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Introduction.

Let X = (X(t),t > O), Y = (Y(t),t > O) be two stochastic processes ; X will be
supposed to be continuous.

The objects of our interest are the forward integral / Yd~ X, the backward integral
0

/ Yd" X and the covariation process [X,Y] when they exist, see [RV2 ; RV4]. Our
0

approach has three objectives.

a) We aim to develop a calculus which is relatively simple and as close as possible to a
pathwise approach. A pathwise stochastic calculus has been initiated by Follmer [F]
with recent complements in [FPS].

Bertoin [B1 ; B2] and more recently [RV4 ; W1 ; W2 ; W3] have contibuted to a pathwise
study of Dirichlet processes. The last papers make use of regularizing techniques and all
the others implement Riemann sums. Given a semimartingale S, one interesting problem

is to determine the class of f such that ( f (S (t)) ,t > O) is a semimartingale or a Dirichlet

process. In such a case it is useful to get the Fukushima decomposition ([Fu ; LZ]) that is to
say to detect the local martingale part and the zero quadratic variation process. Elements
of answer have been given in [BY ; B1 ; RV3 ; W1 ; W2 ; W3|.

b) Our approach has the ambition to constitute a bridge between causal and non-causal
stochastic calculus : in particular we wanted to relate enlargement of filtrations [J] and
Skorohod integral, see [NP], [N]. A remark in this sense is in [RV1].

When the integrator is a Brownian motion and the integrand belongs to suitable Wiener
analysis spaces, see [Ma], [N], [HKPS], [W], our forward integral coincides with the one of
[AP], [BM], [KR]. In some cases it has been possible to give existence theorems for stochas-
tic differential equations with anticipating initial conditions under quite weak assumptions,
see for instance [RV1 ; RV3]. The uniqueness problem has been partially solved in this
paper. An application to the stochastic heat equation has been performed by [T].

c¢) The third objective which is really the main one of this paper is to develop a calculus
beyond the barrier of semimartingales which includes the case of Gaussian processes which
have an infinite quadratic variation processes as fractional Brownian motion or other long
memory Gaussian processes, see [CCM]. A calculus based on fractional calculus has been
introduced by [Z1], [DU] making use of fractional calculus. Also stochastic differential
equations driven by fractional Brownian motion have been treated by [Z2].

It is also significant to emphasize that our approach is connected with Colombeau
theory of generalized functions for defining multiplication and non-linearity of distributions,
see [C], [O] and [R] for connections with stochastic analysis.

The paper is organized as follows. In section 1, we recall some basic notions of forward
and backward integration, in section 2 we list examples of processes having finite quadratic
variation which motivate our study. We analyze in section 3 the class of Gaussian pro-
cesses admitting a generalized bracket. Section 4 is devoted to complete our calculus with
the introduction of the notion of (generalized) Itd6 processes. Section 5 studies existence



and uniqueness of stochastic differential equation which are driven by a finite quadratic
variation process ; we implement here Doss-Sussmann techniques (see [Do], [Su]).

1. General calculus.

For simplicity, we will concentrate on the case when the integrator is a continuous
process.
C will denote the Fréchet space of continuous processes equipped with the metric topology
of the uniform convergence in probability (ucp) on each compact interval. A metric on C
can be given for instance by

< s X() Y (1)
pelXo¥) = 2,2 E<1 oy, IX(0) - Y<t>|)'

If X is continuous and Y € L}

loc

t
(dz) a.s. (i.e. / |Ys|ds < o0, a.s. for any t > 0), we define
0

t t
/ Yd X (resp. / Yd+X) as the limit ucp of
0 0

/0 Y(S)X(s—l—e) —X(s)ds

€

(1.1)

¢ X(s)—X((s—¢e)VO
<resp. / Y (s) (5) ((5—¢) ds)
0 5
provided these integrals exist. If Y is continuous, we define [ X, Y] as the ucp limit of
1t
(1.2) CL(X,Y)(t) = g/ (X(s+€) — X(5))(Y(s +2) — Y(s))ds.
0

when ¢ — 0.

The following properties are direct consequences of the definition of generalized stochastic
integrals and brackets.

(13) [X,Y]=[Y,X]
(1.4) [X, X]is an continuous increasing process.

A process such that [X, X| exists will be called a finite quadratic variation process.

(1.5) X, Y](#) :/Ot Yd+X—/0t Yd-X,

provided two of the previous objects exist.



An integration by parts formula holds :
(1.6) / Yd¥X = XY (t) / Xd*y,
provided that one of the above integrals exists.

(1.7)  If [X, X] exists and [Y,Y] = 0 then [X,Y] = 0.

(Using Holder inequality we easily prove

Co(X,Y)(1)] < VC(X, X)(6)C:(Y. Y) (1)

This implies (1.7)).

If Z is any random variable,

(1.8) /Ot ZY (s)dF X (s) = Z/OtY(s)quX(s).

A m-dimensional real process (Xi,...,X,) is said to have all their mutual
brackets if [ X;, X;] exist for every ¢,7 = 1,...,n. In this case
(1.9) [Xi + X5, Xi + Xj] = [Xy, Xa] + 2[X5, Xj] + [X;, X

Since [X;, X;] is a difference of increasing processes, it is locally of bounded variation.
The following property is proven in [RV2]. Let X = (X1,...,X,), Y = (Y1,...,Yy) having
all their mutual brackets and f,g € C1(R").

Then (f(X),g(Y)) has all its mutual brackets and,

(1.10) rx Z/ 0.1 (X)(5)039(Y)($)d[Xs, ;](5)

1,=1

0
e
Itd formula. This is a slightly different version with respect to the one stated in [RV2].
The proof is very similar. Let X = (Xy,...,X,) having all the mutual brackets and
V =(V1,...,V,) be a bounded variation continuous process.
C?1(R™*P) will stand for the set of functions f € C1(R"*P) such that 9;f is C! for any
1<i<n. Let f € C>Y(R"). We suppose

where 0; =

(1.11) /t 0; f (X (5), V(s))d™X;(s) to exist, 1 <i < n.



Then
FX0) = F(X0) + Y / 0.5 (X(5), V(9))d~Xi(s)
(1.12) . =t
#3000 VN + 5 S [0, VK. X0,
T
with 8i7j_m.

We remark that if n = 1, then (1.11) does not need to be assumed.

2. Examples.

We list here some examples of processes for which the theory we develop could be
applied.

t
1) If X has locally bounded variation and Y is cad lag then / Yd X = Yd+X and

it is the usual pathwise Stieljes integral (consequence of the proof of propos1t10n 1.1 in
[RV2]).

2) Let X and Y be continuous semimartingales with respect to some filtration F, H a lag
lad (i.e. H admits a.s. left and right limits at any time ¢) F-previsible process.
t

t
Then / Hd™Y coincides with the Ito integral / HdY and the Fisk-Stratonovich integral

/Xodquuals—/ XdY + - /Xd+Y

[X,Y] is the usual covariation of X and Y denoted by (X,Y) (see essentially proposition
1.1 in [RV2]).
If M, N are given by

/HdX /KdY

for some previsible locally bounded processes H, K, then

(2.1) [M, N](t) = / H(s)K (s)d(X,Y)(s).

This property will be generalized in section 5.

