
Tail estimates for positive solutions of stochastic
heat equation

Habib Ouerdiane
Département de Mathématiques, Faculté des Sciences de Tunis.

Université de Tunis El Manar. Campus Universitaire,

1060 Tunis, Tunisie

José Luís da Silva
University of Madeira, CCM 9000-390 Funchal, Portugal

4th August 2004

Abstract

In this paper we study the solution of a class of stochastic heat equations of
convolution type. We give an explicit solution Xt using two basic tools: the char-
acterization theorem for generalized functions and the convolution calculus. For
positive initial condition f and coefficients processes Vt,Mt, we prove that the
corresponding solution Xt admits an integral representation by a certain measure.
Finally, we compute the tail estimate for the obtained solution and its expectation.
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1 Introduction
In this work we consider the following class of the Cauchy problems







∂
∂t

Xt(ω, x) = a∆Xt(ω, x) + Vt(ω, x) ∗ Xt(ω, x) + Mt(ω, x)

X0(ω, x) = f(ω, x).
(1)

Here a ∈ R+, t ∈ [0,∞) is the time parameter, x ∈ Rr is the spatial variable, r =
1, 2, . . . and ∆ =

∑r
i=1

∂2

∂x2
i

is the Laplacian in the generalized sense on Rr and ω is
the stochastic vector variable in the tempered Schwartz distribution space S ′(R, Rd),
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d ∈ N. The symbol ∗ denotes the usual convolution product between generalized
functions. This type of problems was considered by many authors from different point
of views, see for example [OS04b], [HØUZ96], [Oba99] and references therein.

In order to study the proposed Cauchy problem we assume that the initial condi-
tion f belongs to a generalized functions space F ′

θ(N
′) (see Section 2 for details and

properties) and the coefficients, Vt, Mt are givenF ′
θ(N

′)-valued generalized processes.
The paper is organized as follows. In Section 2 we provide the mathematical back-

ground needed to solve the Cauchy problem stated above. We construct the appropri-
ate spaces of test Fθ(N ′) and the associated generalized functions F ′

θ(N
′). Using the

Laplace transform we give the characterization theorem for F ′
θ(N

′), cf. Theorem 2.2
below and the basic properties of convolution calculus need later on. In Section 3 we
combine the convolution calculus and the characterization theorem in order to find the
explicit solution to (1). If we further assume that the coefficients Vt, Mt and the ini-
tial condition f are positive distributions, in the sense of Definition 3.5, we show that
the solution is associated to a measure which verify a certain integrability condition,
cf. (15). Finally, in Section 4 we use a recent result by Ouerdiane and Privault [OP04]
and apply it to obtain a tail estimate for the positive solution of the Cauchy problem.
More precisely, the measure µXt

which represents the solution verify an inequality
of Chernoff type of rate β, where β is a certain Young function, see (17). We also
compute the generalized (in the sense of Remark 4.5) expectation of the solution Xt.

2 Preliminaries
In this section we introduce the framework need later on. We start with a real Hilbert
space H = L2

d ⊕ R
r, L2

d := L2(R, Rd), d, r = 1, 2, . . . with scalar product (·, ·)
and norm | · |. More precisely, if (f, x) = ((f1, . . . , fd), (x1, . . . , xr)) ∈ H, then the
Hilbertian norm of (f, x) is given by

|(f, x)|2 :=

d
∑

i=1

∫

R

f 2
i (u)du +

r
∑

i=1

x2
i = |f |2L2

d
+ |x|2.

We denote by Sd := S(R, Rd) the Schwartz test function space and consider the real
nuclear triplet

M′ = S ′
d ⊕ R

r ⊃ H ⊃ Sd ⊕ R
r = M. (2)

The pairing 〈·, ·〉 between M′ and M is given as an extension of the scalar product in
H, i.e., 〈(ω, x), (ξ, y)〉 := (ω, ξ) + (x, y), (ω, x) ∈ H and (ξ, y) ∈ M. Since M is a
Fréchet nuclear space, then it can be represented as

M =

∞
⋂

n=0

Sd,n ⊕ R
r =

∞
⋂

n=0

Mn,
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where Sd,n⊕Rr is a Hilbert space with norm square given by | · |2n+ | · |2, see [HKPS93]
and references therein. We will consider the complexification of the triple (2) and
denote it by

N ′ ⊃ Z ⊃ N , (3)

i.e., N = M+ iM and Z = H+ iH. On M′ we have the standard Gaussian measure
γ given by Minlos’ theorem via its characteristic functional by

Cµ(ξ, p) =

∫

M′

ei〈(ω,x),(ξ,p)〉dµ((ω, x)) = exp

(

−
1

2
(|ξ|2 + |p|2)

)

, (ξ, p) ∈ M.

