A new Wick formula for products of White Noise distributions and application to Feynman path integrands

Anna Hoffmann

AG Funktionalanalysis und Stochastische Analysis Department of Mathematics University Kaiserslautern

July 22, 2010

White Noise Analysis Applications to Feynman path integrals

Outline

1 White Noise Analysis

- Scaling and localized scaling
- Wick formula

2 Applications to Feynman path integrals

- The classical approach and perturbation series
- The complex scaling approach
- Combination of both approaches

White Noise

Literatur

- T.Hida, H.-H. Kuo, J.Potthoff and L.Streit. White Noise An Infinite Dimensional Calculus. Kluwer Academic Publisher, Dordrecht, Boston, London 1993.
- N.Obata. White Noise Calculus and Fock space. volume 1577 of LNM. Springer Verlag, Berlin, Heidelberg, New York, 1994.
- H.-H. Kuo. White Noise Distribution Theory. CRC Press, Boca Raton, New York, London, Tokyo, 1996.
- W. Westerkamp. Recent Results in Infinite Dimensional Analysis and Applications to Feynman Integrals. PhD thesis, University of Bielefeld, 1995.

White Noise spaces

Hida and regular test and generalized functions:

$$(\boldsymbol{\mathcal{S}})\subset \boldsymbol{\mathfrak{G}}\subset \boldsymbol{\mathcal{L}}^2(\boldsymbol{\mu})\subset \boldsymbol{\mathfrak{G}}'\subset (\boldsymbol{\mathcal{S}})'$$

The dual pairing between (S)' and (S) is denoted by $\langle\!\langle\cdot,\cdot\rangle\!\rangle$. Wiener-Itô-chaos decomposition of $\Phi \in (S)'$:

$$\Phi = \sum_{n=0}^{\infty} I(\Phi^{(n)}) = \sum_{n=0}^{\infty} \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle, \quad \Phi^{(n)} \in (\widehat{S_{\mathbb{C}}^{(n)}})^{\otimes n}.$$

For $\Phi \in \mathfrak{G}'$ one has that $\Phi^{(n)} \in (\widehat{L^2_{\mathbb{C}}(\mathbb{R})})^{\otimes n}$ *S*- and *T*-transform of $\Phi \in (S)'$:

 $S\Phi(g) = \langle\!\langle \Phi, : \exp(\langle \cdot, g \rangle) : \rangle\!\rangle \quad T\Phi(g) = \langle\!\langle \Phi, \exp(i \langle \cdot, g \rangle) \rangle\!\rangle \qquad g \in S(\mathbb{R})$

Remember the characterizations of (S)' and G' and the corresponding sequence and integral theorems, see [PS91], [KLP⁺96] and [GKS97]

White Noise spaces

Hida and regular test and generalized functions:

$$(\mathcal{S}) \subset \mathfrak{G} \subset \mathcal{L}^2(\mu) \subset \mathfrak{G}' \subset (\mathcal{S})'$$

The dual pairing between (S)' and (S) is denoted by $\langle \langle \cdot, \cdot \rangle \rangle$. Wiener-Itô-chaos decomposition of $\Phi \in (S)'$:

$$\Phi = \sum_{n=0}^{\infty} I(\Phi^{(n)}) = \sum_{n=0}^{\infty} \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle, \quad \Phi^{(n)} \in (\widehat{\mathcal{S}_{\mathbb{C}}(\mathbb{R})})^{\otimes n}$$

For $\Phi \in \mathfrak{G}'$ one has that $\Phi^{(n)} \in (\widehat{L^2_{\mathbb{C}}(\mathbb{R})})^{\otimes n}$. *S*- and *T*-transform of $\Phi \in (S)'$:

 $S\Phi(g) = \langle\!\langle \Phi, : \exp(\langle \cdot, g \rangle) : \rangle\!\rangle \quad T\Phi(g) = \langle\!\langle \Phi, \exp(i \langle \cdot, g \rangle) \rangle\!\rangle \qquad g \in S(\mathbb{R})$

Remember the characterizations of (S)' and G' and the corresponding sequence and integral theorems, see [PS91], [KLP⁺96] and [GKS97]

White Noise spaces

Hida and regular test and generalized functions:

$$(\mathcal{S}) \subset \mathfrak{G} \subset \mathcal{L}^2(\mu) \subset \mathfrak{G}' \subset (\mathcal{S})'$$

The dual pairing between (S)' and (S) is denoted by $\langle \langle \cdot, \cdot \rangle \rangle$. Wiener-Itô-chaos decomposition of $\Phi \in (S)'$:

$$\Phi = \sum_{n=0}^{\infty} I(\Phi^{(n)}) = \sum_{n=0}^{\infty} \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle, \quad \Phi^{(n)} \in (\widehat{\mathcal{S}_{\mathbb{C}}(\mathbb{R})})^{\otimes n}$$

For $\Phi \in \mathfrak{G}'$ one has that $\Phi^{(n)} \in (\widehat{L^2_{\mathbb{C}}(\mathbb{R})})^{\otimes n}$. *S*- and *T*-transform of $\Phi \in (S)'$:

 $\mathcal{S}\Phi(g) = \langle\!\langle \Phi, : \exp(\langle \cdot, g \rangle) : \rangle\!\rangle \quad \mathcal{T}\Phi(g) = \langle\!\langle \Phi, \exp(i\langle \cdot, g \rangle) \rangle\!\rangle \qquad g \in \mathcal{S}(\mathbb{R})$

Remember the characterizations of (S)' and \mathcal{G}' and the corresponding sequence and integral theorems, see [PS91], [KLP⁺96] and [GKS97]

White Noise spaces

Hida and regular test and generalized functions:

$$(\mathcal{S}) \subset \mathfrak{G} \subset \mathcal{L}^2(\mu) \subset \mathfrak{G}' \subset (\mathcal{S})'$$

The dual pairing between (S)' and (S) is denoted by $\langle \langle \cdot, \cdot \rangle \rangle$. Wiener-Itô-chaos decomposition of $\Phi \in (S)'$:

$$\Phi = \sum_{n=0}^{\infty} I(\Phi^{(n)}) = \sum_{n=0}^{\infty} \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle, \quad \Phi^{(n)} \in (\widehat{\mathcal{S}_{\mathbb{C}}(\mathbb{R})})^{\otimes n}$$

For $\Phi \in \mathfrak{G}'$ one has that $\Phi^{(n)} \in (\widehat{L^2_{\mathbb{C}}(\mathbb{R})})^{\otimes n}$. *S*- and *T*-transform of $\Phi \in (S)'$:

 $\mathcal{S}\Phi(g) = \langle\!\langle \Phi, : \exp(\langle \cdot, g \rangle) : \rangle\!\rangle \quad \mathcal{T}\Phi(g) = \langle\!\langle \Phi, \exp(i\langle \cdot, g \rangle) \rangle\!\rangle \qquad g \in \mathcal{S}(\mathbb{R})$