3) We spend some words about the relation with Skorohod integral. Let B be a standard
Brownian motion, By = 0. First of all, if we replace ordinary product with Wick product



t
(see [RV1], [HOUZ]) then the e-approximations converge to the Skorohod integral / HoB
0

provided some suitable assumptions are made on H.

Moreover the forward and backward integrals are equal to Skorohod integral, plus a trace
term of the Gross-Malliavin derivative DX, see [RV1 ; NP ; SU ; Z].
If

t t
M(t):/ USB, N(t):/ VB,
0 0
where U,V fulfill the strong integral representation stated in [DN], then [M, N]|(t) =

t

/ U(s)V (s)ds.

IfOU and V are adapted, the above identity corresponds to (2.1).

The Skorohod integral is one extension of It6 integral to the anticipating framework (of
fonctional analysis nature). The forward integral is another extension of It6 integral. Ac-
cording to the considerations above, these two extensions do not coincide ; if the integrands
are adapted, the trace term vanishes.

4) The forward integral does not depend either on the underlying probability measure
or on filtrations. For this reason, it coincides with the integral which could be obtained
by enlargement of filtrations, see eq [J]. This allows to relate the integral coming from
enlargement of filtration and Skorohod integral.

5) Substitution formulae. They are ones of the main tools of this theory : it is often a
replacement of the “enlargement” techniques.

They are useful for instance

a) in providing existence theorems to stochastic differential equations with anticipating
initial condition, see [RV1], [RV3], [RV4],

b) in generalizing It6 formula for C! functions of stochastic flows, see [RV3].

Let (XZ- (t,z),t > 0,z € ]Rd), i = 1,2, be two family of continuous semimartingales with
respect to some usual filtration (F;):>o. Let (H(t, x),t >0,z € Rd) be a family of adapted

processes depending on a parameter. Let o be a random variable taking its values in R?.
Under suitable assumptions of Kolmogorov type on X7, X3 with respect to x we have

(2.2)  [X1(.,a), X2(.,a)] exists and equals [Xl(.,x),Xz(.,x)”m:a.

This provides another class of examples of finite quadratic variation process, see [RV2].
Suppose that X; = Xo = X, with additional assumptions on H, we have the existence of

(2.3) /(]H(s,a)d_X(s,a):/O H(s,x)dsX(s,x)‘m:a.

This result will be used in section 6. So we state more precisely it. It is a small modification
of proposition 1.3, [RV3].

Proposition 2.1. We suppose the following conditions



i)Y =M+ V, where (M(t,z),t > 0,z € R*) is a family of martingales depending on a
parameter, and (V(t, x),t >0,z € Rd) a family of bounded variation continuous processes

for every x € R%.
/

ii) For any compact set K C R* T > 0, we suppose the existence of p > 0, v = v(p),y' =
v'(p) both greater than d, a constant ¢ = ¢(p) such that

E(sup |H(t,) — H(t.y)l") < clo -y
t<T

E(sup |H(t,0)|p) < 00
t<T

E(|M(T,z) — M(T,y)?) < clz —y|"
sup E(|M(t,0)?) < oc.
t<T

Under such conditions, the substitution formula (2.3) holds.

6) Delayed processes. Let (S(¢),¢ > 0) be a continuous semimartingale with respect to
some filtration (F;);>0 and a continuous process X = (X(t),t > O) being (f(t—T)\/(]vt > 0)—
measurable for some delay 7 > 0.

One example can be provided by X = (0 (Y((s —T)V O)), s> O) where Y is a solution of

a stochastic delay equation

t
Y(t) = / o (Y ((u— 1)V 0))dS(u).
0
For such kind of equations, see e.g. [M].

Proposition 2.2. The covariation process [X, S] vanishes. In particular the Ité integral

t t
/ Xd™ S equals the backward integral / Ydts.
0 0

Proof. Let M the local martingale part of S. Through localization arguments we can
suppose M to be a bounded continuous martingale, X and [M, M] are bounded. Since S-M
has locally bounded variation, it is enough to show that[X, M] = 0. Let € €]0,7[, ¢ < 1.
We set

CL(t) = C.(X, M) = 2/0 (X(s+¢) — X(5)) (M(s + €) — M(s))ds.

We decompose the integral in two parts : C! (resp. C?) is defined by integrating from 0
(resp. (t —€)VO0) to (t —e) VO (resp. t). It is clear that,

|C’62(t)| < Ogrglgaggrl ‘ (X(s +e)— X(s)) (M(s +e)— M(s)) ‘



Since X and M are continuous, they are uniformly continuous on any compact interval,
hence Cf goes ucp to 0, as € — 0.
Since ¢ < 7, the r.v. X (s +¢) — X (s) is Fy-measurable, therefore

s+e
(X(s+€) - X(5))(M(s +¢) — M(s)) = / (X(s+ ) — X(s))dM (u).

We apply Fubini type theorem :

CL(t) = / H, (u)dM (u),

where
H.(u) =~ / (X(s+¢) — X(s))ds.

€ J(u—e)vo

X being continuous, H. goes ucp to 0.
Using Doob inequality we obtain

B| swp O] <4B[CA(T)?)

T
EICHTY) = B[ [ Hotwyd(01,M)(w)].
0
Using the definition of H., we immediatly obtain :

sup |Ho(u)| < sup |X(s+¢)—X(s)| <2 sup |X(s).
0<u<T 0<s<T+1 0<s<T+1

This shows that H. is bounded. Consequently, the limit in L?(Q2) of C1(T) is null. This
proves : [X, M] = 0. []

Next example is more complicated and it deserves a separate section: it investigates the
case of Gaussian processes (respectively section 3 and 4).

3. The Gaussian case.

Let (X(t)),., be a second order continuous process. We set

m(t) = E(X(t)), K(s,t) = Cov(X(s),X(t)) = E(X(s)X(t)) — m(s)m(t)

for 0 <s<t< .
We observe that [X, X| may not exist for every ¢t > 0 ; it is enough to take a deterministic
function X = m such that [m,m] is infinite.



From now on we will suppose [m, m] zero. In this case setting Y (t) = X (¢t) —m(t), we have
(X, X] = [¥, Y]+ 2[Y, m] + [, m] = [¥, Y],

Property (1.7) implies that [Y,m] = 0.

So we will concentrate on a mean-zero process X. We will say that X has a finite energy
if

(3.1) E[C.(X,X)(.)] converges uniformly on each compact of Ry, as € goes to 0.

In this case the deterministic function (3.1) will be called energy of X and denoted by
En(X). Since t — E[C(X, X)(t)] is a continuous function, En(X) is continuous.

The object of this section is to find first necessary and sufficient conditions on the covariance
K of X such that X has finite energy.

Among the finite energy processes we will give (almost) necessary and sufficient conditions
on K so that [X, X] exists and necessary and sufficient conditions on K so that [X, X] is
deterministic.

First of all we state and prove a lemma showing that the problem of the existence of [ X, X]
(resp. €n(X)) can be just reduced to a convergence in probability at each instant (resp.
to a pointwise convergence).

Lemma 3.1. Let (Z:)c>0 be a family of continuous processes. We suppose
1) Ve > 0, t — Z.(t) is increasing.

2) There is a continuous process (Z(t)),., such that Z.(t) — Z(t) in probability when e

goes to zero.

£>0

Then Z. converges to Z ucp.