In order to solve the Cauchy problem (1) we need to introduce an appropriate space
of generalized functions for which we follow closely the construction in [JOO02]. Let
θ = (θ1, θ2) : R2

+ → R+, (t1, t2) 7→ θ1(t1) + θ2(t2) where θ1, θ2 are two Young
functions, i.e., θi is a continuous, convex, increasing, θi(0) = 0 and limt→∞

θi(t)
t

= ∞,
i = 1, 2. For every pair m = (m1, m2) where m1, m2 are strictly positive real numbers,
we define the Banach space Fθ,m(N−n), n ∈ N by

Fθ,m(N−n) := {f : N−n → C, entire, |f |θ,m,n < ∞},

where
|f |θ,m,n := sup

z∈N−n

|f(z)| exp(−θ(m|z|−n))

and for each z = (ω, x) we have θ(m|z|−n) := θ1(m1|ω|−n) + θ2(m2|x|). Here |ω|−n

is the norm in the dual space S ′
d,n =: Sd,−n. Now we consider as test function space

as the space of entire functions on N ′ of (θ1, θ2)-exponential growth and minimal type
given by

Fθ(N
′) =

⋂

m∈(R∗

+
)2,n∈N

Fθ,m(N−n),

endowed with the projective limit topology. Here R
∗
+ :=]0,∞[ and N := {0, 1, 2, . . .}.

We would like to construct the triplet of the complex Hilbert space L2(M′, µ) by
Fθ(N ′). To this end we need another assumption on the pair of Young functions
(θ1, θ2). Namely, limt→∞

θi(t)
t2

< ∞, i = 1, 2. This is enough to obtain the following
Gelfand triplet

F ′
θ(N

′) ⊃ L2(M′, µ) ⊃ Fθ(N
′), (4)

where F ′
θ(N

′) is the topological dual of Fθ(N ′) with respect to L2(M′, µ). The space
F ′

θ(N
′) endowed with the inductive limit topology which coincides with the strong

topology since Fθ(N ′) is a nuclear space, see [GV68] for more details on this subject.
We denote the duality between F ′

θ(N
′) and Fθ(N ′) by 〈〈·, ·〉〉 which is the extension of

the inner product in L2(M′, γ).

Remark 2.1 For every entire function f : N ′ → C we have the Taylor expansion

f(z) =
∑

k∈N2

〈z⊗k, fk〉,
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where z⊗k ∈ N ′⊗̂k and ⊗̂ denotes the symmetric tensor product. This allowed us to
identify each entire function f with the corresponding Taylor coefficients ~f = (fk)k∈N2 .
The mapping f 7→ T (f) = ~f is called Taylor series map.

Using the mapping T we can construct a topological isomorphism between the test
function space Fθ(N ′) and the formal power series space Fθ(N ) defined by

Fθ(N ) =
⋂

m∈(R∗

+
)2,n∈N

Fθ,m(Nn), (5)

where

Fθ,m(Nn) :=

{

~f = (fk)k∈N2 , fk ∈ N ⊗̂k
n | |~f |2 :=

∑

k∈N2

θ−2
k m−k|fk|

2
n < ∞

}

,

here k = (k1, k2) and θ−2
k = θ−2

1,k1
θ−2
2,k2

with

θi,ki
:= inf

u>0

exp(θi(u))

uki
, i = 1, 2.

In the case where θ(x) = x2, then Fθ,1(Nn) is nothing than the usual Bosonic Fock
space associated to Nn, see [HKPS93] for more details.

In applications it is very important to have the characterization of generalized func-
tions F ′

θ(N
′). This is stated in Theorem 2.2 with the help of the Laplace transform.

