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Which communities?



Community detection and analysis is an important methodology for understanding the organization of various real-world 
networks and has applications in problems as diverse as consensus formation in social communities or the identification 
of functional modules in biochemical networks. Currently used algorithms that identify the community structures in large-
scale real-world networks require a priori information such as the number and sizes of communities or are 
computationally expensive. In this paper we investigate a simple label propagation algorithm that uses the network 
structure alone as its guide and requires neither optimization of a pre-defined objective function nor prior information 
about the communities. In our algorithm every node is initialized with a unique label and at every step each node adopts 
the label that most of its neighbors currently have. In this iterative process densely connected groups of nodes form a 
consensus on a unique label to form communities. We validate the algorithm by applying it to networks whose community 
structures are known. We also demonstrate that the algorithm takes an almost linear time and hence it is computationally 
less expensive than what was possible so far.
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Label Propagation 
Algorithm

1. Initialize: assign unique label to each vertex.

2. Relabel vertices by assigning most common label from the 
neighboring vertices.

a. Keep the current label if it is among the most common

b. Otherwise, pick a new label at random from the most 
common

3. Repeat relabeling until a stable set of labels has been found.



LPA Advantages

• Simple!

• Fast!

• Effective! (with quality measured by 
modularity)



LPA Disadvantages

• Community quality measure not clear from 
the algorithm.

• Allows poor solutions, e.g., all vertices in 
one community.

• Not actually that simple…



Label Propagation 
Mathematics
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The structure of the remainder of the paper is as follows. In section II we briefly summarize the original operational
presentation of the label propagation algorithm [4]. In section III, we reformulate the label propagation algorithm as a
mathematical optimization problem, and in section IV consider drawbacks of the LPA thus revealed. We address the
drawbacks in section V by adding constraints to the optimization problem, with attendant notes on implementation
in the appendices. Performance of several label propagation variants are compared in section VI, for both unipartite
and bipartite networks. We conclude with a summary and discussion in section VII.

II. THE LABEL PROPAGATION ALGORITHM

Recently, Raghavan et al. [4] have introduced a label-propagation algorithm (LPA) for identifying network commu-
nities. The algorithm is conceptually simple in its operation. Initially, each vertex in the graph is assigned a unique
numeric label. The label for each vertex is then replaced with the most frequent label amongst its neighbors; when
several labels are equally frequent, the current label is kept if it is among the most frequent, while otherwise a new
label is chosen at random from the most frequent. Vertices are repeatedly relabeled, with the algorithm terminating
when the label for each vertex is (one of) the most frequent of the labels for the neighbors of the vertex. To avoid
possible cycles and ensure termination, Raghavan et al. [4] suggest updating the vertex labels asynchronously and in
random order. Network communities are then associated with sets of vertices bearing the same labels.

The LPA offers a number of desirable qualities. As described above, it is conceptually simple, being readily under-
stood and quickly implemented. The resulting communities are of high quality, as measured by the modularity [6].
The algorithm is efficient in practice. Each relabeling iteration through the vertices has a computational complex-
ity linear in the number of edges in the graph. The total number of iterations is not a priori clear, but relatively
few iterations are needed to assign the final label to most of the vertices (over 95% of vertices in 5 iterations, see
Refs. [4, 5]).

III. AN OBJECTIVE FUNCTION FOR LABEL PROPAGATION

Thus far, the LPA has been presented operationally—the community solutions are defined as the outcome of a
specific procedure. Alternatively, an equivalent mathematical formulation, first recognized by Tibély and Kertész [7],
can be given, where community solutions are understood in terms of the results of applying an optimization procedure
to an objective function. The optimization procedure is the LPA, while the objective function remains to be specified.
The mathematical reformulation thus requires defining the objective function, which provides an alternate means of
understanding solutions found by the LPA.