Remember the characterizations of (S)' and G' and the corresponding sequence and integral theorems, see [PS91], [KLP⁺96] and [GKS97]

Important examples

Brownian motion and Brownian bridge

$$B_t(\cdot) := \langle \cdot, \mathbf{1}_{[t_0, t]} \rangle = \int_{t_0}^t \omega(s) \, ds, \ 0 < t_0 < t < \infty,$$

$$B^{0 o 0}_{t_0,t,s}(\cdot) := \langle \cdot, \mathbf{1}_{[t_0,s)}
angle - rac{s}{t} \langle \cdot, \mathbf{1}_{[t_0,t)}
angle, \quad 0 < t_0 \leqslant s \leqslant t < \infty.$$

Donskers Delta: $\delta(\langle \cdot, h \rangle - a) \in (S)', h \in L^2(\mathbb{R}), a \in \mathbb{R}, z.B.$ für $h = \mathbf{1}_{[t_0,t]}, 0 < t < \infty$ und $a = x - x_0$ gilt:

$$S(\delta(\langle \cdot, \mathbf{1}_{[t_0,t]} \rangle - a))(g) = \frac{1}{\sqrt{2\pi(t - t_0)}} \exp\left(-\frac{1}{2(t - t_0)}((g, \mathbf{1}_{[t_0,t]}) - (x - x_0))^2\right)$$

Normalized exponential:

$$\Phi = \operatorname{Nexp}\left(\frac{1}{2}(1+i)\int_{t_0}^t \omega(\tau)^2 d\tau\right)$$
$$S(\Phi)(g) = \exp\left(-\frac{1}{2}(1-i)\int_{t_0}^t g^2(r) dr\right), \quad g \in S(\mathbb{R})$$

Important examples

Brownian motion and Brownian bridge

$$B_t(\cdot) := \langle \cdot, \mathbf{1}_{[t_0,t]} \rangle = \int_{t_0}^t \omega(s) \, ds, \ 0 < t_0 < t < \infty,$$

$$B^{0\to 0}_{t_0,t,s}(\cdot) := \langle \cdot, \mathbf{1}_{[t_0,s)} \rangle - \frac{s}{t} \langle \cdot, \mathbf{1}_{[t_0,t)} \rangle, \quad 0 < t_0 \leqslant s \leqslant t < \infty.$$

Donskers Delta: $\delta(\langle \cdot, h \rangle - a) \in (S)', h \in L^2(\mathbb{R}), a \in \mathbb{R}, z.B.$ für $h = \mathbf{1}_{[t_0,t]}, 0 < t < \infty$ und $a = x - x_0$ gilt:

$$S(\delta(\langle \cdot, \mathbf{1}_{[t_0,t]} \rangle - a))(g) = \frac{1}{\sqrt{2\pi(t - t_0)}} \exp\left(-\frac{1}{2(t - t_0)}((g, \mathbf{1}_{[t_0,t]}) - (x - x_0))^2\right)$$

Normalized exponential:

$$\Phi = \operatorname{Nexp}\left(\frac{1}{2}(1+i)\int_{t_0}^t \omega(\tau)^2 d\tau\right)$$
$$S(\Phi)(g) = \exp\left(-\frac{1}{2}(1-i)\int_{t_0}^t g^2(r) dr\right), \quad g \in S(\mathbb{R})$$

Important examples

Brownian motion and Brownian bridge

$$B_t(\cdot) := \langle \cdot, \mathbf{1}_{[t_0, t]} \rangle = \int_{t_0}^t \omega(s) \, ds, \ 0 < t_0 < t < \infty,$$

$$B^{0\to 0}_{t_0,t,s}(\cdot):=\langle\cdot,\mathbf{1}_{[t_0,s)}\rangle-\frac{s}{t}\langle\cdot,\mathbf{1}_{[t_0,t)}\rangle,\quad 0< t_0\leqslant s\leqslant t<\infty.$$

Donskers Delta: $\delta(\langle \cdot, h \rangle - a) \in (S)', h \in L^2(\mathbb{R}), a \in \mathbb{R}, z.B.$ für $h = \mathbf{1}_{[t_0,t]}, 0 < t < \infty$ und $a = x - x_0$ gilt:

$$S(\delta(\langle \cdot, \mathbf{1}_{[t_0,t]} \rangle - a))(g) = \frac{1}{\sqrt{2\pi(t - t_0)}} \exp\left(-\frac{1}{2(t - t_0)}((g, \mathbf{1}_{[t_0,t]}) - (x - x_0))^2\right)$$

Normalized exponential:

$$\Phi = \operatorname{Nexp}\left(\frac{1}{2}(1+i)\int_{t_0}^t \omega(\tau)^2 d\tau\right)$$
$$S(\Phi)(g) = \exp\left(-\frac{1}{2}(1-i)\int_{t_0}^t g^2(r) dr\right), \quad g \in S(\mathbb{R})$$

Scaling and localized scaling

Skalierungsoperator:

For $\varphi \in (S)$ the scaling in \sqrt{i} of φ by

$$(\sigma_{\sqrt{i}}\varphi)(\omega) = \varphi(\sqrt{i}\omega), \quad \omega \in S'(\mathbb{R}).$$

$$\sigma_{\sqrt{i}}\varphi = \sum_{n=0}^{\infty} \left\langle : \omega^{\otimes n} :, \sqrt{i}^n \sum_{k=0}^{\infty} \frac{(n+2k)!}{k!n!} \left(\frac{i-1}{2}\right)^k \operatorname{tr}^k \varphi^{(n+2k)} \right\rangle.$$
(1)

where $\operatorname{tr}^{k\,,\,(n+2k)}$ is defined by

$$\operatorname{tr}^{k} \phi^{(n+2k)} := \left(\operatorname{Tr}^{\otimes k}, \phi^{(n+2k)}\right)_{L^{2}(\mathbb{R})^{\otimes 2k}} \in \mathcal{S}'(\mathbb{R})^{\otimes n}, \quad \operatorname{Tr}(\xi \otimes \eta) = (\xi, \eta)_{L^{2}(\mathbb{R})}, \ \xi, \eta \in \mathcal{S}(\mathbb{R})$$

Properties:

- We call $A_{\sqrt{i}} \subset (S)'$ its domain, i.e. the set of $\Phi \in (S)'$ for which (1) converge in (S)'
- For $\Phi, \Psi \in \mathcal{A}_{\sqrt{i}}$ with $\Phi \Psi \in \mathcal{A}_{\sqrt{i}}$, one has that $\sigma_{\sqrt{i}}(\Phi \Psi) = \sigma_{\sqrt{i}} \Phi \sigma_{\sqrt{i}} \Psi$.

$$\operatorname{Nexp}\left(\frac{i+1}{2}\int_{\mathbb{R}}\omega(\tau)^{2}\,d\tau\right)\Phi=\sigma_{\sqrt{i}}^{\dagger}\sigma_{\sqrt{i}}\Phi\in(S)^{\prime}.$$