Therefore, let us first define the Laplace transform of an element in F ′
θ(N

′). For every
fixed element (ξ, p) ∈ N we define the exponential function exp((ξ, p)) by

N ′ 3 (ω, x) 7→ exp(〈ω, ξ〉+ (p, x)). (6)

It is not hard to verify that for every element (ξ, p) ∈ N , exp((ξ, p)) ∈ Fθ(N
′).

With the help of this function we can define the Laplace transform L of a generalized
function Φ ∈ F ′

θ(N
′) by

Φ̂(ξ, p) := (LΦ)(ξ, p) := 〈〈Φ, exp((ξ, p))〉〉. (7)

The Laplace transform is well defined because exp((ξ, p)) is a test function. In or-
der to obtain the characterization theorem we need to introduce another space of en-
tire functions on N with θ∗-exponential growth and arbitrary type, where θ∗ is an-
other Young function (called polar functions associated to θ) defined by θ∗(x1, x2) :=
θ∗1(x1) + θ∗2(x2) and

θ∗i (xi) := sup
t>0

(txi − θi(t)), i = 1, 2.

The next characterization theorem is essentially based on the topological dual of
the formal power series space Fθ(N ) defined in (5) and the inverse Taylor series map
T−1, see [GHOR00] or [JOO02] for details. In the white noise setting this theorem
is known as Potthoff-Streit characterization theorem, see [KLP+96] for details and
historical remarks.
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Theorem 2.2 The Laplace transform is a topological isomorphism between F ′
θ(N

′)
and the space Gθ∗(N ) which is defined by

Gθ∗(N ) =
⋃

m∈(R∗

+
)2,n∈N

Gθ∗,m(Nn),

and Gθ∗,m(Nn) are Banach space of entire functions g on Nn with the following θ-
exponential growth condition

|g(ξ, p)| ≤ k exp(θ∗1(m1|ξ|n) + θ∗2(m2|p|)), (ξ, p) ∈ Nn,

where k, m1, m2 are positive constants.

It is well known that in infinite dimensional complex analysis the convolution operator
on a general function space F is defined as a continuous operator which commutes
with the translation operator. This notion generalizes the differential equations with
constant coefficients in finite dimensional case. If we consider the space of test func-
tions Fθ(N ′), then we can show that each convolution operator is associated with a
generalized function from F ′

θ(N
′) and vice-versa.

Let us define the convolution between a generalized and a test function on F ′
θ(N

′)
and Fθ(N ′), respectively. Let Φ ∈ F ′

θ(N
′) and ϕ ∈ Fθ(N ′) be given, then the

convolution Φ ∗ ϕ is defined by

(Φ ∗ ϕ)(ω, x) := 〈〈Φ, τ−(ω,x)ϕ〉〉,

where τ−(ω,x) is the translation operator, i.e.,

(τ−(ω,x)ϕ)(η, y) := ϕ(ω + η, x + y).

It is not hard to see that Φ ∗ ϕ is an element of Fθ(N ′). Note that the dual pairing
between Φ ∈ F ′

θ(N
′) and ϕ ∈ Fθ(N ′) is given in terms of the convolution product of

Φ and ϕ applied at (0, 0), i.e., (Φ ∗ ϕ)(0, 0) = 〈〈Φ, ϕ〉〉.
We can generalize the above convolution product to generalized functions as fol-

lows. Let Φ, Ψ ∈ F ′
θ(N

′) be given. Then Φ ∗ Ψ is defined as

〈〈Φ ∗ Ψ, ϕ〉〉 := 〈〈Φ, Ψ ∗ ϕ〉〉, ∀ϕ ∈ Fθ(N
′). (8)

This definition of convolution product for generalized functions will be used on Sec-
tion 3 in order to solve the stochastic heat equation. We have the following connection
between the Laplace transform and the convolution product. The simple proof can be
found in [OS02].

Proposition 2.3 Let (ξ, p) ∈ N be given and consider the exponential function exp((ξ, p))
defined on (6).
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1. Then for every Φ ∈ F ′
θ(N

′) we have

Φ ∗ exp((ξ, p)) = (LΦ)(ξ, p) exp((ξ, p)).

2. For every generalized functions Φ, Ψ ∈ F ′
θ(N

′)

L(Φ ∗ Ψ) = LΦLΨ, (9)

and equality (9) may be taken as an alternative definition of the convolution product
between two generalized functions.