To effect this reformulation, we first express the LPA optimization procedure as

l′v = argmax
l

∑

u∈n(v)

δ (lu, l) , (1)

where lu is the current label for vertex u, l′v is the new label for vertex v, n (v) is the set of vertices neighboring v
in the network, and δ is the Kronecker delta. In the event that multiple values would maximize the sum, the result
of argmaxl should be taken as for the procedural description of LPA, i.e., keep the current label if it would satisfy
Eq. (1), otherwise take a label at random that satisfies Eq. (1).

Equation (1) can be written in terms of the adjacency matrix A for the network, giving

l′v = argmax
l

n∑

u=1

Auvδ (lu, l) , (2)

where n is the number of vertices in the network. Consistent with the LPA, the adjacency matrix elements Auv are
all elements of {0, 1}. However, the discrete nature of the Auv is never made use of, so the form in Eq. (2) is equally
applicable to weighted networks.

Next, we introduce an objective function H that is maximized by the optimization procedure. Intuitively, we can
view the LPA as working to assign labels so as to increase the number of edges that connect vertices with identical
labels. Formally, this becomes

H =
1
2

n∑

v=1

∑

u∈n(v)

δ (lu, lv) . (3)
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Equation (3) can be rewritten in terms of the network adjacency matrix, giving

H =
1
2

n∑

v=1

n∑

u=1

Auvδ (lu, lv) . (4)

We note that maximizing H is equivalent to minimizing the Hamiltonian for a ferromagnetic Potts model; this
connection has been previously recognized by Tibély and Kertész [7]. The use of a Potts model Hamiltonian in
network partitioning has been explored in depth by Reichardt and Bornholdt [8].

It remains to be verified that the optimization rule in Eq. (1) does in fact maximize the objective function in Eq. (4).
Consider updating the label for some vertex x. We rewrite Eq. (4) to treat vertex x separately, yielding

H =
1
2




∑

v !=x

∑

u !=x

Auvδ (lu, lv) +
n∑

u=1

Auxδ (lu, lx) +
n∑

v=1

Axvδ (lx, lv)−Axx



 . (5)

Taking advantage of the symmetry of the adjacency matrix, we can simplify Eq. (5), giving

H =
1
2




∑

v !=x

∑

u !=x

Auvδ (lu, lv)−Axx



 +
n∑

u=1

Auxδ (lu, lx) . (6)

The final term on the right hand side of Eq. (6) is exactly of the form maximized by the LPA optimization rule in
Eq. (1), while the other terms are independent of the label on vertex x. Thus, the objective function never decreases
under the action of the LPA, ultimately reaching a local maximum or limit cycle.

An important property of the label propagation algorithm is immediately apparent from the form of H. For any
network, the LPA allows an uninteresting trivial solution in which all vertices are assigned the same label [4]. From
H, we see that the trivial solution is in fact the globally optimal solution. Other solutions found by label propagation
correspond to local maxima of H.

IV. DRAWBACKS OF LABEL PROPAGATION

The label propagation algorithm as a search scheme thus depends on a certain degree of ineffectuality. A typical
way to attempt improvement of a local search algorithm is to make it more able to escape from local maxima in H.
Such improvements to the LPA may be quite counterproductive, as better solutions in terms of H—notably, the global
maximum—may be quite useless in practical terms. Despite this, label propagation in practice produces communities
that are of high quality in terms of, e.g., modularity: the local maxima are frustrated equilibria, with localized groups
of well-connected vertices having the same label and with comparatively few edges between the groups.

Generally, there is a poor correspondence between H and our conceptual understanding of communities. Maximizing
H, be it by label propagation or another approach, need not produce better communities. Regardless, using the LPA
works by maximizing H, raising the question of whether, and in what sense, we are improving community quality.
Operationally, it is again unclear what it might mean to try improving the LPA. Does improving the search efficacy
actually give better communities? How do we prevent our optimizations from reaching the global maximum of H, or
other uninteresting solutions with high values of H?