White Noise Analysis Applications to Feynman path integrals

Lokalized scaling

$$\sigma_{\sqrt{i},t_0,t}\varphi = \sum_{n=0}^{\infty} \left\langle : \omega^{\otimes n} :, \sqrt{i}^n \sum_{k=0}^{\infty} \frac{(n+2k)!}{k!n!} \left(\frac{i-1}{2}\right)^k \operatorname{tr}_{t_0,t}{}^k \varphi^{(n+2k)} \right\rangle.$$
(2)

 $0 < t_0 < t$, where $\operatorname{tr}_{t_0,t}^{k}$, (n+2k) is defined by

$$\begin{split} \mathrm{tr}_{t_0,t}^{k} \phi^{(n+2k)} &:= \left(\mathrm{Tr}_{t_0,t}^{\otimes k}, \phi^{(n+2k)} \right)_{L^2(\mathbb{R})^{\otimes 2k}} \in S'(\mathbb{R})^{\hat{\otimes}n} \\ & \\ \mathrm{Tr}_{t_0,t}(\xi \otimes \eta) = (\xi, \mathbf{1}_{[t_0,t)}\eta)_{L^2(\mathbb{R})}, \ \xi, \eta \in S(\mathbb{R}) \end{split}$$

Properties:

Analogously to the scaling we define its domain $A_{\sqrt{i},t_0,t} \subset (S)'$

If
$$\Phi \in A_{\sqrt{i},t_0,t}$$
 with kernels $\Phi^{(n)}$, $n \in \mathbb{N}$ fulfills $\mathbf{1}_{[t_0,t)}^{\otimes n} \Phi^{(n)} = \Phi^{(n)}$ then $\sigma_{\sqrt{i},t_0,t} \Phi = \sigma_{\sqrt{i}} \Phi$. E.g. $\Phi = \delta(\langle \omega, \mathbf{1}_{[t_0,t)} \rangle + x_0 - x)$

$$\operatorname{Nexp}\left(\frac{i+1}{2}\int_{t_0}^t \omega(\tau)^2 \, d\tau\right) \Phi = \sigma_{\sqrt{i}, t_0, t}^{\dagger} \sigma_{\sqrt{i}, t_0, t} \Phi \in (S)', \quad \Phi \in A_{\sqrt{i}, t_0, t}$$

Wick Formula How to realize products of regular distributions with Donsker's Delta?

orthogonal projection

$$P_h: \mathfrak{G} \to \mathfrak{G}, \ \varphi \mapsto \varphi(\cdot - \langle \cdot, h \rangle h), \quad h \in L^2(\mathbb{R}), \ \|h\|_{L^2} = 1$$

translation

$$\tau_\eta: \mathfrak{G} \to \mathfrak{G}, \ \phi \mapsto \phi(\cdot + \eta), \quad \eta \in L^2_{\mathbb{C}}(\mathbb{R})$$

Theorem

The product of $\Phi \in S'$ with $\delta (\langle \cdot, h \rangle - a)$, $h \in L^2(\mathbb{R})$, $||h||_{L^2} = 1$, and $a \in \mathbb{C}$, exists in S' if and only if the orthogonal projection $P_h \Phi \in S'$. Furthermore

$$\delta\left(\langle\cdot,h\rangle-a\right)\Phi=\delta\left(\langle\cdot,h\rangle-a\right)\,\diamondsuit\,\tau_{ah}P_{h}\Phi,$$

where the Wick product is an independent pointwise product.

Example: $\Phi = x_0 + \langle \cdot, \mathbf{1}_{[t_0,s]} \rangle$, $h = \mathbf{1}_{[t_0,t]}$, $a = x - x_0$, then:

$$\begin{split} \delta\left(\langle\cdot,\mathbf{1}_{\lfloor t_0,t\rangle}\rangle-(x-x_0)\right)\Phi &=\frac{1}{\sqrt{t-t_0}}\delta\left(\left\langle\cdot,\frac{\mathbf{1}_{\lfloor t_0,t\rangle}}{\sqrt{t-t_0}}\right\rangle-\frac{x-x_0}{\sqrt{t-t_0}}\right)\left(x_0+\langle\cdot,\mathbf{1}_{\lfloor t_0,s\rangle}\rangle\right)\\ &=\delta\left(\langle\cdot,\mathbf{1}_{\lfloor t_0,t\rangle}\rangle-(x-x_0)\right)\,\diamond\left(x_0-\frac{s-t_0}{t-t_0}(x-x_0)+\left\langle\cdot,\mathbf{1}_{\lfloor t_0,s\rangle}-\frac{s-t_0}{t-t_0}\mathbf{1}_{\lfloor t_0,t\rangle}\right\rangle\right)\end{split}$$

orthogonal projection

$$P_h: \mathfrak{G} \to \mathfrak{G}, \ \varphi \mapsto \varphi(\cdot - \langle \cdot, h \rangle h), \quad h \in L^2(\mathbb{R}), \ \|h\|_{L^2} = 1$$

translation

$$\tau_\eta: \mathfrak{G} \to \mathfrak{G}, \ \phi \mapsto \phi(\cdot + \eta), \quad \eta \in L^2_{\mathbb{C}}(\mathbb{R})$$

Theorem

The product of $\Phi \in S'$ with $\delta (\langle \cdot, h \rangle - a)$, $h \in L^2(\mathbb{R})$, $||h||_{L^2} = 1$, and $a \in \mathbb{C}$, exists in S' if and only if the orthogonal projection $P_h \Phi \in S'$. Furthermore

$$\delta\left(\langle\cdot,h\rangle-a\right)\Phi=\delta\left(\langle\cdot,h\rangle-a\right)\,\diamondsuit\,\tau_{ah}P_{h}\Phi,$$

where the Wick product is an independent pointwise product.

Example: $\Phi = x_0 + \langle \cdot, \mathbf{1}_{[t_0,s]} \rangle$, $h = \mathbf{1}_{[t_0,t]}$, $a = x - x_0$, then:

$$\begin{split} \delta\left(\langle\cdot,\mathbf{1}_{[t_0,t)}\rangle-(x-x_0)\right)\Phi &= \frac{1}{\sqrt{t-t_0}}\delta\left(\left\langle\cdot,\frac{\mathbf{1}_{[t_0,t)}}{\sqrt{t-t_0}}\right\rangle-\frac{x-x_0}{\sqrt{t-t_0}}\right)\left(x_0+\langle\cdot,\mathbf{1}_{[t_0,s)}\rangle\right)\\ &= \delta\left(\langle\cdot,\mathbf{1}_{[t_0,t)}\rangle-(x-x_0)\right)\,\diamondsuit\left(x_0-\frac{s-t_0}{t-t_0}(x-x_0)+\left\langle\cdot,\mathbf{1}_{[t_0,s)}-\frac{s-t_0}{t-t_0}\mathbf{1}_{[t_0,t)}\right\rangle\right) \end{split}$$

orthogonal projection

$$P_h: \mathfrak{G} \to \mathfrak{G}, \ \varphi \mapsto \varphi(\cdot - \langle \cdot, h \rangle h), \quad h \in L^2(\mathbb{R}), \ \|h\|_{L^2} = 1$$

translation

$$\tau_\eta: \mathfrak{G} \to \mathfrak{G}, \ \phi \mapsto \phi(\cdot + \eta), \quad \eta \in L^2_{\mathbb{C}}(\mathbb{R})$$

Theorem

The product of $\Phi \in \mathfrak{G}'$ with $\delta (\langle \cdot, h \rangle - a)$, $h \in L^2(\mathbb{R})$, $||h||_{L^2} = 1$, and $a \in \mathbb{C}$, exists in \mathfrak{G}' if and only if the orthogonal projection $P_h \Phi \in \mathfrak{G}'$. Furthermore

$$\delta\left(\langle\cdot, h\rangle - a\right)\Phi = \delta\left(\langle\cdot, h\rangle - a\right) \diamondsuit \tau_{ah} P_h \Phi,$$

where the Wick product is an independent pointwise product.