Proof. Since Z is continuous and because of assumptions 1) and 2), it is clear that (Z(t))
is an increasing process.

T
Let T, p,aa > 0, N € N. Wesettfvz%,ogigN.

We only consider processes on [0, 7.
For almost all w in €2,

sgp |Z(tﬁr1) — Z(tiv)|(w) < 5(2(" W) %)

1
where 6(2(., w);—

N) is the continuity modulus of (Z(t, w),0<t< T).

1
Since 5<Z(., w); _N) e 0, a.s., so it converges in probability: we choose N so that
—00

(07

P{é(Z(.) : N) > 4} < p/2.



We define
A= { sup |Z.(t) — Z(t)| > a}.
0<t<T

From now on, we simply write ¢; = ¢V, 0 <4 < N. Since

swp |Z:(t)— Z2(t)| = sup ( swp | Zo(t) - Z(1)])
0<t<T 0<i<KN—1 “Nt€[ti tiz]

we decompose A as follows,
N-1
A= 4 Aiz{ sup |Z€(t)—Z(t)|>a} L 0<i<N -1
i—0 tE[ti tiy1]
Let t € [t;,t;4+1]. Process Z¢ and Z being increasing, we have
Ze(t) — Z(t) < Ze(tiv1) — Z(L;).
We modify the right hand-side of the above inequality,

Ze(tivr) — Z(ti) = Ze(tiv1) — Z(tiv1) + Z(tiv1) — Z(t:).

Then
Zultia) = 2(0) < Zeltinn) = Ztin) +6(20); 1),
2.(1) = 2(1) < Zultisn) — Zltin) +5(Z0)5 1)
Similarly .
Zo(t) — Z(t) > Zo(t;) — Z(t;) — 5(2( ): N)'
Therefore,
17:(0) = 2] < 25(Z0)5 3¢ ) + |Zeltisn) = Zltesn) |+ | Ze(0:) = Z(2:)] 5 V8 € [t t00]
So,
LS 1Z:(t) = Z(1)| < 26(2(); %) 1 1Ze(tirn) — Z(tipn)| + | Ze(t) — Z(83)].
Consequently,
A; C {5(Z() ; %) > %} U/Ti UAVH_l,
where

A

{|Zs(ti) —Z(t)] > %}



But Z.(t;) converges in probability to Z(¢;), for any 0 <i < N — 1, € going to 0. So that
there exists €9 > 0 such that : e < g9 = P(g,) < ﬁ
Finally

P(A) < i: P(A;) < P((S(Z(.) : %) > %) + 2( 3 P(L)) < g + ﬁm — p.

Since p > 0 is arbritrary small, the result is established. []

We go on fixing some notations.
Let X = (X(t),t > 0) be a mean-zero continuous process. We set

(3.2) CL(t) = C.(X, X)(t) = é/o (X(s+ ) — X(s))%ds,

(3.3) ae(t) = E(Cs (t))
Given a function K : R — R, € > 0, we denote by
(3.4) A sK(s,t) =K(s+e,t+0)+ K(s,t) — K(s,t+06) — K(s+e¢,t).

For v > 0, we say that K has a y-planar variation if

1
(3.5) lim — |Ae 5K (u,v)|"dudv
e—0 65 2 ’
d—0 (0,¢]

converges for any t > 0.

Remarks 3.2 : 1) If K is the covariance of a mean-zero process,

(3.6) AcsK(s,t)=E[(X(s+e)— X(s))(X(t+6) — X(1))].
In particular

(3.7) AL K(s,8) = E[(X(s+¢)—X(s5)?]| = K(s+e,5+¢)+ K(s,5) —2K(s,5+¢) > 0.

2) Suppose that K is the distribution function of a probability measure g on [0, +00[Xx [0, +00]
(ie. K(s,t) = p(]0,s]x]0,t])) then

(3.8) Ac sK(s,t) = p(]s, s + €] x]t, t + d]).



We apply the Fubini theorem, we obtain

1

> A sK(u,v)dudv = 1 (zAt—(z—e)1)(yAt—(y—0)4)p(dz,dy).
[0,¢]?

€ 10,t4+¢]1%]0,t+68]

Consequently the 1-planar variation is equal to pu([0,¢] x [0,t]) = K (¢,t).

Proposition 3.3. Suppose that X is a continuous process, with zero mean and covariance
K.

1) The following properties are equivalent :
X has a finite energy,

t

1
(3.9) lim — [ A..K(s,s)ds exists,
6—)0+ & 0
t t
K - K
(3.10) / 02K (3,84 )ds ;= lim / (5,5 +¢) (5,9) ds exists,
0 6—)0+ 0 &
' b K(s,s) — K((s—€) V0,
(3.11) / " K(s_,s)ds:= lim (5,5) ((5-¢) ) ds exists,
0 €—>0+ 0 I

We specify that all the convergence above are intended uniformly on compact intervals.

2) If one the previous limits exists, then

(3.12) En(X)(t) = lim - / CAL K (s, 5)ds

6—)0+ £

En(X)(t) = K(t,t) — K(0,0) — 2/t oK (s,s4)ds
(3.13) .,
— _K(t, 1)+ K(0,0) + 2/ K (s_, 5)ds.

In particular,

(3.14) K(t,t)— K(0,0) = /t 02K (s,54)ds + /t " K(s_,s)ds.

Remarks 3.4 : 1) If K admits a partial derivative with respect to the first (resp. second)
variable at any (s, s) then

i K(s,s)— K(s—¢,s)

e—0 £

= 01K (5,5) (vesp. timg K222+ 8) = K(5:9)

e—0 £

= 02K (s, s))



This justifies the notation of the limits in (3.11) (resp. (3.10)).

2) If one of the limits in (3.10), (3.11), (3.12) exists pointwise and it is continuous, then
the convergence holds on each compact.

Proof of proposition 3.3.

a) We have
ac(t) = ]_/E ste =X /A“;Kss

It is now obvious that X has a finite energy if and only if (3.9) holds.
Identity (3.7) implies

1 t t t
ac(t) = —(/ K(8—|—€,S—|—8)d8—|—/ K(s,s)ds—2/ K(s,s—i—s)ds).
€NJo 0 0
The first integral in the above right hand-side is equal to / K (s, s)ds, consequently,

K( - K
(3.15) ac(t / Kssds——/Kssds—?/ (5,5 +¢) (5, )ds.

This shows that X has a finite energy if and only if (3.10) is satisfied, and the first equality
n (3.13).
Part 2) of remark 3.4 will be a direct consequence of lemma 3.2, (3.15) and (3.7).

b) We note that ,
C.(t) = /He (X() _f(s_g)) ds.

Then the equivalence involving (3.11) will follow by a similar manipulation. []

We now consider mean-zero, Gaussian processes.
We are ready now to state conditions under which finite energy processes are finite quadratic
variation processes.

Proposition 3.5. Let X be a continuous, mean-zero, Gaussian and finite energy process.
Then lim C.(t) exists in probability for every t > 0 if and only if K has the 2-planar

e—0 +
variation.

Remark 3.6 : Previous statement means that the existence of the 2-planar variation is
equivalent to the “weak” existence of the covariation.

The proof of proposition 3.5 is based on a preliminary result.



Lemma 3.7. Let (G1,G2) be a two-dimensional mean-zero Gaussian vector. Then
Cov(G?2,G%) = 202, where § = Cov(G1,G>).