To illustrate the difficulties involved, we consider a possible optimization of the label propagation algorithm. When
a vertex label is to be updated, it is necessary to handle the case where multiple labels are equally frequent for the
neighboring vertices. In the standard LPA, these ties are broken by keeping the current label for the vertex, if it
is one of the most frequent, or otherwise by selecting a label at random from the most frequent. In our optimized
version, we will always select a label at random from the most frequent; in light of this additional randomization, we
denote the modified algorithm as LPAr. The tie-breaking rule for the standard LPA corresponds to halting when a
plateau in the H space is reached, while LPAr corresponds to allowing a random walk on the plateau in search of
better solutions.

In Fig. 1, we show the number of communities found for one thousand applications of the standard LPA and the
putatively optimized LPAr to networks derived from the Southern women data. The data were collected by Davis
et al. [9] as part of an extensive study of class and race in the Deep South. The network represents interactions of
a group of 18 women at 14 various events in and around Natchez, Mississippi during the 1930s. This much-studied
network is typically found to have two communities using methods of social network analysis [10], in accord with the
conclusions from the original ethnographic study. Unfortunately, our attempted optimization has a perverse result



An Objective Function 
for the LPA

• LPA maximizes H, the number of edges that 
link vertices with the same label.

• Equivalent to minimizing the Hamiltonian 
for a ferromagnetic Potts model (Tibély and 
Kertész, 2008).

• Nothing prevents all vertices being assigned 
to the same community—it is the globally 
optimal solution! 



Consequences

• Community solutions are local optima in the 
objective function.

• Community quality is not necessarily improved 
by the LPA.

• No way to compare communities (but can use 
auxiliary considerations such as the modularity).

• The LPA is hard to modify or optimize.



Dubious Optimization
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LPA with Constraints

• Add a penalty term to the objective 
function.

• Can exclude undesirable solutions.

• Can give a reasonable measure of 
community quality.

• Can still be quite fast.



LPA for Modularity
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Performance
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FIG. 3: Accuracy of community solutions. Accuracy is quantified by the normalized mutual information between the found
and actual community solutions. Each point shows the average Q over 1000 instances of the random networks for each zout.
Error bars are smaller than the points.

Network LPA LPAm LPAr Hybrid

karate 0.4156 0.4000 0.4156 0.4198

dolphins 0.5237 0.5157 0.5265 0.5253

jazz 0.4424 0.4448 0.4428 0.4442

network science 0.8924 0.8723 0.9163 0.8934

condmat 2003 0.6228 0.5947 0.6578 0.6360

TABLE II: Maximum Q found for network community assignments. Values were calculated using one hundred samples for each
network for each of the standard LPA, LPAm, LPAr, and a hybrid approach consisting of maximization with LPA followed by
maximization with LPAm.

We examine the performance using four real-world bipartite networks. The networks are the Southern women
network, described above in section IV; a network describing corporate interlocks in Scotland, based on the membership
of boards of directors for Scottish firms during 1904–5 [21]; and bipartite versions of the condensed matter and network
science co-authorship networks considered in section VIA, including authors and their papers as the two parts of the
network. In table IV, we show the number of vertices p and q in the two parts of the networks, as well as the number
of edges m.

To each network, we apply each algorithm one hundred times. The maximum and mean values found for QB are
given in tables V and VI, respectively. For the Southern women network, we note that LPAr is clearly the worst of the
algorithms considered, consistent with its tendency to assign the same label to all vertices, as seen in Fig. 1. Further,
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Network LPA LPAm LPAr Hybrid

karate 0.366(6) 0.347(3) 0.352(9) 0.386(4)

dolphins 0.484(4) 0.4956(8) 0.484(5) 0.495(3)

jazz 0.336(9) 0.4351(9) 0.34(1) 0.366(7)

network science 0.8792(6) 0.8618(5) 0.9046(5) 0.8806(6)

condmat 2003 0.6073(6) 0.5828(4) 0.6420(6) 0.6139(9)

TABLE III: Mean Q found for network community assignments. Values were calculated using one hundred samples for each
network for each of the standard LPA, LPAm, LPAr, and a hybrid approach consisting of maximization with LPA followed
by maximization with LPAm. The uncertainty of the final digit, calculated as the standard error of the mean, is shown
parenthetically.