Example: $\Phi = x_0 + \langle \cdot, 1_{[t_0,s)} \rangle$, $h = 1_{[t_0,t]}$, $a = x - x_0$, then:

$$\delta\left(\langle\cdot,\mathbf{1}_{[t_0,t]}\rangle-(x-x_0)\right)\Phi = \frac{1}{\sqrt{t-t_0}}\delta\left(\left\langle\cdot,\frac{\mathbf{1}_{[t_0,t]}}{\sqrt{t-t_0}}\right\rangle-\frac{x-x_0}{\sqrt{t-t_0}}\right)\left(x_0+\langle\cdot,\mathbf{1}_{[t_0,s]}\rangle\right)$$
$$= \delta\left(\langle\cdot,\mathbf{1}_{[t_0,s]}\rangle-(x-x_0)\right)\Phi\left(x_0-\frac{s-t_0}{2}(x-x_0)+\left\langle\cdot,\mathbf{1}_{[t_0,s]}\rangle-\frac{s-t_0}{2}(x-x_0)\right)\right)$$

orthogonal projection

$$P_h: \mathfrak{G} \to \mathfrak{G}, \ \varphi \mapsto \varphi(\cdot - \langle \cdot, h \rangle h), \quad h \in L^2(\mathbb{R}), \ \|h\|_{L^2} = 1$$

translation

$$\tau_\eta: \mathfrak{G} \to \mathfrak{G}, \ \phi \mapsto \phi(\cdot + \eta), \quad \eta \in L^2_{\mathbb{C}}(\mathbb{R})$$

Theorem

The product of $\Phi \in \mathfrak{G}'$ with $\delta (\langle \cdot, h \rangle - a)$, $h \in L^2(\mathbb{R})$, $||h||_{L^2} = 1$, and $a \in \mathbb{C}$, exists in \mathfrak{G}' if and only if the orthogonal projection $P_h \Phi \in \mathfrak{G}'$. Furthermore

$$\delta\left(\langle\cdot,h\rangle-a\right)\Phi=\delta\left(\langle\cdot,h\rangle-a\right)\,\diamondsuit\,\tau_{ah}P_{h}\Phi,$$

where the Wick product is an independent pointwise product.

Example: $\Phi = x_0 + \langle \cdot, \mathbf{1}_{[t_0,s]} \rangle$, $h = \mathbf{1}_{[t_0,t]}$, $a = x - x_0$, then:

$$\begin{split} \delta\left(\langle\cdot,\mathbf{1}_{[t_0,t)}\rangle-(x-x_0)\right)\Phi &= \frac{1}{\sqrt{t-t_0}}\delta\left(\left\langle\cdot,\frac{\mathbf{1}_{[t_0,t)}}{\sqrt{t-t_0}}\right\rangle-\frac{x-x_0}{\sqrt{t-t_0}}\right)\left(x_0+\langle\cdot,\mathbf{1}_{[t_0,s)}\rangle\right)\\ &= \delta\left(\langle\cdot,\mathbf{1}_{[t_0,t)}\rangle-(x-x_0)\right)\,\diamondsuit\left(x_0-\frac{s-t_0}{t-t_0}(x-x_0)+\left\langle\cdot,\mathbf{1}_{[t_0,s)}-\frac{s-t_0}{t-t_0}\mathbf{1}_{[t_0,t)}\right\rangle\right) \end{split}$$

Lemma (Westerkamp 1995)

Let
$$\varphi \in \mathcal{G}$$
, $h \in L^2(\mathbb{R})$, $\|h\|_{L^2} = 1$, and $a \in \mathbb{C}$, then:

$$1 \quad 1^{-2} = 1$$

$$\langle\!\langle \delta\left(\langle\cdot,h\rangle-a\right),\varphi\rangle\!\rangle = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}a^2} E\left(\varphi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)\right)$$

Using this Lemma one can show that the Wick formula in G holds:

$$\delta\left(\langle\cdot,h\rangle-a\right)\phi=\delta\left(\langle\cdot,h\rangle-a\right)\,\diamond\,\phi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)$$

• the translation τ_{ah} is a continuous mapping from \mathfrak{G}' into itself.

Let $\Phi \in \mathfrak{G}'$ with kernels $\Phi^{(n)}$, $n \in \mathbb{N}$. Then $P_h \Phi \in \mathfrak{G}'$ if and only if

$$\lim_{M\to\infty} P_h \varphi_M \in \mathfrak{G}', \quad \varphi_M = \sum_{n=0}^M \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle \in \mathfrak{G}.$$

In this case $P_h \Phi = \lim_{M \to \infty} P_h \varphi_M$.

$$\begin{split} \mathfrak{d}\delta\left(\langle\cdot,h\rangle-a\right) &= \lim_{M\to\infty} \varphi_M\delta\left(\langle\cdot,h\rangle-a\right) = \lim_{M\to\infty} \tau_{ah} P_h \varphi_M \diamondsuit \delta\left(\langle\cdot,h\rangle-a\right) \\ &= \tau_{ah} \left(\lim_{M\to\infty} P_h \varphi_M\right) \diamondsuit \delta\left(\langle\cdot,h\rangle-a\right) = \tau_{ah} P_h \Phi \diamondsuit \delta\left(\langle\cdot,h\rangle-a\right) \in \mathfrak{G}' \end{split}$$

Lemma (Westerkamp 1995)

Let $\phi \in \mathcal{G}$, $h \in L^2(\mathbb{R})$, $\|h\|_{L^2} = 1$, and $a \in \mathbb{C}$, then:

$$\langle\!\langle \delta\left(\langle\cdot,h\rangle-a\right),\varphi\rangle\!\rangle = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}a^2}E\left(\varphi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)\right)$$

■ Using this Lemma one can show that the Wick formula in *G* holds:

$$\delta\left(\left<\cdot, h\right>-a\right)\phi=\delta\left(\left<\cdot, h\right>-a\right)\,\diamondsuit\,\phi\left(\cdot+(a-\left<\cdot, h\right>)h\right)$$

• the translation τ_{ah} is a continuous mapping from G' into itself.