. . . 0
Proof. We set 0 = E(G?), i = 1,2. By linear regression we have Go = —G1 + G3,
01
where G; and G3 are independent mean-zero Gaussian random variables.

This implies

02
(3.16) E(G3|G1) = G} + E(G3).

01

On the other hand )

0
Var(Gs) = FO’% + Var G3,
1

S0
92
(3.17) E(G3) = VarG3 = 03 — —.
71
Consequently using (3.16) and (3.17), we obtain
22 2 2 02 4 s 07 2
B(G3G3) = B(GIE(G3|Gn) = —B(GY) + (o3 — = ) B(GD)

1
=30% + 002 — 07 = 20 + 0?03,

Finally
Cov(G,G3) = E(G1G3) — E(G)E(G3) = 20°. ]

Proof of proposition 3.5.
a) For g,6 > 0 and t > 0, we first evaluate,

(318)  E[(C(t) — Cs(1))] = E[C-(t)] + E[Cs(t)?] — 2B[C-()Ci (1)].
We have,

(3.19) E[C.(t)C5(t)] = % - E[G.(u)Gs(v)?|dudy,

where

(3.20) Ge(u) = X(u+e) — X(u).

Since,

E[G.(u)*Gs(v)%] = COV(GE(U)Z, G5(v)2) + E[G.(u)?|E[Gs(v)?],



(3.21) E[C.(t)C5(1)] = L (e, 6) + L (e, §),

with .
Ii(g,0) = — Cov(Ge(u)?, Gs(v)?)dudv,
€0 Jio,n2

Ir(e,0) = (% /OtE[GE(u)z]du)<% /OtE[G5(v)z]dv).

Using lemma 3.7 and (3.6), we have

(3.22) L(e,) = 2 / (AesK (u,0)) dudv,
6(5 [0,¢]2 ’
1t 1t
(3.23) In(e, 0) = (g /0 AmK(u,u)du)(g /0 A575K(v,v)dv).
Since X has a finite energy,
(3.24) lim I»(e,8) = (En(X)(t))?, for any ¢ > 0.
6,6—)0+

b) We claim that E[C.(t)*] is uniformly bounded in ¢ > 0. Using the Cauchy-Schwarz
inegality, we get

E[Cg(t)4] S 6i4 /[0 t]4{E[Gs(’U,l)S]E[Gg(UQ)S]E[GE(Ug)S]E[GE(U4)8]}1/4dU1dU2dU3dU4.

G (u) being a mean-zero, Gaussian variable with variance A K (u, u),

E[(Ge(u)®] = (AcK (u,u)) E(G®) = ¢(AK (u,u)),

where G is a standard Gaussian variable (i.e. E(G) =0 and VarG = 1)
Therefore,

(3.25) E[C.(H)] < c(é /0 t ALK (u,u)du)

Since the upper bound converges to (£n(X))4, then sup E[C:(t)"] < c0.
0<e<1

c) Let us suppose that C.(t) converges in probability for each ¢ > 0. (3.25) says that
(C2(t) ;e > 0) is uniformly integrable, so that C.(t) converges in L?(2).
Then E[(C.(t) — Cs (t))2] goes to zero, when €,0 — 0.



Coming back to (3.18), we have,

(3.26) lim E[C.(t)Cs(t)] = lim E[C.(t)?].

6,6—)0+ 6—)0+

If we make use of (3.21), (3.24) and (3.22), then (3.26) implies that K has a 2-planar
variation and

(3.27) En(X)(t)>+ lim (AcsK (u,v)) dudv = Tim E[C.(t)%).

€,0—>04 [0,¢]2 e—=04

d) Conversely, suppose K has a 2-planar variation. Then I;(e, ) converges, (3.21), (3.24)
both imply,

lim E[C.()Cs(t)] = lim (AcsK (u,v)) dudv + (En(X) (1))

€,0—04 €,0—>04 [0,t]2

In particular, E(C.(t)?) converges to the same limit. This and (3.18) show that C.(t)
converges in L2(£2), hence in probability. []

Remark 3.8 : Suppose that X verifies one of the two equivalent properties of proposition
3.5. We have shown that,

(3.28)  C.(t) converges in L2(Q2) and

(3.29) En(X)(t)2+ lim (AcsK (u,v)) dudv = lim E[C.(t)%].

€,0=04 J10,4]2 e—04

Under some more restrictive assumptions the quadratic variation of a Gaussian process is
deterministic.

Proposition 3.9. Let X be a continuous, mean-zero Gaussian process with finite energy.
K denotes the covariance of X. Then lin% C.(t) (in probability) exists and is deterministic
e—

for every t > 0, if and only if, the 2-planar variation of K is zero. In this case [ X, X| exists
and equals En(X).

Proof. Let € > 0 and ¢t > 0. We have
(3.30)  E[(Ce(t) — En(X)(1))?] = E[C.(t)%] — 2En(X) (1) E[C(t)] + (En(X) (1))
Since X has a finite energy, 21_1;% E[C.(t)] = En(X) ().

Using moreover (3.21) (with 0 =€), (3.22) and (3.24), we obtain :

(3.31) lim E[(C.(t) — En(X)(1))’] = lim (AcsK (u,v)) dudv.

e—0 €,0—04 [0,t]?



Therefore if the 2-planar variation of K is zero, then lim C.(t) = En(X)(t) in L*(9Q).

6—)0+
Vice versa if li%l C(t) is deterministic, by (3.28) we have,
e—>U4
2
lim E[C.(t)Y] = E[ lim Ce(t)z} - ( lim Ce(t)) ,
e—04 e—=04 e—=04

En(X)(t) = lim E[C.(t)] = E[ lim ce(t)} = lim C.(1).

e—=0 e—0 e—0
Consequently lim C.(t) = En(X)(t).
6—)0+

Using (3.28) again, and (3.30) we have proved that the 2-planar variation of K vanishes.
We remark that in that case, [X, X] exists because t — En(X)(t) is a continuous function
and because of lemma 3.1. []

Proposition 3.10.

1) Suppose that the covariance K of X belongs to C*(AL), where Ay = {(s,t) € R% ;0 <
s < t}. Then X has energy, and quadratic variation; moreover the 2-planar variation of
K is zero.

Moreover,
(X, X](t) =En(X)(t) = K(t,t) — K(0,0) — 2/t 02K (s,54)ds
(3.32) 0
— K(0,0)— K(t,1) + 2/ K (s5_,5)ds
where
(3.33)

02K (s,54) = lim Klosve) - Kiso) ; 1K (s_,8) = lim K((s =) v0,5) - K(ss)

6—)0+ I €—>0+ £

Remark 3.11 : Suppose that K is of class C'(Ay). Then t — K (t,t) is of class C!, with
derivative 01K (s_, s) + 02K (s, s4).
This shows (3.14) and the second equality in (3.32).

Proof of proposition 3.10. We suppose that K is of class C*(A).

a) In this case (3.11) holds and then X has finite energy. Relation (3.30) tells us that C. ()
converges to En(X)(t), in L?(Q) if

lim E[C.(t)?] = En(X)(t)>

e—0

We have established (see (3.21), (3.24)) that E[C.(t)%] = I1(e,e)+I2(e,e) and lim I»(e,e) =

6—)0+

(5n(X)(t))2, I, (g, €) being defined by (3.22).