Network p q m

Southern women 14 18 89

Scotland interlocks 108 136 358

network science 959 1588 2580

condmat 2003 31162 47055 134600

TABLE IV: Basic properties of bipartite networks used to test label propagation algorithm variants.

the superior performance of LPAb on the Southern women network indicates that the inclusion of G3 excludes the
frequent appearance of the trivial solution with all vertices in the same community.

Despite the success of LPAb on the Southern women network, it is less successful on the other networks. Performance
is quite similar for LPA and LPAb on the Scotland corporate interlocks network, but LPAb is otherwise outperformed
by the other label propagation variants. Indeed, LPAr provides the best results for the larger networks, in contrast
to its poor results for the Southern women network.

VII. DISCUSSION

We have examined the label-propagation algorithm as an optimization problem, identifying community solutions
that it finds with the maxima of an objective function. The objective function, which is just the number of network
edges connecting vertices with the same labels, has the significant conceptual drawback that increasing the objective
function need not produce what we would consider to be better communities. Markedly, the globally optimal solution
is completely uninformative, with all vertices in the same community. Label propagation thus depends on reaching
one of the large number of local maxima in the objective function to avoid the trivial global solution. Attempts to
improve on the algorithm may be counterproductive, giving less information while reaching nominally better solutions.
By modifying the objective function, we defined several label-propagation algorithms that are constrained to avoid
assigning all vertices to the same community; one of the constrained label-propagation algorithms, LPAm, maximizes
the modularity.

In light of the results for the real-world networks (tables II and III for unipartite networks, tables V and VI for
bipartite networks), it seems clear that the main label propagation variants we have considered—LPA, LPAm, LPAr,

Network LPA LPAb LPAr Hybrid

Southern women 0.3212 0.3455 0.3212 0.3212

Scotland interlocks 0.5782 0.5738 0.6552 0.5975

network science 0.8137 0.7789 0.8948 0.8172

condmat 2003 0.6378 0.6178 0.7232 0.6587

TABLE V: Maximum QB found for bipartite network community assignments. Values were calculated using one hundred
samples for each network for each of the standard LPA, LPAb, LPAr, and a hybrid approach consisting of maximization with
LPA followed by maximization with LPAb.
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VII. DISCUSSION
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edges connecting vertices with the same labels, has the significant conceptual drawback that increasing the objective
function need not produce what we would consider to be better communities. Markedly, the globally optimal solution
is completely uninformative, with all vertices in the same community. Label propagation thus depends on reaching
one of the large number of local maxima in the objective function to avoid the trivial global solution. Attempts to
improve on the algorithm may be counterproductive, giving less information while reaching nominally better solutions.
By modifying the objective function, we defined several label-propagation algorithms that are constrained to avoid
assigning all vertices to the same community; one of the constrained label-propagation algorithms, LPAm, maximizes
the modularity.

In light of the results for the real-world networks (tables II and III for unipartite networks, tables V and VI for
bipartite networks), it seems clear that the main label propagation variants we have considered—LPA, LPAm, LPAr,

Network LPA LPAb LPAr Hybrid

Southern women 0.3212 0.3455 0.3212 0.3212
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TABLE V: Maximum QB found for bipartite network community assignments. Values were calculated using one hundred
samples for each network for each of the standard LPA, LPAb, LPAr, and a hybrid approach consisting of maximization with
LPA followed by maximization with LPAb.

Maximum modularity (100 samples)

Average modularity (100 samples)



Conclusions

• LPA can be expressed as an optimization 
problem.

• Several hidden assumptions are built into 
the LPA.

• Constraints make it easier to understand 
how LPA works.
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