for inequality (39) to be valid it is necessary that KðtÞ is
bounded in X for all times and thus all the solutions are global. For the critical
case pn ¼ 2, separate analysis is necessary and it is found [31] that if NðW0Þ <
Nðu1Þ; u1 being the ground state with frequency 1, then the solution of the
Cauchy problem is global. On the other hand, for pn ¼ 2, there exists solutions
which blow-up in finite time in the sense that

lim
t"T

KðWðtÞÞ ! 1 for T < 1; ð40Þ
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or, in other words, their H 1 norm diverges. It is also known that for each
x > 0, Eq. (2) has an unique ground state solution, which is stable in the case
pn < 2, and unstable if pn > 2.
More information on global existence can be obtained from the variance

identity (also called virial theorem). Let us define

W ðtÞ2 ¼ 4

N

Z
dnxrjWj2; ð41Þ

where r ¼ kxk2. W 2 is the second moment of the distribution W, and has the
physical meaning related to the width of the wavepacket (provided it has zero
mean). Its evolution may be found to be [32]

W ðtÞ2 ¼ W 2
0 þ 2W

2
0

R0
t þ ðH2

0 � 8J0Þt2; ð42Þ

where

H2 ¼ � 16p
N

Z 1

0

rWðrÞ o2 �WW
or2

"
þ 1

r
o �WW
or

#
dr; ð43aÞ

1

R
¼ i

4p
NW 2

Z 1

0

oW
or

�WWðrÞ
"

� WðrÞ o
�WWðrÞ
or

#
r2 dr; ð43bÞ

J ¼ 2p
N

Z 1

0

jWðrÞj4rdr: ð43cÞ

and the index 0 indicates the value of those quantities at t ¼ t0. Since
8E ¼ h2 � 8J , we obtain d2=dt2ðW Þ ¼ 8E. It is easy to see then that all initial
data W0, with negative initial energy such that xjW0 2 L2ðRnÞ, blow-up on or
before the finite time t� for which W ðt�Þ ¼ 0. The known evolution of the
wavepacket width (42) provides also another test of the quality of the nu-
merical simulation scheme.

4.3. The rate of the critical blow-up

Let us look for self-similar solutions of the form

Wðx; tÞ ¼ 1

f ðtÞU
x

f ðtÞ

� �
; ð44Þ

with f ðtÞ ! 0 as t ! t�. It has been realized in numerical experiments [33] and
partially justified later [34] that the only initial data which collapse self-simi-
larly are those satisfying NðW0Þ ¼ Nðu1Þ.
In [34] it is also proved that initial data related to the ground state through

the expression
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W0 ¼ a�1u1
r
a

� �
eðibr

2Þ=4aeðicÞ=a; ð45Þ

blow-up in finite time at the origin provided that ab < 0. In particular, the time
evolution of these data is given by

Wðr; tÞ ¼ 1

aþ bt
u1

r
aþ bt

� �
eðibr

2Þ=4ðaþbtÞeðiðcþdtÞÞ=ðaþbtÞ; ð46Þ

where ad � bc ¼ 1.
The cases in which the equality NðW0Þ ¼ Nðu1Þ, is not satisfied the collapse

is not fully self-similar but the solution can be separated into a self-similar
spike, a transition region and a quasi-stationary region which does not change
appreciably near the collapse point but it contributes to a finite width of the
solution at the collapse (so collapse occurs before the width becomes zero). The
analysis of the problem is then complicated since the solution at different re-
gions must be matched and the exact self-similar solutions which can be found
are unstable. A related question concerns the exact form of the rate of blow-up
of the self-similar spike, which is different from (50) because of the different
spatial structure of the solution, i.e., the analytical form of f ðtÞ. The first
analysis of this problem was done by Kelley [35], who proposed on the basis of
numerical simulations for a Gaussian initial data, a blow-up rate of the type

jWð0; tÞj ! ðt� � tÞ�1=2; t ! t�: ð47Þ

Later many other proposals for the asymptotic behavior of this quantity were
proposed (for a survey see [4]). The later high precision simulations [36] show
that probably the best approach to the singularity can be achieved by using a
double logarithmic law of the type

jWð0; tÞj ! log j logðt� � tÞj
ðt� � tÞ

� �1=2
; t ! t�: ð48Þ

Other papers which have contributed to the numerical study of this problem
are [37,38].
As it has been already commented before, the most accurate numerical

schemes used in the simulation of the collapse process obey to two different
philosophies. There is one family of schemes which try to adapt the grid to the
solution as it collapses, so that regions where the gradients are higher are
represented with higher density grids. This fact allows to keep the number of
points in the problem accessible while representing properly the sharp change
in the solution. The second way of addressing the problem consists of changing
the equation at a chosen self-similar rate and study its variations. However, all
of them have serious limitations concerning the precision of the final solution.
We have used this problem as a test for the validity of the scheme proposed

in our paper. Specifically in the following subsection we will consider its ap-
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plication to the analysis of the critical blow-up and compare with all stabilized
results.

