Taming the Untamable:

Divergence-free Nonrenormalizable Models

John R. Klauder University of Florida Gainesville, FL

Nonrenormalizable Scalar Fields

- Classical starting model
- Quartic interactions for n > 4
- Ambiguity of quantization
- Choice of counter terms
- Lattice formulation
- Continuum limit
- Classical limit

Conventional Viewpoint (1)

Lattice point $k \in \mathbb{Z}^n$; lattice spacing a $I = \sum_k [\frac{1}{2}(\phi_{k^*} - \phi_k)^2 a^{n-2} + \frac{1}{2}m_0^2 \phi_k^2 a^n + \lambda_0 \phi_k^4 a^n]$ Lattice limit $(n \ge 5)$ lim $M \int e^{\sum_k h_k \phi_k a^n - I} \prod_k d\phi_k = e^{-\int h(x)A(x-y)h(y)d^n x d^n y}$ A nonlinear theory has become linear!

Conventional Viewpoint (2)

Regularized perturbation theory leads to infinitely many distinct counter terms of ever increasing degree of divergence.

How should one interpret this? By itself this story is incomplete.

Strategy for Divergences

Dealing with divergences :

Re-active: Repair every outbreak

Pro-active: Remove the source

Each approach requires different counter terms

Basic Background (1) Periodic spacetime lattice ; size $N = L^n$ Points $k = (k_0, k_1, \dots, k_s)$; spacing a $I_p(A) = \int [\Sigma_k \phi_k^2]^p e^{-A\Sigma_k \phi_k^2} \prod_k d\phi_k$ $= \int \kappa^{2p} e^{-A\kappa^2} \kappa^{N-1} d\kappa \ d\Omega_{N-1}$ $I_{p}(A) = O((N/A)^{p}) I_{0}(A) ; \quad \Delta = A - 1$ $I_1(A) = I_1(1) - \Delta I_2(1) + \Delta^2 I_3(1) / 2 - \cdots$

Basic Background (1) Periodic spacetime lattice ; size $N = L^n$ Points $k = (k_0, k_1, \dots, k_s)$; spacing a $I_p(A) = \int [\Sigma_k \phi_k^2]^p e^{-A\Sigma_k \phi_k^2} \Pi_k d\phi_k$ $= \int \kappa^{2p} e^{-A\kappa} \kappa^{N-1} d\kappa \ d\Omega_{N-1}$ $I_{p}(A) = O((N/A)^{p}) I_{0}(A) ; \quad \Delta = A - 1$ $I_1(A) = I_1(1) - \Delta I_2(1) + \Delta^2 I_3(1) / 2 - \cdots$

Basic Background (2)

Periodic spacetime lattice ; size $N = L^n$ Points $k = (k_0, k_1, \dots, k_s)$; spacing a $I'_{p}(A) = \int \kappa^{2p} e^{-A\kappa^{2}} d\kappa \ d\Omega_{N-1}$ $I'_{p}(A) = O((1/A)^{p}) I'_{0}(A) ; \qquad \Delta = A - 1$ $I'_{1}(A) = I'_{1}(1) - \Delta I'_{2}(1) + \Delta^{2} I'_{3}(1) / 2 - \cdots$

Basic Background (3)

Elementary quantum mechanics $H = -\frac{1}{2} \frac{d^{2}}{dx^{2}} + \frac{1}{2} \frac{\lambda(\lambda+1)}{x^{2}} + \frac{1}{2} x^{2} - E_{0} , \quad (x \neq 0)$ $H\psi(x) = 0 ; \qquad H = -\frac{1}{2} \frac{d^{2}}{dx^{2}} + \frac{1}{2\psi(x)} \frac{d^{2}\psi(x)}{dx^{2}}$ $\psi(x) = C |x|^{-\lambda} e^{-x^{2}/2} ; \quad E_{0} = \frac{1}{2}(1 - 2\lambda)$ Least energy: $0 < \lambda < 1/2$

$$I(\phi, a, \hbar) = \frac{1}{2} \sum_{k} (\phi_{k^*} - \phi_{k})^2 a^{n-2} + \frac{1}{2} m_0^2 \sum_{k} \phi_{k}^2 a^n + \lambda_0 \sum_{k} \phi_{k}^4 a^n + \frac{1}{2} \hbar^2 F \sum_{k} \phi_{k}^{-2} a^n$$

$$F = a^{-2s} (\frac{3}{2} - 0) = a^{-2s} (\frac{1}{2} + \frac{1}{2} - 0)$$

$$F' = a^{-23} \left(\frac{3}{4} - 0\right) = a^{-23} \left(\frac{1}{4} + \frac{1}{2} - 0\right) ,$$

'Idealized version'

Proposed Lattice Action (1)

$$I(\phi, a, \hbar) = \frac{1}{2} \sum_{k} (\phi_{k^{*}} - \phi_{k})^{2} a^{n-2} + \frac{1}{2} m_{0}^{2} \sum_{k} \phi_{k}^{2} a^{n} + \lambda_{0} \sum_{k} \phi_{k}^{4} a^{n} + \frac{1}{2} \hbar^{2} \sum_{k} \mathsf{F}_{k}(\phi) a^{n}$$

$$F_{k} = a^{-2s} D^{-1} D_{,kk} , \quad D = \Pi'_{k} [\Sigma'_{l} J_{k,l} \phi_{l}^{2}]^{-\gamma}$$