Let $\Phi \in \mathcal{G}'$ with kernels $\Phi^{(n)}$, $n \in \mathbb{N}$. Then $P_h \Phi \in \mathcal{G}'$ if and only if

$$\lim_{M\to\infty} P_h \varphi_M \in \mathcal{G}', \quad \varphi_M = \sum_{n=0}^M \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle \in \mathcal{G}.$$

In this case $P_h \Phi = \lim_{M \to \infty} P_h \varphi_M$.

$$\begin{split} \mathfrak{d}\delta\left(\langle\cdot,h\rangle-a\right) &= \lim_{M\to\infty} \varphi_M\delta\left(\langle\cdot,h\rangle-a\right) = \lim_{M\to\infty} \tau_{ah} P_h \varphi_M \diamondsuit \delta\left(\langle\cdot,h\rangle-a\right) \\ &= \tau_{ah} \left(\lim_{M\to\infty} P_h \varphi_M\right) \diamondsuit \delta\left(\langle\cdot,h\rangle-a\right) = \tau_{ah} P_h \Phi \diamondsuit \delta\left(\langle\cdot,h\rangle-a\right) \in \mathfrak{G}' \end{split}$$

Lemma (Westerkamp 1995)

Let $\varphi \in \mathcal{G}$, $h \in L^2(\mathbb{R})$, $||h||_{L^2} = 1$, and $a \in \mathbb{C}$, then:

$$\langle\!\langle \delta\left(\langle\cdot,h\rangle-a\right),\varphi\rangle\!\rangle = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}a^2}E\left(\varphi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)\right)$$

■ Using this Lemma one can show that the Wick formula in *G* holds:

$$\delta\left(\left\langle \cdot,h\right\rangle -a\right)\phi=\delta\left(\left\langle \cdot,h\right\rangle -a\right)\,\diamondsuit\,\phi\left(\cdot+\left(a-\left\langle \cdot,h\right\rangle\right)h\right)$$

• the translation τ_{ah} is a continuous mapping from G' into itself.

Let $\Phi \in \mathfrak{G}'$ with kernels $\Phi^{(n)}$, $n \in \mathbb{N}$. Then $P_h \Phi \in \mathfrak{G}'$ if and only if

$$\lim_{M\to\infty} P_h \varphi_M \in \mathfrak{G}', \quad \varphi_M = \sum_{n=0}^M \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle \in \mathfrak{G}$$

In this case $P_h \Phi = \lim_{M \to \infty} P_h \varphi_M$.

$$\begin{split} \mathbb{D}\,\delta\,(\langle\cdot,h\rangle-a) &= \lim_{M\to\infty} \varphi_M\delta\,(\langle\cdot,h\rangle-a) = \lim_{M\to\infty} \tau_{ah} P_h \varphi_M \diamondsuit \delta\,(\langle\cdot,h\rangle-a) \\ &= \tau_{ah} \left(\lim_{M\to\infty} P_h \varphi_M\right) \diamondsuit \delta\,(\langle\cdot,h\rangle-a) = \tau_{ah} P_h \Phi \diamondsuit \delta\,(\langle\cdot,h\rangle-a) \in \mathfrak{G}' \end{split}$$

Lemma (Westerkamp 1995)

Let $\varphi \in \mathcal{G}$, $h \in L^2(\mathbb{R})$, $||h||_{L^2} = 1$, and $a \in \mathbb{C}$, then:

$$\langle\!\langle \delta\left(\langle\cdot,h\rangle-a\right),\varphi\rangle\!\rangle = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}a^2}E\left(\varphi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)\right)$$

■ Using this Lemma one can show that the Wick formula in *G* holds:

$$\delta\left(\langle\cdot,h\rangle-a\right)\phi=\delta\left(\langle\cdot,h\rangle-a\right)\,\diamondsuit\,\phi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)$$

• the translation τ_{ah} is a continuous mapping from G' into itself.

Let $\Phi \in \mathfrak{G}'$ with kernels $\Phi^{(n)}$, $n \in \mathbb{N}$. Then $P_h \Phi \in \mathfrak{G}'$ if and only if

$$\lim_{M\to\infty} P_h \varphi_M \in \mathfrak{G}', \quad \varphi_M = \sum_{n=0}^M \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle \in \mathfrak{G}.$$

In this case $P_h \Phi = \lim_{M \to \infty} P_h \varphi_M$.

$$\begin{split} \Phi \,\delta \,(\langle \cdot, h \rangle - a) &= \lim_{M \to \infty} \varphi_M \delta \,(\langle \cdot, h \rangle - a) = \lim_{M \to \infty} \tau_{ah} P_h \varphi_M \,\diamond \,\delta \,(\langle \cdot, h \rangle - a) \\ &= \tau_{ah} \left(\lim_{M \to \infty} P_h \varphi_M \right) \,\diamond \,\delta \,(\langle \cdot, h \rangle - a) = \tau_{ah} P_h \Phi \,\diamond \,\delta \,(\langle \cdot, h \rangle - a) \in \mathfrak{S}' \end{split}$$

Lemma (Westerkamp 1995)

Let $\varphi \in \mathcal{G}$, $h \in L^2(\mathbb{R})$, $||h||_{L^2} = 1$, and $a \in \mathbb{C}$, then:

$$\langle\!\langle \delta\left(\langle\cdot,h\rangle-a\right),\varphi\rangle\!\rangle = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}a^2}E\left(\varphi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)\right)$$

■ Using this Lemma one can show that the Wick formula in *G* holds:

$$\delta\left(\langle\cdot,h\rangle-a\right)\phi=\delta\left(\langle\cdot,h\rangle-a\right)\,\diamondsuit\,\phi\left(\cdot+(a-\langle\cdot,h\rangle)h\right)$$

• the translation τ_{ah} is a continuous mapping from G' into itself.

Let $\Phi \in \mathfrak{G}'$ with kernels $\Phi^{(n)}$, $n \in \mathbb{N}$. Then $P_h \Phi \in \mathfrak{G}'$ if and only if

$$\lim_{M\to\infty} P_h \varphi_M \in \mathfrak{G}', \quad \varphi_M = \sum_{n=0}^M \langle : \cdot^{\otimes n} :, \Phi^{(n)} \rangle \in \mathfrak{G}.$$

In this case $P_h \Phi = \lim_{M \to \infty} P_h \varphi_M$.

$$\begin{split} \Phi \,\delta \,(\langle \cdot, h \rangle - a) &= \lim_{M \to \infty} \varphi_M \delta \,(\langle \cdot, h \rangle - a) = \lim_{M \to \infty} \tau_{ah} P_h \varphi_M \,\diamond \,\delta \,(\langle \cdot, h \rangle - a) \\ &= \tau_{ah} \left(\lim_{M \to \infty} P_h \varphi_M \right) \,\diamond \,\delta \,(\langle \cdot, h \rangle - a) = \tau_{ah} P_h \Phi \,\diamond \,\delta \,(\langle \cdot, h \rangle - a) \in \mathfrak{G}' \end{split}$$

Applications to Feynman path integrals

- R. P. Feynman. Space-time approach to non-relativistic quantum mechanics. *Rev. Modern Physics*, 20:367–387, 1948.
- T. Hida and L. Streit. Generalized brownian functionals and the feynman integral. *Stoch. Proc. Appl.*, 16:55–69, 1983.