We also need to handle functionals K : F ′
θ(N

′) → F ′
λ(N

′) for certain Young
functions θ, λ given.

Let g : C → C be an entire function verifying the following growth condition:
|g(z)| ≤ C exp(γ(m|z|)), where C, m > 0 and γ is a Young function which not
necessary satisfies the condition limx→∞

γ(x)
x

= ∞. Then for each Φ ∈ F ′
θ(N

′) the
convolution functional g∗(Φ) defined by:

L(g∗(Φ)) = g(LΦ)

belongs to the space F ′
λ(N

′), where λ = (γ ◦ eθ∗)∗, see [BCEOO02] for the proof.
In particular if g(z) = exp(z) and γ(x) = x, then the convolution exponential

exp∗(Φ) =

∞
∑

n=0

1

n!
(Φ∗)n (10)

is a well defined element in F ′
λ(N

′), where λ = (eθ∗)∗. The convolution exponential
just defined will be the main object in solving the stochastic differential equation in
(1), cf. (13).

3 Stochastic heat equation of convolution type
A one parameter generalized stochastic process with values in F ′

θ(N
′) is a family of

distributions {Φt, t ∈ I} ⊂ F ′
θ(N

′), where I is an interval from R. Without loss
generality we may assume that 0 ∈ I . The process Φt is said to be continuous if the
map t 7−→ Φt is continuous. In order to introduce generalized stochastic integrals, we
need the following result proved in [OR00].

Proposition 3.1 Let (Φn)n∈N be a sequence of generalized functions in F ′
θ(N

′). Then
the following two conditions are equivalent:

1. The sequence (Φn)n∈N converges in F ′
θ(N

′) strongly.

2. The sequence (Φ̂n = L(Φn))n∈N of Laplace transform of (Φn)n∈N satisfies the
following two conditions:

6



(a) There exists p ∈ N and m ∈ (R∗
+)2 such that the sequence (Φ̂n)n∈N belongs

to Gθ∗,m(Np) and is bounded in this Banach space.

(b) For every point z ∈ N , the sequence of complex numbers (Φ̂n(z))∞n=0

converges.

Let {Φt}t∈I be a continuous F ′
θ(N

′)-process and put

Φn =
t

n

n−1
∑

k=0

Φ tk
n
, n ∈ N

∗ := N\{0}, t ∈ I.

It is easy to prove that the sequence (Φ̂n) is bounded in Gθ∗(N ) and for every ξ ∈ N ,
p ∈ Cr (Φ̂n(ξ, p))n converges to

∫ t

0
Φ̂s(ξ, p)ds. Thus we conclude by Proposition 3.1

that (Φn) converges in F ′
θ(N

′). We denote its limit by
∫ t

0

Φsds := lim
n→∞

Φn in F ′
θ(N

′). (11)

The result of the following proposition is widely used in this remaining of this
paper, the proof is given in [OS02].

Proposition 3.2 For a given continuous generalized stochastic process Xt we define
the generalized function

Yt(x, ω) =

∫ t

0

Xs(x, ω)ds ∈ F ′
θ(N

′)

by

L

(
∫ t

0

Xs(x, ω)ds

)

(ξ, p) :=

∫ t

0

LXs(p, ξ)ds.

Moreover, the generalized stochastic process Yt(x, ω) is differentiable in F ′
θ(N

′) and
we have ∂

∂t
Yt(x, ω) = Xt(x, ω).

We are now ready to solve the Cauchy problem in (1). Let us recall again this prob-
lem for the reader convenience. Let f be a given generalized function in F ′

θ(N
′) and

Vt, Mt given F ′
θ(N

′)-valued continuous generalized stochastic processes. Consider
the following stochastic differential equation with initial condition f and coefficients
Vt, Mt







∂
∂t

Xt(ω, x) = a∆Xt(ω, x) + Vt(ω, x) ∗ Xt(ω, x) + Mt(ω, x)

X0(ω, x) = f(ω, x),
(12)

where a is a positive constant and ∆ is the Laplacian in the generalized sense with
respect to the spacial variable x ∈ Rr.
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Theorem 3.3 The Cauchy problem (12) has an unique solution Xt which is a gen-
eralized F∗

β(N ′)-valued stochastic process, where the Young function β is given by
β = (eθ∗)∗. Moreover, the solution Xt is given explicitly by

Xt(ω, x) = f(ω, x) ∗ exp∗

(
∫ t

0

Vs(ω, x)ds

)

∗ γ2at

+

∫ t

0

exp∗

(
∫ t

s

Vu(ω, x)du

)

∗ γ2a(t−s) ∗ Msds. (13)

where γ2at is Gaussian measure on Rr with variance 2at.

