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Construction of dyr

Definitions I

e Configuration space
I:={yCR: |[yNBg(0)] < oo forall R},

where Bg(0) ball of radius R.
e Empirical field

=) f(®)

x€y

° f = vaiayIa for A C RY.



Construction of dynamics

Generator

o Free Kawasaki dynamics: 0 < a € L' (IRY)

(1)) i= X [ dyae—y) (Fly Uy} \ {x}) — F(m))

x€y

@ Jump process: Exponential clock with rate [ a(x)dx;
probability of jump x — vy

a(x —y)

[ a(z)dz

@ Independent jumps



Construction of dynamics

Independent infinite particle process

Kondratiev, Lytvynov , Rockner: Independent infinite
Markovian particles as an Markov process on the configuration
space
o N
e Construct infinite product process on (R?)
@ Projection:

N
(R)" —r
(n)nen = {Xn}nen
@ Corresponding time homogeneous
cadlag Markov process X¢
with law P,

for initial value v € ©.
@ Admissible configurations

0:= {'y €T : limsupR 4|y NBg(0)| < oo}

R—o0



Construction of dynamics

Reduction to one particle dynamics

@ Special class of functions: Bogoliubov exponentials

es(f)(7) == [[(1+f(x)).

xey

Proper exponential for configuration space

eg(f) = exp ((In(1+f), 7))

@ Time development of exponentials

[ s (X()) Py (deo) = es(ef) ()

@ Operator A Markov generator on Co, (IRY)

(A = [ o) (F+x) —f ()



Construction of dynamics

Equilibrium dynamics

@ Initial measure 71, with z constant

@ a symmetric: Dirichlet form, Kondratiev, Lytvynov,
Rockner

[ i) § [ dvats =) (Fr \x0w) — E(n)
XEy

@ Second quantization, (also asymmetric). Unique extension.



Construction of dynamics

Local equilibrium dynamics

e Poisson random field 7t,: general intensity 0 < z € L1 (R%)

Jen)(nmatam) = exp ( [zt

@ Time-development of initial distribution 7,

/F('y)P,T /F (X¢(w /P (dw) 7, (dy)

loc

@ Solution
Pnz,t = Tl
with
7=z

@ Invariant measures: Poisson random fields with constant
intensity z(x) = zo.



Construction of dynamics

One particle operator

@ Operator A Markov generator on Co (R?)

(AN E) = [ aW(Fly+) ()

@ Jump process: Exponential clock with rate [ a(x)dx;
probability of jump x — y
a(x —y)
[ a(z)dz

o Easy form in Fourier variables

A

Af (k) = (2m)*(a(k) — a(0))f (k)

and for the semi—group

(etAf> (x) = d/z /dkezkx t(27)%/2 (a(k)— ﬁ(O))A(k)



Construction of dynamics

Large Time Asymptotic I

@ Invariant measures:
Prrz,t =TTz

Poisson random fields with constant intensity z(x) = zy.
@ Large time: for t — oo
Hrm Pr g = HI0 7 = Tl 02

@ Reduce to one particle

lim [ ¢f(x)z(x)dx = lim o202 @k) (0D £ (10)2 (k) dk.
Dominated by 1

o202 (a(k)—a(0)) _, 1 ifk=0
0 otherwise



Construction of dynamics

Large Time Asymptotic II

o Ifz € L'(R?) then 2(k) € Co(IRY)
lim [ ! @02@0-20)F ()2 (k)dk — /{ } F(k)2(k)dk = 0.
0

t—o0
o If z := zy + Az with zg constant Az € L' (IR?) then
2(k) = zod(k) + Az (k)
Consequently,
lim [ ¢f@0"*@H)-20)F (k)2 (k) dk

t—o0

- A o 10 (200(0) + B2(8)) ke = 2o
@ General argument 2(k)dk signed measure. Then
lim [ /@02 @020 ()2 (dk)

t—o0

= o, f (k12080 =F(0)2({0}).



Construction of dynamics

Large Time Asymptotic III

e Concluding

lim [ ef (x)z(x)dx = 2({0}) ]Rdf(x)dx

t—o0
@ Define constant by

. 1
mean(Z) = I%EI‘OIO m /BR(O) Z(X)dx.

e V¢ € L'(R?) holds

lim R~ /]Rd dxg(x/R)z(x) = mean(z) /]Rd dxg(x)

R—o0



Construction of dynamics

Large Time Asymptotic IV

e Vo € L'(R?) holds

lim R~ /]Rd dx¢(x/R)z(x) = mean(z) /]Rd dxg(x)

R—o0
o If 2(k)dk signed measure. Then V¢ € L' (R?) holds
. od
l%l_r)r;oR /]Rd dxg(x/R)z(x)

= Jlim [ dxp(R)=(db) = p(0)2({0})

R—o0 JR

@ Hence

}Ln;lo Pﬂz,t = Tlmean(z)-



Construction of dynamics

Equilibrium vs. Non-equilibrium, Scales

Equilibrium vs. non-equilibrium
e Equilibrium: 7r, with z constant
@ Near equilibrium: density w.r.t. 77, with z constant
@ Local equilibrium: 7, with z slowly varying

@ Far from equilibrium: no density w.r.t any Poisson
measure

Scales
@ System scale: infinity
@ Space scale (observation)
@ Time scale (observation)
@ Interaction scale
@ Initial data



Construction of dynamics

Examples

@ Depend only on |x| — oo.

0, if z goes to 0
0, ifzelP(RY),pec]l2]
mean(z) := Z0, if z(x) = 29

zo, ifz(x) = zo(1 — asin(x))
20/2, if z(x) = 2ol (oo 0) (%)
@ Last case: Z not signed measure.



Construction of dynamics

General result

e Hypothesis:
}Ln; Pnth = Tlmean(z)-

if and only if mean(z) exists.
o If for z exists t;, — oo such that

lim | ef"Af (x)z(x)dx

n—oo

the limit is C [ f(x)dx.
@ Mean does not exist for all z

1, if 22k < |X| < 22k+l
0, otherwise

z(x) =



Construction of dynamics

No overall density
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Further results

Non-equilibrium

@ Initial measure: y not Poisson
@ Cumulants, Ursel functions, truncated moments

N

@ Density: pﬁ,l) = ug,l)



Further results

Large time asymptotic

@ Large times

lim P, ; — 7

F—c0 mean(p;,)
where
(1) ._
Pu = M ol(BR(0)) BR /rz]lBR pd).

xEy

) Pp Mmeasure.



Further results

Future projects

e Time asymptotic for general initial condition
e Front propagation: Velocity, Shape

o Current

e Kawasaki with interaction

o Glauber plus Kawasaki

@ Further variants of interaction
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