The classical approach and the Khandekar-Streit class

- D.C. Khandekar and L. Streit. **Constructing the Feynman integrand.** *Ann. Physik*, 1:46–55, 1992.
- A. Lascheck, P. Leukert, L. Streit, and W. Westerkamp. Quantum mechanical propagators in terms of Hida distributions. *Rep. Math. Phys.*, 33:221–232, 1993.

General White Noise Ansatz for Feynman integrands

Feynman Integrand in White Noise

$$I_{V} = \operatorname{Nexp}\left(\frac{i}{2}\int_{t_{0}}^{t} \dot{x}(\tau)^{2} d\tau + \frac{1}{2}\int_{t_{0}}^{t} \dot{x}(\tau)^{2} d\tau\right) \exp\left(-i\int_{t_{0}}^{t} V(x(\tau)) d\tau\right) \delta(x(t) - x)$$

$$I_{V} = I_{0} \exp\left(-i \int_{t_{0}}^{t} V(x(r)) dr\right) = \sum_{n=0}^{\infty} (-i)^{n} \int_{\mathbb{R}^{n}} \int_{\Lambda_{n}} \prod_{j=1}^{n} V(x_{j}) I_{0} \delta(x(r_{j}) - x_{j}) dr_{j} dx_{j},$$

where $\Lambda_n = \{(r_1, ..., r_n) \mid t_0 = r_0 < r_1 < ... < r_n < t\}$. For a special class of potentials I_V is constructed as a Hida distribution in [KS92] and [LLSW93].

The Khandekar-Streit class

The interactions:

$$V_2(x) = \int_{\mathbb{R}} \delta(x - y) \, dm(y), \tag{3}$$

where $dm(y) := v_2(y) dy$ is a finite Borel measure of compact support, K. For simplicity we assume that $v_2 : \mathbb{R} \to \mathbb{R}$ to be a continuous function with compact support.

The Feynman integrand :

$$I_{V} = I_{0} + \sum_{n=1}^{\infty} (-i)^{n} \int_{\mathbb{R}^{n}} \int_{\Lambda_{n}} \left(I_{0} \prod_{j=1}^{n} \delta(x(r_{j}) - x_{j}) \right) v_{2}(x_{j}) dr_{j} dx_{j} \in (\mathcal{S})^{\prime}$$

 $T_0 \leq t_0 < t \leq T$ and $x, x_0 \in \mathbb{R}$. *T*-transform of I_V :

$$T(I_V)(g) = I_0 + \sum_{n=1}^{\infty} (-i)^n \int_{\mathbb{R}^n} \int_{\Lambda_n} T\left(I_0 \prod_{j=1}^n \delta(x(r_j) - x_j)\right) (g) v_2(x_j) \, dr_j dx_j,$$

for all $g \in S(\mathbb{R})$.

The complex scaling approach

- R. H. Cameron. A family of integrals serving to connect the Wiener and Feynman integrals. J. Math. and Phys., 39:126–140, 1960/1961.
- H. Doss. Sur une resolution stochastique de l'equation de schrödinger à coefficients analytiques. Communications in Mathematical Physics, 73:247–264, Oktober 1980.
- M. Grothaus, L. Streit, and A. Vogel. The Complex Scaled Feynman-Kac Formula for Singular Initial Distributions. 2010. Accepted for publication in Proceedings of the "International Conference on Stochastic Analysis and Applications", Hammamet, Tunisia, October 12-17 2009, Stochastics, An International Journal of Probability and Stochastic Processes.

Informal ansatz

The classical approach and perturbation series The complex scaling approach Combination of both approaches

$$\begin{split} I_{V} &= \operatorname{Nexp}\left(\frac{i}{2}\int_{t_{0}}^{t}\dot{x}(\tau)^{2}\,d\tau + \frac{1}{2}\int_{t_{0}}^{t}\dot{x}(\tau)^{2}\,d\tau\right)\exp\left(-i\int_{t_{0}}^{t}V(x(\tau))\,d\tau\right)\delta(x(t) - x) \\ &= \sigma_{\sqrt{i},t_{0},t}^{\dagger}\sigma_{\sqrt{i},t_{0},t}\left(\exp\left(-i\int_{t_{0}}^{t}V(x(\tau))\,d\tau\right)\delta(x(t) - x)\right) \\ &= \sigma_{\sqrt{i},t_{0},t}^{\dagger}\left(\sigma_{\sqrt{i}}\left(\tau\frac{x - x_{0}}{(t - t_{0})^{\dagger}}\mathbf{1}_{[t_{0},t)}P_{\frac{1}{\sqrt{t - t_{0}}}\vec{1}_{[t_{0},t)}}\left(-i\int_{t_{0}}^{t}V(x(\tau))\,d\tau\right)\right)\diamondsuit\sigma_{\sqrt{i}}\delta(x(t) - x)\right) \end{split}$$

For which kind of potentials this formula is useful?

The Doss class

The Domain

The classical approach and perturbation series The complex scaling approach Combination of both approaches

For $\mathbb{O}\subset\mathbb{R}$ open, where $\mathbb{R}\setminus\mathbb{O}$ is a set of Lebesgue measure zero, we consider the set

$$\mathcal{D} = \{ z = x + \sqrt{i}y \in \mathbb{C} | x \in \mathcal{O}, y \in \mathbb{R} \} \subset \mathbb{C}.$$

The potentials

We consider $V: \mathcal{D} \to \mathbb{C}$ analytic fulfilling suitable integrability conditions Examples

$$V:\mathbb{C} o\mathbb{C}$$
 $x\mapsto x^6$

(or more general a potential of degree $4n + 2, n \in \mathbb{N}$) For $\mathcal{O} = \mathbb{R} \setminus \{b\}, b \in \mathbb{R}$

$$V_1 : \mathcal{D} \to \mathbb{C}$$

 $x \mapsto \frac{a}{|x-b|^n},$
 $V_2 : \mathcal{D} \to \mathbb{C}$
 $x \mapsto \frac{a}{(x-b)^n}$

where $n \in \mathbb{N}$, $a \in \mathbb{C}$ and $b \in \mathbb{R}$

The Doss class

The Domain

For $\mathbb{O}\subset\mathbb{R}$ open, where $\mathbb{R}\setminus\mathbb{O}$ is a set of Lebesgue measure zero, we consider the set

The complex scaling approach

$$\mathcal{D} = \{ z = x + \sqrt{i}y \in \mathbb{C} | x \in \mathcal{O}, y \in \mathbb{R} \} \subset \mathbb{C}.$$