$$\gamma = (N' - 1) / 4N' , \quad N' = L^{s}$$

No new parameters; scales as kinetic term

Basic Ingredients

$$\begin{split} S(h) &= M \int e^{Z^{-1/2} \Sigma_k h_k \phi_k a^n / \hbar - I(\phi, a, \hbar) / \hbar} \Pi d\phi_k \\ H &= -\frac{\hbar^2}{2} \Sigma'_k \frac{\partial^2}{\partial \varphi_k^2} a^{-s} + \frac{1}{2} \Sigma'_k (\phi_{k^*} - \phi_k)^2 a^{s-2} - E_0 \\ &+ \frac{1}{2} m_0^2 \Sigma'_k \phi_k^2 a^s + \lambda_0 \Sigma'_k \phi_k^4 a^s + \frac{\hbar^2}{2} \Sigma'_k \mathsf{F}_k(\phi) a^s \\ H \Psi(\phi) &= 0 \quad ; \quad \Psi(\phi) = \frac{e^{-U(\phi, a, \hbar)/2}}{\Pi'_k [\Sigma'_k J_{k,l} \phi_l^2]^{(N'-1)/4N'}} \end{split}$$

$$\Psi_{I}(\phi)^{2} = \frac{K \ e^{-\Sigma'_{k}\phi_{k}A_{k,i}\phi_{l}a^{2s}/\hbar}}{\Pi'_{k}[\Sigma'_{l}J_{k,l}\phi_{l}^{2}]^{(N'-1)/2N'}}$$

$$\phi_{k} = \kappa\eta_{k}, \ \Sigma'_{k}\phi_{k}^{2} = \kappa^{2}, \ \Sigma'_{k}\eta_{k}^{2} = 1$$

$$\int [\Sigma'_{k}\phi_{k}^{2}a^{s}]^{p}\Psi_{I}(\phi)^{2}\Pi' d\phi_{k}$$

$$= K\int \kappa^{2p}a^{sp} \frac{e^{-\kappa^{2}\Sigma'_{k,l}\eta_{k}A_{k,l}\eta_{l}a^{2s}/\hbar}}{\Pi'_{k}[\Sigma'_{l}J_{k,l}\eta_{l}^{2}]^{(N'-1)/2N'}} d\kappa \ d\mu(\eta)$$

Bounds on Lattice Averages

$$\langle (\cdot) \rangle = M \int (\cdot) e^{-I/\hbar} \Pi_k d\phi_k$$

$$\langle [\Sigma_0 F(\phi, a)a]^p \rangle = \widetilde{\Sigma}_0 a^p \langle F(\phi_1, a) \cdots F(\phi_p, a) \rangle$$

$$| \langle [\Sigma_0 F(\phi, a)a]^p \rangle | \leq \widetilde{\Sigma}_0 a^p | \langle F(\phi_1, a) \cdots F(\phi_p, a) \rangle |$$

$$\leq \widetilde{\Sigma}_0 a^p | \langle F(\phi_1, a)^p \rangle \cdots \langle F(\phi_p, a)^p \rangle |^{1/p}$$

$$\langle F(\phi, a)^p \rangle = \int F(\phi, a)^p \Psi(\phi)^2 \Pi'_k d\phi_k$$

Fixing the Constants (1) To fix $Z: Z^{-p} \int [\Sigma'_k h_k \phi_k a^s]^{2p} \Psi(\phi)^2 \Pi'_k d\phi_k$ To fix $m_0^2: \int [m_0^2 \Sigma'_k \phi_k^2 a^s]^p \Psi(\phi)^2 \Pi'_k d\phi_k$ To fix $\lambda_0: \int [\lambda_0 \Sigma'_k \phi_k^4 a^s]^p \Psi(\phi)^2 \Pi'_k d\phi_k$

Result : $\langle [m_0^2 \Sigma_k \phi_k^2 a^n]^p \rangle < \infty$ Result : $\langle [\lambda_0 \Sigma_k \phi_k^4 a^n]^p \rangle < \infty$

Fixing the Constants (2)

$$\int [m_0^2 \Sigma'_k \phi_k^2 a^s]^p \Psi(\phi)^2 \Pi'_k d\phi_k$$

$$= K \int m_0^{2p} a^{sp} \kappa^{2p} \frac{e^{-\kappa^2 \Sigma' \eta_k A_{k,l} \eta_l a^{2s} / \hbar}}{\Pi'_k [\Sigma'_l J_{k,l} \eta_l^2]^{(N'-1)/2N'}} d\kappa d\mu(\eta)$$

$$\propto m_0^{2p} a^{sp} / (N'a^{(s-1)})^p \qquad ; m_0^2 = N'(qa)^{-1} m^2$$
Result : $\langle [m_0^2 \Sigma_k \phi_k^2 a^n]^p \rangle < \infty$

Fixing the Constants (3) $Z^{-p} \int [\Sigma'_{k} h_{k} \phi_{k} a^{s}]^{2p} \Psi(\phi)^{2} \Pi'_{k} d\phi_{k} : Z = N'^{-2} (qa)^{1-s}$ $\int [m_{0}^{2} \Sigma'_{k} \phi_{k}^{2} a^{s}]^{p} \Psi(\phi)^{2} \Pi'_{k} d\phi_{k} : m_{0}^{2} = N'(qa)^{-1} m^{2}$ $\int [\lambda_{0} \Sigma'_{k} \phi_{k}^{4} a^{s}]^{p} \Psi(\phi)^{2} \Pi'_{k} d\phi_{k} : \lambda_{0} = N'^{3} (qa)^{s-2} \lambda$

Result : $\langle [m_0^2 \Sigma_k \phi_k^2 a^n]^p \rangle < \infty$ Result : $\langle [\lambda_0 \Sigma_k \phi_k^4 a^n]^p \rangle < \infty$

Conclusions

- Add a single counter term that is h-bar dependent and scales as kinetic term
- Determine parameters by self consistency in continuum limit
- Leads to divergence-free perturbative formalism about pseudofree model which contains the counter term