We decompose A, K (u,v) as follows :
1
—Ac K(u,v) = Agl)(u, v) — Ag)(u, v) — AS’)(U,, v)
€

where

K(u+e,v+e)— K(u,v) 'A(Z)(u v) = K(u+e,v) — K(u,v)

£ 5
K(u,v+¢) — K(u,v)
. :

AD (,0) =

AP (u,v) =
K being of class C1(A,), if u < v, then,

lim AWM (u,v) = 0K (u,v) + 0K (u,v); lim AP (u,v) = 8, K (u,v);

6—)0+ 6—)0+

lim A® (u,v) = 0K (u,v).

6—)0+

Consequently,
1
lim —A. . K(u,v) =0, for any u < v.

6—)0+ &

Using again the smoothness of K, if u < v

sup{|A® (u,v)]|;0<e < 1,0<u<v <t} <oo,i=13,
sup{|A® (u,v)|;0< e <1;0<u4e<v <t} <oo.

When 0 < u < v < u+ ¢, we decompose Agz)(u, v) as follows,

AD (4, ) = K(v,u+¢)— K(u,v) _ K(v,u+¢)— K(v,v) _’_K(v,v)—K(u,v).
£ € £
Hence,

sup{|A£2)(u,v)|;O<€§1;0§u§v§u+€§t}<oo.

Since the function A, K is symmetric, the dominated convergence theorem gives,

Ac K (u,v)\?
lim I(c,e) = lim 4/ (M) 1 (ucoydudy = 0.
e—=04 e—04 [0,t]? €

b) We know that the convergence in L2(€2) implies the convergence in probability. There-
fore C. converges to the deterministic function En(X). Using proposition 3.9, we deduce
that [X, X| exists and coincides with £n, and the 2-planar variation is equal to 0. []



Remark 3.12 : If we look carefully at the proof of the above proposition, we observe that
if X has finite energy and

(3.34) lim — // (Ac K (u, v)) dudv = 0, for any t > 0,
[0,¢]

then [ X, X] exists, [X, X] = En(X) and the 2-planar variation of K vanishes.

It is not obvious to verify directly that if En(X) exists and (3.34) holds, then the 2-planar
variation is equal to 0. In other words, it is an open question to prove analytically, that
the 2-planar-variation is equal to 0, is a consequence of (3.34) and (3.11).

We would like to briefly consider the multidimensional case. Assume that X = (X1,...,X,,)
is a n-dimensional mean zero Gaussian process. We denote by K = (K, j)1<i, j<n its co-
variance matrix. We set

(3.35) En(X;, X;)(t) = lim E[C:(X;, X;)(t)],

6—)0+

if the limit exists uniformly on each compact interval.
The analog of proposition 3.10 will be

Proposition 3.13. Suppose that K is of class C*(Ay) (i.e. K;j is of class C*(A4), for
any 1 <1i,j <mn). Then En(X;, X;) exists and the 2-planar variation of K, j is zero, for
any 1 <i,j <n. Moreover (Xy,...,X,,) has mutual brackets and,

t
[Xi, Xj](t) = En(Xl, Xj)(t) = Ki’j(t, t) — Ki,j(O, 0) — 2/ 82K¢7j(8, S+)d$
(3.36) 0
= Ki’j(o, 0) — Ki,j(t,t) + 2/ 81K¢7j(8_, s)ds
0

Proof. We remark that X; + X; is a Gaussian process with covariance K; ; +2K; ; + K ;.
Proposition 3.13 is a direct consequence of bilinearity and proposition 3.9.

Before ending this section, we would like to analyze the example of the fractional Brownian
motion Xz. Recall that Xz is a mean zero Gaussian process, with covariance Kpg, given
by :

1
(3.37) Ky (s,t) = §(|3|H + |t|H —|s— t|H) i (s,t) € Rz,
where 0 < H < 2.

We restrict Xy to Ry
If H =1, X, is the Brownian motion and

Ki(s,t)=sAt; s,t>0.



In our context, it is easy to define this notion of a-variation.

Definition. Let X be a continuous process. We say that X has a a-variation, a > 0 if

/' [ X(s+¢) = X(s)|*

It is obvious that if a = 2, [X, X](®) = [X, X].

ds converges ucp. The limit will be noted [X, X](®),

Proposition 3.14.
The fractional Brownian motion Xy has a 2/H-variation and [X, X]?/H)(t) = pyt where
pr = E[|G|?/H], G is a centered Gaussian r.v. with unit variance.

Proof.
1) Using lemma 3.1, it is sufficient to check that for any ¢ > 0, C’g(a)(t) converges to ¢, in
L?(Q), when € — 04, where

t
Ci(t) = é/ | Xu(s+e)— Xu(s)|*ds, o =2/H.
0

A direct calculation shows that,
(3.38) Ku(s+e,s+¢)+ Kp(s,s) —2Kg(s,s+¢) =l

H and

Consequently, Xg(s+¢) — Xg(s) is a mean zero Gaussian variable with variance
El|Xu(s +¢) = Xu(s)|"] = (€")*?pn = epn-
Therefore
(3.39) E[C@) 1) = pat.
We have,
E[(CI(t) — put)®] = E[CI(t)%] = 2put E[CL) ()] + pt® = E[CI(1)°] — prt”.
C{(t) goes to pyt, in L2(Q), if and only if,

(3.40) lim E[C™ ()% = p%t2.

6—)0+

2) We claim that (3.40) holds.
We have

2
(3.41) E[C.(t)?] = —/ pel {y<vydudv,
[0,¢]?



where
pe = E[|(Xg(u+e)— Xp(vw)(Xu(v+e) - XH(U))‘H].

Using linear regression (see the proof of lemma 3.7), we obtain,

0 b2
€ H _ ‘&
N+ [ef = N

-l |

where 6, = A, (K (u,v), N1 and N3 being two independent, Gaussian r.v. with distribution

N(0,1).
Then
(3.42) 5—2 = B[|M° f—;Nl 1 (f—f{)zNZ a].

A straightforward calculation shows that,

1
AecKp(u,v) = §(|u—l—€ —of 4+ v +e—ul” —2lu—v|).
Let ¢ be the function,
o(s) = (s+ D)H + s -1 —2s7 s>0.

© is a continuous function. If s > 1,

() :sH((1+§)H+ (1—§)H—2>.

Using the asymptotic expansion of (14 ), when x — 0, the behaviour of ¢(s), s — 400,
is

1\2 H(H-1)
~ H — — -~ @@ 7
(3.43) o(s) ~ s"H(H=1) (S) e
Recall that 2 — H > 0, therefore liin w(s) =0.
S—+00
Consequently |p| is bounded.
But,
H —
(3.44) 0 = Ac e Kp(u,v) = %(p(v u) cu <.
5
o 0c
This implies that ‘—H <C,u<w.
€

O<
Moreover (3.43) and (3.44) imply that lim — =0, u <w.
6—>0+ I

(3.40) is a consequence of (3.41), (3.42) and the dominated convergence theorem. 1



4. (Generalized) It6 processes.

Let X be a continuous process such that [X, X] exists. From section 2, we know
t

that Ito6 formula holds for f(X), f € C? : in particular / S(X)dTX exist. In fact it is
0

possible to see that the existence of [ X, X| is also a necessary condition for the validity
of It6 formula for any f € C2.