The potentials We consider $V : \mathcal{D} \to \mathbb{C}$ analytic fulfilling suitable integrability conditions

$$V:\mathbb{C}\to\mathbb{C}$$
$$x\mapsto x^6$$

(or more general a potential of degree $4n + 2, n \in \mathbb{N}$) For $\mathcal{O} = \mathbb{R} \setminus \{b\}, b \in \mathbb{R}$

$$V_1: \mathcal{D} \to \mathbb{C}$$

 $x \mapsto \frac{a}{|x-b|^n},$ $V_2: \mathcal{D} \to \mathbb{C}$
 $x \mapsto \frac{a}{(x-b)^n}$

where $n \in \mathbb{N}$, $a \in \mathbb{C}$ and $b \in \mathbb{R}$

The Doss class

The Domain

For $\mathcal{O} \subset \mathbb{R}$ open, where $\mathbb{R} \setminus \mathcal{O}$ is a set of Lebesgue measure zero, we consider the set

$$\mathcal{D} = \{ z = x + \sqrt{i}y \in \mathbb{C} | x \in \mathcal{O}, y \in \mathbb{R} \} \subset \mathbb{C}.$$

The potentials

We consider $V:\mathcal{D}\to\mathbb{C}$ analytic fulfilling suitable integrability conditions Examples

$$V: \mathbb{C} \to \mathbb{C}$$

 $x \mapsto x^6$

(or more general a potential of degree $4n + 2, n \in \mathbb{N}$) For $\mathcal{O} = \mathbb{R} \setminus \{b\}, b \in \mathbb{R}$

$$V_1: \mathfrak{D} \to \mathbb{C}$$
 $V_2: \mathfrak{D} \to \mathbb{C}$
 $x \mapsto \frac{a}{|x-b|^n},$ $x \mapsto \frac{a}{(x-b)^n}$

where $n \in \mathbb{N}$, $a \in \mathbb{C}$ and $b \in \mathbb{R}$

Let V be a potential as above, $0 \le t_0 < t \le T$ and $x, x_0 \in \mathbb{O}$ such that $x_0 + \frac{r-t_0}{t-t_0}(x-x_0) \in \mathbb{O}$ for all $t_0 < r < t$. Then the corresponding Feynman integrand exists as a Hida distribution and is given by

$$\begin{split} I_{V} &= \sigma_{\sqrt{i},t_{0},t}^{\dagger} \left(\sigma_{\sqrt{i}} \exp\left(-i \int_{t_{0}}^{t} V(x_{0} + \frac{s - t_{0}}{t - t_{0}} (x - x_{0}) \right. \\ &+ \left\langle \cdot, \mathbf{1}_{[t_{0},r)} \right\rangle - \frac{s - t_{0}}{t - t_{0}} \left\langle \cdot, \mathbf{1}_{[t_{0},t)} \right\rangle \right) dr \right) \diamondsuit \sigma_{\sqrt{i}} \delta(x(t) - x) \bigg), \end{split}$$

where the Wick product inside is an independent product.

Let *V* be a potential from the Doss class, $0 \le t_0 < t \le T < \infty$, $x, x_0 \in \mathbb{R}$ such that $x_0 + \frac{r-t_0}{t-t_0}(x-x_0) \in \mathbb{O}$ for all $t_0 < r < t$. Then for all $g \in S(\mathbb{R})$ we get that

where $\Lambda = [t_0, t]$ and g_{Λ^c} is the restriction of g to the complement of Λ . Moreover $K_V^{(\dot{g})}(x, t; x_0, t_0)$ solves the Schrödinger equation

$$\left(i\frac{\partial}{\partial t}-\frac{1}{2}\Delta-V_{\dot{g}}(t,x)\right)K_{V}^{(\dot{g})}(x,t;x_{0},t_{0})=i\delta_{x_{0}}\delta_{t_{0}}.$$
(4)

Here $V_{\dot{g}}(t, x) = V(x) + g(t)x$, for all 0 < t < T and all $x \in \mathbb{R}$.

Let *V* be defined as above, $t_0 < t_1 < \ldots < t_{n+1} = t$ and $x_j \in \mathbb{O}$ such that there exists a convex set $A \subset \mathbb{O}$ with $x_j \in A$ for all $0 \le j \le n+1$. Then

$$T\left(I_{V}\prod_{j=1}^{n}\delta(x(t_{j})-x_{j})\right)(g) = \exp\left(-\frac{1}{2}|g_{\Lambda^{c}}|_{0}^{2} + ig(t)\cdot x - ig(t_{0})\cdot x_{0}\right)$$
$$\times \prod_{j=1}^{n+1}K_{V}^{(\dot{g})}(x_{j},t_{j};x_{j-1},t_{j-1}),$$

for all $g \in S(\mathbb{R})$.

Combination of both approaches

Let $V = V_1 + V_2$, where $V_1 : \mathbb{C} \to \mathbb{C}$ is in the Doss class and V_2 is defined as in (3). Then the corresponding Feynman integrand is given as a Hida distribution by

$$I_{V} = \sum_{n=0}^{\infty} (-i)^{n} \int_{\mathbb{R}^{n}} \int_{\Lambda_{n}} I_{V_{1}} \prod_{j=1}^{n} \delta(x(r_{j}) - x_{j}) v_{2}(x_{j}) dr_{j} dx_{j},$$
(5)

for all $x, x_0 \in \mathbb{R}$ and all $0 \leq t_0 < t \leq T < \infty$.

Idea of the proof Use the characterization theorem for sequences and integrals and the previous knowledge... and the following Lemma

Lemma

Let $V : \mathbb{C} \to \mathbb{C}$ be a potential from the Doss class, $0 \leq t_0 = r_0 < r_1 < \ldots < r_n < r_{n+1} = t$ and $x_j \in \mathbb{R}$, $j = 1, \ldots, n$ for $n \in \mathbb{N}$. Then there exists some constants $0 < C < \infty$ such that

$$\begin{aligned} \left| S\left(\exp\left(-i\sum_{j=1}^{n+1} \int_{r_{j-1}}^{t_j} V\left(x_{j-1} + \frac{r - r_{j-1}}{r_j - r_{j-1}} (x_j - x_{j-1}) + \sqrt{i} \langle \cdot, \mathbf{1}_{[r_{j-1}, r_j)} \rangle - \sqrt{i} \frac{r - r_{j-1}}{r_j - r_{j-1}} \langle \cdot, \mathbf{1}_{[r_{j-1}, r_j)} \rangle \right) dr \right) \right) (zg) \\ &\leq \sup_{y \in \mathcal{K}_n} B(y) C \exp\left(\frac{1}{2} |z|^2 |g|_0^2 \right) \quad (6) \end{aligned}$$

for all $z \in \mathbb{C}$ and all $g \in S(\mathbb{R})$. Here $B : \mathbb{R} \to \mathbb{R}$ locally bounded and K_n denotes the convex hull of $\{x_1, \ldots, x_{n+1}\}$.