Proof. To obtain the solution (13) at first we apply the Laplace transform to (12) which
reduces the problem to a ordinary differential equation. Then the result follows by the
characterization Theorem 2.2.

Remark 3.4 For a = 0 the Cauchy problem (12) reduces to






∂
∂t

Xt(ω, x) = Vt(ω, x) ∗ Xt(ω, x) + Mt(ω, x)

X0(ω, x) = f(ω, x).
(14)

Taking into account that γ2at −→ δ0, a → 0, where δ0 denotes the Dirac measure at 0
which is the unit element for the convolution product, then the solution (13) reduces to

Xt = f(ω, x) ∗ exp∗

(
∫ t

0

Vs(ω, x)ds

)

+

∫ t

0

exp∗

(
∫ t

s

Vu(ω, x)du

)

∗ Msds.

The Problem (14) was studied in other works, see for example [BCEOO02]. Our
solution coincides with their solution.

In the next section we also need the notion of positive distributions. Therefore we
recall this notion and the connection between positive distributions and measures as
well its characterization.

Definition 3.5 1. Let Fθ(N ′)+ denote the cone of positive test functions, i.e., ϕ ∈
Fθ(N ′)+ if ϕ(u + i0) ≥ 0 for all u ∈ M′.

2. The space F ′
θ(N

′)+ of positive distributions is a subset of Φ ∈ F ′
θ(N

′) such that
〈〈Φ, ϕ〉〉 ≥ 0, for all ϕ ∈ Fθ(N ′)+.

The following theorem gives the integral representation for positive distributions
as measures and their characterization. For details we refer to [OR00] and references
therein.
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Theorem 3.6 Let Φ ∈ F ′
θ(N

′)+ be a given positive distribution. Then there exists a
unique Radon measure µΦ on M′ such that

〈〈Φ, ϕ〉〉 =

∫

M′

ϕ(u + i0)dµΦ(u), ϕ ∈ Fθ(N
′).

Conversely, for each finite positive Borel measure µ on M′, µ represents a positive
distribution in F ′

θ(N
′)+ if and only if there exists p, m > 0 such that µ is supported by

M−p and
∫

M−p

eθ(m|u|−p)dµ(u) < ∞.

Lemma 3.7 Let Φ1, Φ2 ∈ F ′
θ(N

′)+ be positive distributions. Then Φ1 ∗ Φ2 and e∗Φ1

are positive distributions.

Proof. Using equality (8) it is sufficient to show that the convolution product between
a generalized function and a positive test function is a positive test function. In fact, if
ϕ ∈ Fθ(N ′)+ then

(Φ2 ∗ ϕ)(u + i0) := 〈Φ2, τ−uϕ〉, u ∈ M′

and the result follows since (τ−uϕ)(v + i0) := ϕ(u + v) ≥ 0, for all u, v ∈ M′. As a
consequence we have Φ∗n

1 ∈ F ′
θ(N

′)+, n ∈ N. Now we use equality (10) to derive the
positivity of e∗Φ1 .

As a corollary of this lemma we give sufficient conditions on f , Vt and Mt such
that the solution (13) of the Cauchy problem (12) is a positive generalized function.

Corollary 3.8 Suppose that f, Vt, Mt ∈ F ′
θ(N

′)+ for any t ∈ [0,∞). Then the solu-
tion (13) is a positive distribution and thus there exists a unique Radon measure µXt

associated to Xt, i.e.,

〈〈Xt, ϕ〉〉 =

∫

M′

ϕ(u)dµXt
(u), ϕ ∈ Fβ(N ′).