Proposition 4.1. Let X be a continuous process. The following properties are equivalent.
a) [X, X] exists.
b) It6 formula holds for any f € C2.

c) / g(X)dF X exists for any g € C*.
0

Proof. a) = b) has been the object of the introductory lines. If b) is assumed and g € C1,
we consider G such that G’ = ¢g. By It6 formula

(1) | 90X = Gx(0) - 60 7 5 [ (X)L, X)

so that b) = ¢) is established.

t
c) = a). If ¢) holds then [g(X), X] exists since it is equal to the difference / g(X)dt X —
0

t
/ g(X)d~ X, g € C'. Taking g(x) = x, we have a). [
0

Let X is a multidimensional process, (X!, ..., X™) having its mutual brackets. This is not
a sufficient condition for guaranteeing that g(X) is a good integrand of X*, g € C1(R").

Definition. We say that X = (X1,..., X™) is a It6 process if and only if

(4.2) / g(X)d™ X" exists, 1 <i <mn, gec CHR").
0

Remark 4.2 : a) If (4.2) is verified then also the following holds

(4.3) / g(X)dT X" exists, 1 <i <n, gec CHR").
0

In fact by (1.10), [g(X), X?] exists and therefore (1.5) implies that (4.3) is verified.
Obviously (4.3) and (4.2) are equivalent in the previous definition.

b) A continuous semimartingale X = (X!,..., X™) is a It0 process. In fact (4.2) is verified
since ¢g(X) is an adapted process.



¢) Any one-dimensional finite quadratic variation process is a [t6 process.

Let us introduce Tx the class of locally bounded processes Z such that
(4.4) / Zd* X" exists, for any i =1,...,n
0

Clearly (4.2) can be rewritten by saying {g(X),g € C}(R")} C Tx.

Proposition 4.3. Let X = (X! ..., X") be a It6 process. We suppose ¢ : R* — R™
of class C* and we set Y = @(X) = (¢1(X),...,om(X)). Let Z be a locally bounded

process.
If Zf(X) belongs to Tx for any f € CY(R") then Z € Ty and

(4.5) /OZCFY’“ Z/ Z0;01,(X)dTX! + Z /Zaugok S)d[X?, XT](s)

1<z,]<n

for any f € CY(R"), 1 <k < m.
In particular Y is a Ito process.

Remark 4.4 : a) If n=m =1, Y = ¢(X) is a Itd process only assuming ¢ of class C*.
b) The goal of (4.5) is to give a precise meaning of the differential equality :

(4.6) d¥YyF = zn:@(pk(X)d]FX’ Z 07 ;o (X (5))d[ X", X7](s).

We claim that (4.6) holds, if we choose an integrand belonging to Ty .
These differential equalities play a central role in the section 5, devoted to stochastic
differential equation.

Proof of the proposition 4.3. For simplicity we suppose m = 1.
Let f be a fixed function belonging to C1(R). We have to check that / Zd*rY exist, and

0
(4.5) holds, where Y = ¢(X). We only consider the forward integral, the approach of the
backward integral being similar. We know that,

/.Zd_Y: lim 'st(Xs+e) — ¢(Xs)
0

6—)0+ 0 €

ds.

If a = (a',a?,...,a") and b= (b',b?%,...,b") belong to R", since ¢ € C*(R"™), we have

1

=S @0 —a)+ Y (bi—ai)(bj—af)/ (1- )02 0(a+ r(b—a))dr

1<i,j<n 0



We rewrite previous integrals :

/0(1—r)32]g0(a+r(b a))dr —32 o(a) /l—r{ Jgo(a—H“ ))—3ij¢(a)}dr.

Consequently,
/ 7,0 Xsrd) oK) oy
0 €
where
Xé
Z / Zs0;p(Xs)———=——2ds
1<i<n
NOSIRED X9, — XJ
Z / Z 32 s+e s)( s+e S)dS
1<z ,J<n €
Z / S+€ )(Xg+e - Xg)
€
1<,7<n
X [/0 (1—r { Jgo(X + 7(Xste —Xs)) —aijgo(Xs)}dr} ds.

Since Z f(X) belongs to Tx, the limits of I! and I2, as & goes to 0., are respectively :

> /Z@Zgo )d~ X' and Z /232 [ X, X7](s).

1<i<n 1<1,,]<n

Let us examine the convergence of R.. The functions §? ;¢ and X being continuous, it is
clear that / (1 - r){a,.ngo(Xs +7(Xspe — Xs)) — aijgo s) }dr goes to 0, when € — 0,
0

uniformly with respect to s € [0, T].
Moreover,

e ([ e ([

for any ¢ € [0,T], and

Xt _ Xi 2 . .

/ Mds converges to  [X*, X*|(T).
0 €

Hence R, goes to 0, with respect to the ucp convergence. []

Next result allows to give new examples of processes belonging to Tx, X being a one-
dimensional finite quadratic variation process X.



Proposition 4.5. Suppose X is a one dimensional It6 process, and A = (Ay,..., An)
is a locally bounded variation vector process. Let h : R't™ — R of class C', then
h(X, A) € Tx. In particular (X, A) is a multidimensional It6 process.

Proof. It is an immediate consequence of It6 formula, see (1.11) and (1.12) of section 1.
x
Take for this H(z,t) = / h(y,t)dy ; then H € C%1(R*T™), [
0
Remark : This result will appear as a consequence of proposition 4.1.
A finite quadratic variation process X produces examples of (multidimensional) It6 process.

Proposition 4.6. Let X be a finite quadratic variation process, V a bounded variation
continuous process, f,g € C1(R),h € C?*(R).

Then / f(X)dTX, / X)d~X,V, h,(X)) is a R*-valued It process.

Proof. We set : . .
_ (/0 f(X)d+X,/0 9(X)d" X, V,h(X)).

Let F and G be two primitives of f, respectively g :

:/wa(t)dt, G(a:):/owg(t)dt.

Since F' and G belong to C?(R) :

(4.7) F(X,) = F(Xo) + / FdTX - L / F(X,)dIX, X](5)

(4.8) G(Xy) = G(Xo)—i—/o g(X)d™ X+2/0 g (Xs)d[X, X](s).

Using classical properties of covariation processes we easily get that Y has all its mutual
brackets.
It remains to show that for ¢ € C(R*)

(4.9) / ©(Y)d™Y" exists for any i = 1,...,4.
0

We have,

(4.10) p(Y) =¢(Z), p € C'(R")



where
(4.11) 7y = (Xi, Av), Ay = (Vi, VL V2LV,

(V}!) being continuous processes, with locally bounded variation.

Remark that [ Hd~A= | Hd"A coincides with usual Stieltjes integral. Consequently,
0 0

using (4.7), (4.8) and (4.10), the validity of (4.9) holds provided that

(4.12) /0. Y(Z)d™ p(X) exists for any p € C*(R), ¢ € CH(R?*).

This is a consequence of propositions 4.3 and 4.11 which will follow.

I

Remark 4.7. If X is a continuous semimartingale, f € C'(R), h € C?(R) and A is

adapted and has bounded variation, then the vector ¥V = (/ f(X)dX, A, h(X)) is a
0
continuous semimartingale, therefore it is a [t6 process. But if A is not adapted, X + A is

a [to process and is not a priori a semimartingale.