Follows directly by the integrability conditions on V

Let $V = V_1 + V_2$, where $V_1 : \mathbb{C} \to \mathbb{C}$ is in the Doss class and V_2 is defined as in (3), $0 \leq t_0 < t \leq T < \infty$ and $x, x_0 \in \mathbb{R}$. Then for all $g \in S(\mathbb{R})$ we get that

$$\mathcal{K}_{V}^{(\dot{g})}(x,t;x_{0},t_{0}) := \exp\left(-ixg(t) + ix_{0}g(t_{0}) + \frac{1}{2}|g_{\Lambda^{c}}|_{0}^{2}\right) TI_{V}(g)$$

solves the Schrödinger equation for all $x, x_0 \in \mathbb{R}$, $0 \leqslant t_0 \leqslant t \leqslant T$, i.e.

$$\left(i\frac{\partial}{\partial t}-\frac{1}{2}\Delta-V_{\dot{g}}(t,x)\right)K_{V}^{(\dot{g})}(x,t;x_{0},t_{0})=i\delta_{x_{0}}\delta_{t_{0}}.$$
(7)

Here $V_{\dot{g}}(t,x) = V_1(x) + V_2(x) + g(t)x$, for all 0 < t < T and all $x \in \mathbb{R}$.

The classical approach and perturbation series The complex scaling approach Combination of both approaches

Idea of the proof I

$$\mathcal{K}_{V}^{(\dot{g})}(x,t;x_{0},t_{0}) = \sum_{n=0}^{\infty} (-i)^{n} \int_{\mathbb{R}^{n}} \int_{\Lambda_{n}} \prod_{j=1}^{n+1} \mathcal{K}_{V_{1}}^{(\dot{g})}(x_{j},t_{j};x_{j-1},t_{j-1}) \prod_{j=1}^{n} v_{2}(x_{j}) dr_{j} dx_{j},$$

$$\mathcal{K}_{V}^{(\dot{g})}(x,t;x_{0},t_{0}) = \mathcal{K}_{V_{1}}^{(\dot{g})}(x,t;x_{0},t_{0}) - i \iint \mathcal{K}_{V_{1}}^{(\dot{g})}(x,t;y,r) \mathcal{K}_{V}^{(\dot{g})}(y,r;x_{0},t_{0}) v_{2}(y) dy dr,$$
(8)

Set $\hat{L}_{V_1} = i \frac{\partial}{\partial t} + \frac{1}{2} \frac{\partial^2}{\partial x^2} + V_1(x) - \dot{g}(t)x$ and denoted its adjoint by $\hat{L}_{V_1}^*$.

The classical approach and perturbation series The complex scaling approach Combination of both approaches

Idea of the proof II

 \blacksquare Using (8) and Fubini's Theorem we get for $\phi \in \textit{D}(\Omega)$ that

$$\begin{split} \left\langle \hat{L}_{V_{1}} K_{V}^{(\hat{g})}, \varphi \right\rangle \\ = \left\langle K_{V_{1}}^{(\hat{g})}(x, t; x_{0}, t_{0}) - i \int \int K_{V_{1}}^{(\hat{g})}(x, t; y, r) K_{V}^{(\hat{g})}(y, r; x_{0}, t_{0}) v_{2}(y) \, dy \, dr, \hat{L}_{V_{1}}^{*} \varphi \right\rangle \\ = \left\langle K_{V_{1}}^{(\hat{g})}(x, t; x_{0}, t_{0}), \hat{L}_{V_{1}}^{*} \varphi \right\rangle \\ - i \int \int K_{V}^{(\hat{g})}(y, r; x_{0}, t_{0}) \int \int K_{V_{1}}^{(\hat{g})}(x, t; y, r) \hat{L}_{V_{1}}^{*} \varphi(x, t) \, dx \, dt \, v_{2}(y) \, dy \, dr. \end{split}$$

Since $\mathcal{K}_{V_1}^{(\dot{g})}$ is the Green's function of \hat{L}_{V_1} it follows that

$$i\varphi(x_0,t) + \iint \mathcal{K}^{(\dot{g})}(y,r;x_0,t_0)\varphi(y,r)v_2(y) \, dy \, dr = \langle i\delta_{x_0}\delta_{t_0},\varphi\rangle + \left\langle v_2\mathcal{K}_V^{(\dot{g})},\varphi\right\rangle.$$

Thanks for your attention!

M. Grothaus, Yu.G. Kondratiev, and L. Streit. Complex Gaussian analysis and the Bargmann-Segal space. *Methods Funct. Anal. Topology*, 3(2):46–64, 1997.

Yu.G. Kondratiev, P. Leukert, J. Potthoff, L. Streit, and W. Westerkamp. Generalized functionals in Gaussian spaces: The characterization theorem revisited.

J. Funct. Anal., 141(2):301-318, 1996.

D.C. Khandekar and L. Streit. Constructing the Feynman integrand. *Ann. Physik*, 1:46–55, 1992.

A. Lascheck, P. Leukert, L. Streit, and W. Westerkamp. Quantum mechanical propagators in terms of Hida distributions. *Rep. Math. Phys.*, 33:221–232, 1993.

J. Potthoff and L. Streit. A characterization of Hida distributions. *J. Funct. Anal.*, 101:212–229, 1991.

Assumption

Let $0 < T < \infty$. We assume that the potential $V : \mathfrak{D} \to \mathbb{C}$ is analytic and that there exist a constant $0 < A < \infty$, a locally bounded functions $B : \mathfrak{O} \to \mathbb{R}$ and some $\varepsilon < \frac{1}{8T}$ such that for all $x_0 \in \mathfrak{O}$ and $y \in \mathbb{R}$ one has that

$$|\exp(-iV(x))| \leq A \exp\left(\varepsilon x^2\right)$$
 and $\left|\exp\left(-iV\left(x_0+\sqrt{i}y\right)\right)\right| \leq B(x_0) \exp\left(\varepsilon y^2\right)$.

Assumption

Let $0 < T < \infty$ and $V : \mathfrak{D} \to \mathbb{C}$ such that Assumption 9 is fulfilled. Then we require that there exist a locally bounded function $C : \mathfrak{O} \times \mathfrak{O} \to \mathbb{R}$ and some $0 < \varepsilon < \frac{1}{8T}$ such that for all $x_0, x_1 \in \mathfrak{O}$ and $y \in \mathbb{R}$ one has that

$$\left| V\left(x_0 + \sqrt{i}y\right) \exp\left(-iV\left(x_1 + \sqrt{i}y\right)\right) \right| \leq C(x_0, x_1) \exp\left(\varepsilon y^2\right)$$

and

$$\left|\frac{\partial}{\partial z}V\left(x_{0}+\sqrt{i}y\right)\exp\left(-iV\left(x_{1}+\sqrt{i}y\right)\right)\right| \leqslant C(x_{0},x_{1})\exp\left(\varepsilon y^{2}\right).$$

Here $\frac{\partial}{\partial z}$ denotes the derivative of $z \mapsto V(z)$.