Moreover, there exist m, p > 0 such that µXt
satisfies the integrability condition

∫

M−p

eβ(m|u|−p)dµXt
(u) < ∞, β = (eθ∗)∗. (15)

Proof. First we notice that
∫ t

0
Vs(ω, x)ds is a positive distribution which follows di-

rectly from the definition (11) and Proposition 3.1. The result follows using the asso-
ciativity of the convolution product, the previous lemma and Theorem 3.6.
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4 Tail estimates and expectation of the solution
In this section we will use the previous results in order to obtain the tail estimate for
the solution Xt represented by the measure µXt

in Corollary 3.8. We also compute the
generalized expectation of Xt, cf. Theorem 4.4.

At first we state an independent result for positive generalized functions, see The-
orem 2.1 in [OP04].

Theorem 4.1 Let Φ ∈ F ′
θ(N

′)+ be a given positive distribution and µΦ the associated
measure. Consider for any ξ ∈ M, α ∈ R the half-plane Aξ,α in M′ defined by

Aξ,α := {u ∈ M′| 〈u, ξ〉 > α}.

Then there exists constants m > 0, p ∈ N such that

µΦ(Aξ,α) ≤ C exp

(

−θ

(

α

m|ξ|p

))

, (16)

where C = |Φ̂|θ,m,p.

Theorem 4.2 Suppose that f, Vt, Mt ∈ F ′
θ(N

′)+ for any t ∈ [0,∞). Then there
exits a unique positive Radon measure µXt

on M′ associated to the solution Xt of the
Cauchy problem (12) given in (13) such that

µXt
(Aξ,α) ≤ Ct exp

(

−β

(

α

mt|ξ|pt

))

, (17)

where β = (eθ∗)∗ and certain Ct, mt, pt > 0, t ∈ [0,∞).

Proof. It is clear that the solution Xt in (13) belongs to F ′
β(N

′)+ using Lemma 3.7.
The existence and uniqueness of the Radon measure µXt

on M′ associated to Xt fol-
lows from Theorem 3.6. Finally, the estimate (17) is a consequence of the inequality
(16) with θ replaced by β.

Lemma 4.3 Let Φ1, Φ2 ∈ F ′
θ(N

′) be given and 1 ∈ Fθ(N ′) the constant test function
identically equal to 1. Then we have the following equalities

〈〈Φ1 ∗ Φ2, 1〉〉 = 〈〈Φ1, 1〉〉〈Φ2, 1〉〉,

〈〈e∗Φ1 , 1〉〉 = e〈〈Φ1 ,1〉〉.

Proof. In fact, we have 〈〈Φ1 ∗ Φ2, 1〉〉 := 〈〈Φ1, Φ2 ∗ 1〉〉 and we notice that

(Φ2 ∗ 1)(u) := 〈〈Φ2, τ−u1〉〉 = 〈〈Φ2, 1〉〉.

It follows from this equality that 〈〈Φ∗n
1 , 1〉〉 = 〈〈Φ1, 1〉〉n. The second equality of the

lemma is a consequence of (10).
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Theorem 4.4 The solution of the Cauchy problem Xt in (13) satisfies the following
equality

〈〈Xt, 1〉〉 = 〈〈f, 1〉〉 exp

(
∫ t

0

〈〈Vs, 1〉〉ds

)

+

∫ t

0

exp

(
∫ t

s

〈〈Vu, 1〉〉du

)

〈〈Ms, 1〉〉ds.

Proof. The equality is a consequence of the previous lemma, the associativity of the
convolution product and the fact that 〈γ2at, 1〉 = 1.

Remark 4.5 The bilinear dual pairing 〈〈Xt, 1〉〉 may be interpreted as a generalized
expectation of Xt, denoted by Eµ(Xt), in connection with the triple (4). In fact, if
ϕ ∈ Fθ(N

′) is a random variable on the probability space (M′,B(M′), µ), then its
expectation is given by

Eµ(ϕ) =

∫

M′

ϕ(u)dµ(u) = ((ϕ, 1))L2(M′,µ).

Remark 4.6 The solution of the corresponding homogeneous Cauchy problem (12)
was presented as a convergent series of integrals in [OS04a] under the assumptions
that f, Vt ∈ F ′

θ(N
′)+. On the other hand, we have shown in this work that such type

of solutions allows tail estimates of the type (17). Hence it seems that we may estimate
the rate of convergence of the mentioned series using such tail estimates. This will be
the subject of further investigation on a forthcoming paper.
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