If X is a finite quadratic variation process, g € C!, then

/' g(X)d~X = G(X () — G(X(0)) + V(1)

0

where
G(z) = / g(t)dt, V(t) = / g’ (X(5))d[X, X](s).

Since V' has locally bounded variation,

@13) [ [ o000 X, [ g(0ax](@) = 6006010 = [ (X)X, X,

Definition. A process X = (X!, X% ...,X") is called a vector Ité process if
[/ f(X)d—Xi,/ g(X)d—XJ} exists for any f,g in CY(R"), 1 < 4,7 < n, and
0 0

iy [ [ reoax [ ae0a ] = [ ) )X X))

Remarks 4.8 : 1) A finite quadratic variation process X is a vector Ité process and a
vector Ito process is a [t0 process.



2) The analog of the concept of vector Ité process, in the classical stochastic calculus
appears in [CS].

Using the bilinearity of the bracket and property (1.5), we easily established the validity
of the following lemma.

Lemma 4.9. Suppose X is a vector Ito process, fi,..., fn, 91,.-.,9n are 2n fonctions
n . n .

of class C' then Z/ fi(X)dEX" and Z/ 9i(X)dE X" have their mutual brackets.
=170 i=170

Moreover

(4. 15)
/fz X)dE X Z/gz DEX] = 3 [ Ry (X ()X X)),

1<4,5<n

Proposition 4.10. Let X be a vector Ito process, f1, fo,..., fn (resp. ©1,92,...,0m) N
(resp. m) functions of class C* (resp. C?). We set

7=3 [ HXEX, V=), 1<ism

Then Z is a finite quadratic variation process and Y = (Y1, Y2 ..., Y™) is a vector It6
Process.

Proof. Lemma 4.9 implies that Z is a finite quadratic variation process.
We know (see proposition 4.3) that Y is a Itd process. Y is a vector It process if :

(4.16) /f )Y / Y)d- YJ /f d[Y',Y9](s), f,g € CHR™).

We apply proposition 4.3 (with Z = f o p(X) or go o(X), 0 = (1,...,¢0m))

| sy - Z/ 0 ) (X)Dpi (X)d~X* + Vi,

| atryyi - Z/ 9.0 9)(X)hp; (X)d~X* + 17,

0

Vi, W; being processes with locally bounded variation.
(4.16) is a direct consequence of lemma 4.9. 1

An interesting preparatory result for next section be given in the following lines.



Proposition 4.11. Let X be a finite quadratic variation process, V = (V... VP) be a
RP-valued locally bounded variation continuous process. Then (X, V1, ... VP) is a vector
It6 process. In particular h(X,V) belongs to Tx for any h of class C*.

Proof. First of all we observe that (X, V) is a It6 process and has all their mutual brackets.
Let g € CY(R*P). Obviously

/.g(X, VYA~V = /.g(X, V)dvi, 1<i<p
0 0

exists and has local bounded variation.m

On the other hand, setting G(z) = / g(y,v)dy, G € C*1(R*P) and using It6 formula
0
(see section 1), we get

/' J(X, V)X = G(X (1), V() + A1)

p+1

A(t) = — G(X(0),V(0)) — Z/O 0;G(X,V)dV; — %/0 019(X,V)d[X, X].

(A(¢),t > 0) is a locally bounded variation process. This shows that (X, V) is a It6 process.
Using (1.10), we easily obtain,

[/O'g(x, V)d—X,/O'g(X, V)d-X] :/Oth(X(s),V(s))d[X,X](s).

Consequently (X, V) is a vector It6 process. []

5. Stochastic differential equations.

Here we will not aim the biggest generality but we would like to show the method.
It is the first time in the framework of our calculus that we study an uniqueness problem.
Existence problems have been studied in [RV1] and [RV4] where we consider equations
with anticipative initial condition. At our knowledge for such equations there are no good
uniqueness result. On the other hand, our aim is also to study equations driven by a finite
quadratic variation process. Our methods are similar to the ones developed by [Z2] when
such a process is the fractional Brownian motion.
Let (§(t), > 0) be a finite quadratic variation process, (V(t),t > 0) be a locally bounded
variation process. Both processes are supposed to be continuous and vanishing at zero.
Let o : R — R be of class C?, o and ¢’ bounded, 8: R, x R — R be a Lipschitz function
that is to say
- for any x € Rt — ((t,x) is continuous,



- ¢ — ((t,x) is Lipschitz uniformly in ¢ on each compact interval and (6(t, 0),t > 0) is
locally bounded.

Let a be any random variable.

We are interested in the following stochastic differential equation :

d=X(t)=0c(X(t))d &) + B(t, X (t))dV (¢)
(5-1) X(0) = a.

First of all we need to specify the concept of solution.
A process (X(t),t > 0) will be a solution to (5.1) if
( (1) (X,&,[€,€],V) is a vector Itd process,
(i) for any ¢ € CH(RY), Z(t) = (X (1), £(1), V1), [€,€](1)) verifies,

| 260 x() = [ 269 (o(X () €(5) + 55, X (3))dV ().

(i) X(0) = o

(5.2) X

Remarks 5.1 : 1) For ¢ = 1, we obtain the integral equation

(5.3) X({t)=a+ /0 {o(X(s))d™&(s) + B(s, X(s))dV(s)}.

In our opinion taking only Z = 1, deteriorates the information that we are truly interested
in a “forward” equation.

2) If (¢, V) is a (Ft)¢>0 continuous semimartingale, the differential form (5.1) is equivalent

to (5.3) because for any adapted, locally bounded process H, then / HdX exists, in other
0

words H belongs to Tx. In our general context, a priori such property does not hold,so

we have to specify that the class Tx is rich enough, this is the meaning of (5.2) (ii).

In [RV1] we studied existence problem for equation (5.3) when ¢ is a Brownian motion W
and ( is a deterministic function. Even in that case we did not have uniqueness result.

That solution was expressed as following : X (t) = ¢¢(a), where (@4(z)),., is the solution

to the non-anticipating equation

t

(5.4) ou@) =+ [ {o(pu(a))dW () + 55, (0)ds).
0

The technique was essentially a substitution theorem.

Proposition 5.2. Let X; = ¢.(«), then X is solution to (5.4) (therefore to (5.2)).

Proof. It is the consequence of two substitution formulas, see section 2, 5). []



In particular our next result (proposition 5.3) will give a uniqueness statement for equation
(5.4) under some suitable conditions on the coefficients.

We introduce the flow F' generated by o. This function of two variables plays a crucial
role, since the solution X of (5.1) will be expressed through F' (see theorem 5.4).
F:R; xR — R is defined as a solution to

OF
(5.5) E(t,:n) =o(F(t,z))

F(0,z) = x.

The classical theory of ordinary differential equations tells us that F' defines a flow: o
being of class C?, for any r, F(r,.) is a C?-diffeomorphism on R. We set

(5.6) H(r,z) = F~(r,z),

the inverse is taken with respect to the second variable x. H is again of class C? and
(5.7) F(r,H(r,z)) ==z, H(r,F(r,z))=z, VreR zeR

We prove a few relations involving F' and its inverse H. These results will be used later

on.
Deriving the first expression in (5.7) in r and = we get

(5.8) %—f(r,H(r, a:)) + Z—Z(T,H(r, a:))aa—lj(r, x) =0,
(5.9) g—i(r,H(r, m))%—i(r, x)=1.