4.4. Computation and simulations of the ground state and near states

We have first checked our simulation method taking as initial data the state

Wðr; 0Þ ¼ u1ðrÞe�ir
2

=4: ð49Þ

These data correspond to the one defined in (45) for the particular choice
a ¼ 1, b ¼ �1. This case is interesting because as we mentioned its blow-up
rate is known [34] and it is given by

f ðtÞ ¼ u1ð0Þ
1� t

: ð50Þ

Since the blow-up is completely self-similar it collapses with zero width at the
critical time t� ¼ 1.
We have first computed the ground state and its norm. In our particular case

n ¼ 2, p ¼ 1 and radial symmetry, the ground state satisfies the equation

d2

dr2
u1 þ

1

r
d

dr
u1 � u1 þ 2u31 ¼ 0: ð51Þ

The boundary conditions are

du1
dr r¼0

���� ¼ 0; lim
r!1

u1ðrÞ ¼ 0: ð52Þ

Eqs. (51), (52) define a boundary value problem. In order to find its solution
u1ðrÞ, we use a shooting method. The idea is to rewrite Eq. (51) as the fol-
lowing dissipative dynamical system

d

dr
u1 ¼ v; ð53aÞ

d

dr
v ¼ u1 �

v
r
� 2u31: ð53bÞ

The solution we search must satisfy the boundary conditions. This means that
the initial value for v is v ¼ 0 and the value for u1 is looked for in order to
satisfy that limr!1 u1ðrÞ ¼ 0.
As is shown in Fig. 3 from the dynamical point of view the ground state is a

branch of the stable manifold of the fixed point (0,0). We can only approximate
this manifold, since for any initial value u1ð0Þ considered we do not approach
the fixed point (0,0) infinitely. There always exists a time t0 for which we get
away from it and we reach one of the two fixed stable points ð�

ffiffiffiffiffiffiffiffi
1=2

p
; 0Þ or

ð
ffiffiffiffiffiffiffiffi
1=2

p
; 0Þ.
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We have calculated the ground state with the Dormand–Prince pair of order
5 incorporated in Matlab. In order to avoid the singularity which appears in
(53b) at the starting point r ¼ 0 we have solved the indetermination by means
of a series expansion of u1 around r ¼ 0 as follows:

u1ðrÞ ¼ u1ð0Þ þ u0
1ð0Þr þ

1

2
u00
1ð0Þr2 þ Oðr3Þ; ð54Þ

which is consistent with the order of the numerical scheme. When expression
(54) and boundary conditions are replaced in Eq. (53b) we arrive at first-order at

u00
1ð0Þ ¼ u1ð0Þ � u00

1ð0Þ � 2u1ð0Þ
3 þ Oðr1Þ: ð55Þ

So at the origin we find that u00
1ð0Þ ¼ ðu1ð0Þ � u1ð0Þ

3Þ=2. Using this bound-
ary approximation we proceed with the approximation scheme to get u1 for
which we find u1ð0Þ ¼ 1:56092093206074, ku1ðrÞk ¼ 2:4186430, H2

0 � 8J0 ¼
�8:2848� 10�5.
Once we have a numerical approximation of u1 we can evaluate for instance

the width evolution (42) for the initial data (49). It can be shown that here,

W 2
0 ¼ 2:37270256496696;

2
W 2
0

R0
¼ �4:74540512993392;

ðH2
0 � 8J0Þ ¼ 2:37261978316741:

ð56Þ

Fig. 3. Projection of the ground state in the phase space. As it is shown the ground state is a branch

of the stable manifold of (0,0).
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As expected in a complete self-similar blow-up, the collapse time predicted for
this width is t� ¼ 0:9941280 which is close to the expected t� ¼ 1.
We have integrated the NLSE (4) for the initial data (49), in order to see

how our numerical scheme follows the solution blow-up. The starting grid
taken is made of 262,144 points, and the initial time step s is 0.001. With this
choice we achieve values of t� very close to the expected t� ¼ 1. We have made
other simulations with initial data very close to (49) which are not collapsing
and our simulation does not do so either. At each time step the width is esti-
mated from Eq. (41) and it is compared with the one obtained from (42) with
parameters (56). The maximum value of difference between them along the
simulation is 10�3.
In order to check that the simulation follows (50), we analyse the values

jWð0; tiÞj obtained at each time step ti. From these numerical data we adjust the
law

jWð0; tÞj ¼ Aðt� � tÞa; ð57Þ

where the parameters A; a and t� are expected to be close, respectively, to
u1ð0Þ;�1 and 1. To perform the fitting we take logarithms in Eq. (57) and we
minimize the quadratic difference with respect to all parameters:

S21ðA; a; t�Þ ¼
X

i

ðln jWð0; tiÞj � lnA� a lnðt� � tiÞÞ2; ð58Þ

where index i runs all over the data set. The extreme condition of Eq. (58) gives
the following equations:X

i

ð� lnðjWð0; tiÞjÞ þ lnAþ a lnðt� � tiÞÞ ¼ 0; ð59Þ

X
i

ð� lnðjWð0; tiÞj þ lnAþ a lnðt� � tiÞÞ lnðt� � tiÞÞ ¼ 0; ð60Þ

X
i

� lnðjWð0; tiÞjÞ þ lnAþ a lnðt� � tiÞ
ti � t�

� �
¼ 0: ð61Þ

This is a linear set of equations on the parameters ln A and a and nonlinear in
t�. If parameters ln A and a are expressed as functions of t� then the system is
transformed in a nonlinear equation which can be solved for t� with a Newton
method. These quantities minimize S21 but not necessarily S

2 which is defined as
follows:

S2 ¼
P

iðjWð0; tiÞjn � jWð0; tiÞjaÞ
2

Ns
: ð62Þ

Here jWð0; tiÞjn are the numerical values obtained from the simulation while
jWð0; tiÞja are the adjusted values and Ns is the number of steps in the simu-
lation. Once the parameters that minimize Eq. (58) have been adjusted we use
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them as a starting point in order to minimize S2. We use for that the Matlab
nlinfit and nlparci commands which provides, respectively, the nonlin-
ear fit and the confidence intervals at 95% of the adjusted parameters. The
results for the parameters of the fit for the Gaussian initial data are t� ¼
1:0232� 0:0007� 10�4, A ¼ 1:477� 0:011, a ¼ �1:125� 0:007, S ¼ 0:21, s ¼
0:0052, where S which is the square root of S2 and s defined as
s ¼ S=jWð0; tmaxÞj. We see that the results agree with the theoretical expecta-
tives.

4.5. Verification of the double logarithmic law

We have also considered the evolution of the Gaussian initial data

Wðr; 0Þ ¼ Pe�r2=W 2
0 ; ð63Þ

where P ¼ 0:124264 and W 2
0 ¼ 100:00 The double logarithmic law (48) is the

most appropriate to describe its evolution as [36] shows.
The width evolution (42) of a Gaussian is given by

W 2 ¼ W 2
0 þ 16

W 2
0

�
� 4P 2

�
t2: ð64Þ

For the values ðP ;W 2
0 Þ chosen it is easy to show that there is a finite collapse

time. However at this time the initial data do not have a zero width because the
blow-up is not fully self-similar.
We have integrated the NLSE for the Gaussian data considering a starting

grid size of 524,288 points and an initial time step s ¼ 0:001. In this case the
maximum value obtained for t is

tmax ¼ 6:711417038� 4� 10�9;

where the amplification of jWð0; 0Þj2 is of order 1010. For other choices in the
size of the grid and time step, amplifications of order 1013 can be reached.
We have adjusted the values jWð0; tiÞj obtained at each time step to the

double logarithmic law (48). As before, we first minimize the quadratic dif-
ferences of the logarithm of the law and then we use these results as a starting
point for the Matlab nlinfit and nlparci routines. Using this we find
A ¼ 1:362� 0:021, S ¼ 77:02 and s ¼ 0:0059. It must be noticed that the ad-
justment is not performed for all data but only for those values t > 6:7 in which
the self-similar regime for the spike is presumably reached. In order to confirm
the validity of the model we use the cross validation method. It consists of
representing the values of the amplitudes obtained in the simulation versus the
predicted ones in those points. This should be a straight line of slope m ¼ 1 and
ordinate at the origin, a ¼ 0. The estimations of these parameters using the
numerical data are m ¼ 0:9949� 0:0068 and 16:20� 25:18. We also provide
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the semi amplitude of the 95% confidence interval. They are consistent with the
null hypothesis (m ¼ 1, a ¼ 0).

5. Conclusions

In this paper we have developed a new adaptive multigrid finite difference
scheme useful for the analysis of wave collapse processes. This scheme is lin-
early implicit, which allows a fast implementation, and conservative, which is a
desirable property of any numerical scheme which is to be used in the simu-
lation of Hamiltonian wave equations.
As a test of validity of the ideas beyond our scheme, we have applied it to

the simulation of collapse processes in the critical NLSE. In this context we
have verified the width evolution, which satisfies the virial identities and the
rate of self-similar collapse near the singularity. The scheme is able to follow
numerically the collapse process up to amplifications of 1013 and to determine
the collapse time with high precision.
These schemes may be used to approximate many other collapse phenomena

related to recent problems, e.g., nonlocal collapses in Bose–Einstein conden-
sation [39], collapses in saturable media, etc. We expect that this will be a useful
tool in future investigations of blow-up phenomena in context of NLSEs.
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