We take the derivative with respect to s in F(t,F(s,x)) = F(t + s,z), and take s = 0,
then

(5.10) %—f(t,a:) = a(aj)g—i(t,:n).

We have,

9 (O t2)) = (2 F2)) = (o (P(t,0)) = o' (F(t2) (1,2,

Integrating this linear ordinary differential equation, we have

(5.11) 2—5@,:6) = exp </0t al(F(s,aj))ds).



We derive the second identity in (5.7) with respect to r, and we apply (5.5), we obtain,

(5.12) 33—1;](1", x) = —a(m)aa—il(r, x).

Proposition 5.3. There is at most a solution (X (t),t > 0) to (5.1).

Proof. 1) Let (X (¢),t > 0) be a solution to (5.1). We set

Y(t) = H(£(1), X (1))

H is of class C?, (£, X) is supposed to be a vector Itd process. Then we can apply the It6
formula :

V() = HO.X0) + [ (606, X(6)d€G)

+ [ e (€0 XX + 5 [ G5 €0 X(@ale (0

) s (€60 XENIX 00+ 5 [ G €00 X)X, X

Assumption (5.2) (i) and lemma 4.9 imply that

dig, X](s) = o (X (s))d[¢, £](s)
d[X, X](s) = o (X (s))d[¢, €](5)-
Using (5.12) , (5.2) (ii) and the former identities, we obtain

(5.13)

Y(t)=a+ /0 B(s, X(s))%—lj(f(s), X(s))dV(s)

%/0 {85)5(5(5),)((5))+2gri(£(s),X(s))0(X(s))

N fgf (£(). X ()0 (X (5)) }llE, €(5)

We take the partial derivative with respect to r in (5.12) :

0’H 0’H
(514) W(T‘, .’17) = —O'(.T)m(r, .T)

Hence (Y(t))t>0
tion functions :

is solution of the ordinary differential equation driven by bounded varia-

(5.15) Y (t) :a—i—/o B(s, Y(s))dV(s)+/0 (s, Y (s))d[E, €](s)



where

(5.16) Bs.) = B(5, F(E3).9)) S (20, P (E(s).))
(5.17) 3(s) = 22 (e, F(e(5).0))o? (P(E9).9))

2P (), m(e(s).0) )0 (FLe(e) ).

Formulae (5.9) and (5.11) imply,

(5.18) %—Z(t,x) = exp <— /Ot al(F(S,H(t,ar)))ds).
Then

(519 o (). F(e(s). ) = Gles)),

where

(5.20) G(t,y) = exp ( - /Ot JI(F(s,y))ds) = 1/(2—5(t,y))
We have to calculate %2;;’ and 3atglx

We take the two partial derivatives in (5.18) :

(5.21) gt;i(t,x) _ —0'($)%—I${(t,z) - %(t,@%(t,@(/{) a”(F(s,H(t,a:)))ds,),

(5.22) %if(t,x) _ —(%—I;(t,x)f(/ot a”(F(s,H(t,a:)))ds).

Hence (5.12) implies,

Consequently, Y solves,

(5.23) Y(t)=a+ / B(s, F(£(s), Y (5))) G(E(5), Y (5))dV(s)



2) Let T >0, f1, fo, ..., fn:[0,T] x R™ — R", and ¢, ..., g, being continuous bounded
variation functions.
We are interested by the solution w : [0,7] — R™ of :

(5.24) w(t) = o + Z/O £ (5, u(s)) dga(s).

Let h: [0,T] x R — R. We say that h belongs to the class LL if h is Locally Lipschitz
continuous and has linear growth :

(5.25) |h(t,2) = h(t, y)| < eplw —y| 5 VE € [0,T], Va,y, |z <n, |y| < n,
(5.26) |h(t,x)] < c+ x| ; VE € [0,T], Vz € R.

Using the general results of Protter [P], we know that if fi, fa,..., f, belong to the class
LL, there exists a unique solution of (5.24).

3) We have to prove that 8; and oy belong to the LL class, where

ﬁl (57 y) = /6(57 F(£(8)7 y))G(f(S)a y)v 01(87 y) = _%(OOJ) (F(f(3)7 y))G(f(S)a y)'

The integral version of (5.5) being,

F(t,x):x—l—/o o(F(s,z))ds,

therefore,
F(t,z) - F(t,y) =z —y+ /0 (O'(F(S,JJ)) — J(F(s,y)))ds.

o is of class LL, then F' too.
Our basic tool is the obvious result :

(5.27) Let 01,02 : [0,T] x R — R, of class LL, o1 bounded then o109 is a LL function.

We start analyzing (3.
We remark that

G(&(s),y) = exp ( - /05(8) o' (F(u, y))du)-

¢ being continuous on [0,7T7], ¢’ is of class C* and bounded, therefore (G(£(s),y);0 < s <
T,y ¢ R) is of class LL and is bounded.

B and F being LL continuous functions, hence (s,y) — (s, F(£(s),y)) and finally 3, are
of class LL.

Using a similar approach it is not difficult to verify that oy is again of class LL. []



Theorem 5.4. There is a unique solution X to (5.1). Moreover X, = F(£(t),Y (t)) where
Y is the unique solution of (5.23) and F is the function defined by (5.5).

Proof. Let (Y (t),t > 0) be the solution to (5.23). We set

0) is a bounded variation process, so by propositions 4.10 and 4.11, (§,Y,
> 0) and (X, &, [€,£],n) are vector 1t6 processes. As for the initial data,

X(0)=F(0,a) = «.

Let 1) € C*(R*) ; we set Z(t) = (X (¢),£(t), V(£), [£,€](t)) ; we have to show that

(5.28) / Z(5)d~ X (s) = / 2(s) (7 (X (5))d™€(5) + B(5, X (5))dV (5) ).

0 0

We apply proposition 4.3 for getting
[ 7o x6) = [ 26158 €. v )6
n /()tZ(s)g—f:(g(s),Y(s))d_Y(s) +%/OtZ(s)%(é(S%Y(S))d[f,f](S)-
Identities (5.10), (5.20) and (5.23) yield,
[ #61mx) = [ 900 (Pt v ) e+ [ 20015 XV ()
1

‘e /0 Z(s)H(s)d[¢, €](s),

H(s) = = 0 (6(5), Y () (00 ) (X () GE(3), Y () + - (€(5), Y (5)).

0
We apply the operator 5 to the first identity of (5.5) :

82F , oF . /
oz (o) =o' (F(t,)) 5 (1) = (00") (F(1, 7).

Then using moreover (5.20) we can conclude that H = 0. This means that X solves (5.1).

I

An interesting particular case is produced by the linear case.



Corollary 5.5. The unique solution to

d-X(t) = X(1)d—¢(t)
(5.29) { X(0)=a
is given by
(5.30) X(1) = avexp {£(t) — 516,€1(0) .

Proof. In this case o(z) = x, 3 =0,V = 0. Then F(t,z) = xet, H(t,z) = re~t and
G(t,z) = e~t. Consequently Y solves,

AY (1) =~ Y (O, €)(0), Y (0) = o

and so .

Y (1) = aexp (- S[6€)).
(5.30) follows immediatly. []
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