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A transformation formula for resolvents of families of Schrödinger operators
H(#)!" 1

2$##Q , which are assumed to be holomorphic of type B, is proved. It
can be used to derive the well-known correspondence between three-dimensional
Coulomb problem and four-dimensional harmonic oscillator. © 2000 American
Institute of Physics. %S0022-2488!99"03112-6&

I. INTRODUCTION

It is well known !see Ref. 1" that the heat equation semigroup generated by a Schrödinger
operator bounded from below !and therefore its resolvent" can be represented probabilistically as
an expectation value of a functional of some stochastic process. One simple consequence of the
mere existence of those Feynman–Kac formulas is that the stochastic process is determined only
up to version, i.e., you can use any other process with the same law. Surprisingly this may yield
nontrivial results. In this paper we aim to illustrate this fact by a well-known example: the
correspondence between the harmonic oscillator in dimension 4 and the Coulomb problem in
dimension 3. To obtain this result the following transformation formula !Theorem 6.3" is proved
using a Feynman–Kac formula for holomorphic families of type B.

Given a proper and surjective harmonic morphism ':M→N between complete and orientable
Riemannian manifolds without boundary and a holomorphic family of type B,

H!#"!" 1
2$!#Q ,

of Schrödinger operators on L2(N), the resolvent family can be lifted to the resolvent family of a
corresponding holomorphic family,

G!("!" 1
2$!() ,

on L2(M ), provided '*Q(x)ª)(x)Q!'(x)+C equals a constant and ):M→R is the square of
the dilatation of the harmonic morphism '. The correspondence is given for compactly supported
f!L2(N) by

R„, ,H!#"…f !x "!R„"C# ,G!","…'* f !y ",

for y!'"1(x).
The proof uses a version of Brownian motion constructed by Csink and Oksendal: suitably

time transformed Brownian motion on M, mapped to N by a harmonic morphism, coincides in law
with Brownian motion on M.2 This property generalizes the classical scale invariance due to Lévy.
Once the Feynman–Kac formula is taken for granted the proof reduces to the transformation
formula for integrals on some infinite-dimensional measure space. It is believed that other con-
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structions from stochastic calculus can be used in a similar way and that looking for symmetries
of some underlying stochastic process provides a common point of view upon analogous corre-
spondences between quantum mechanical systems.

The paper is organized as follows: In Sec. II we summarize some facts about operators that are
used in the sequel. Section III mainly consists of a proof of a Feynman–Kac formula for a
holomorphic family of generators and a representation of the corresponding resolvent. Since in the
proof of !Theorem 6.3" the unique continuation property of holomorphic families of type B is
used, in Sec. IV we summarize some facts about the domain of holomorphicity of the resolvent. In
Sec. V we deal with well-known facts about harmonic morphisms; of special importance is
Proposition 5.5, which is the invariance property mentioned above. In Sec. VI the transformation
formula is proved and in Sec. VII it is applied to the well-known3,4 correspondence between the
Coulomb problem in dimension 3 and the harmonic oscillator in dimension 4. Finally, Sec. VIII
contains the corresponding transformation formula for the kernel of the resolvent.

II. SOME FACTS ABOUT SECTORIAL OPERATORS

For the convenience of the reader, some facts from functional analysis are summarized.
Almost all of them can be found in the classical book of Kato. In the sequel, M denotes a complete
and oriented smooth Riemannian manifold without a boundary and V!L2(M ).

If the measurable real function Q!L loc
1 (M ) is bounded from below, i.e. essinfQ!C!R,

pointwise multiplication with Q yields a sectorial operator Q̂ from a dense domain D(Q̂)!V to V
!Ref. 5, Example 1.5, p. 312". It can be assumed that Q̂ is closed !Ref. 5, Example 1.15, p. 315".
The same holds for #Q̂ if #!C with Re(#)$0. The domains of the operators #Q̂ coincide and are
equal to D(Q̂). The associated quadratic forms #q( f )ª#( f ,Q̂ f ) are as well sectorial and closed
with domain D(q)!V , independent of #.

Let us now denote $ª"d*d the Laplacian on functions on M and let -( f )ª" 1
2( f ,$ f ) the

associated quadratic form with domain D(-)!V . Then, since the Laplacian is self-adjoint !Ref. 6,
Theorem 5.7, p. 117" on V , - is a densely defined closed sectorial form.

By the Friedrichs construction !Ref. 5 Theorem 2.1, p. 322, Theorem 2.23, p. 331" there are
uniquely determined closed operators associated to the forms #q and -. They are also denoted by
" 1

2$ and #Q̂ , respectively. These operators turn out to be m-sectorial !Ref. 5, Sec. V.10, p. 280".
By Ref. 5, Theorem 1.31, p. 319, the sum

h!#"ª-##q ,

with common domain D!D(-)"D(q), is closed and sectorial for Re(#)$0. In other words,
h(#),Re(#)$0 is a holomorphic family of type !a" !Ref. 5, Sec. VII.2, p. 395".

Therefore the m-sectorial operators H(#),Re(#)$0, associated to h(#) by the Friedrichs con-
struction, i.e., the form sums,

H!#"!" 1
2$!#Q̂ ,

form a holomorphic family of type B !Ref. 5, Theorem 4.2, p. 395". For fixed #, the numerical
range

.„h!#"…ª/! f ,H!#" f ":! f !0!11,

is contained in a sector,

S!2 ,3"ª/z!C:arg"z"2"%31,

2!R,3%4/2 that contains #C .
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Crucial for all the applications in the sequel is the following result due to Simon,7 who also
emphasized the fact that the form sum is most suitable in connection with the Feynman–Kac
formula.8

Theorem 2.1: Let A,B be m-sectorial operators in V with associated closed sectorial forms
a,b. Let P the orthogonal projection onto the closure V!!V of the intersection of domains
D(a)"D(b). Then

lim
n→5

!e"tA/ne"tB/n"n f!e"t!A!B "P f ,

for each f!V .
It should be noted that, by the Hille–Yoshida theorem, that m-sectorial operators generate

strongly continuous semigroups.

III. A FEYNMAN–KAC FORMULA FOR HOLOMORPHIC FAMILIES OF TYPE B

Let !6,F,P,Ft) denote the space of continuous paths in !a suitable compactification of" M and
Bx Brownian motion with starting point x!M . Brownian motion on M is, in general, only defined
up to an explosion time denoted by TM . The present section is devoted to a proof of the following
statement.

Proposition 3.1: Let Q!L loc
1 (M ) be a potential such that

H!#"!" 1
2$!#Q̂

is a holomorphic family of type B for #!U , where U!/#:Re(#)$01 is some open connected set
such that U"R70” . Then the Feynman–Kac formula holds, i.e., for t$0 and f!V ,

e"tH!#" f!E# f !Bt"exp$ "#%
0

t
ds Q!Bs" & 8/t%TM̂1' ,

where the domain D!D„H(#)… is dense in V .
Proof: The proof consists of three steps.

!1" The formula is proved for bounded continuous potentials
Q:M→R,

i.e., "Q"9C .
!2" By a first approximation argument the formula is extended to measurable potentials

Q!L loc
1 (M ) bounded from below.

!3" By a further approximation argument for quadratic forms, the formula is extended to
potentials Q!L loc

1 (M ), subject to the condition that the operators H(#) defined above
actually form a holomorphic family of type B.

!1" Assume first Q to be continuous. Then for fixed (: ,x)!6&M the approximation by
Riemann sums,

Fn
x!:"ª f „Bt

x!:"…exp$ "
t#
n ;k!1

n

Q„Bkt/n
x !:"…& 8/t%TM̂1!:",

converges to

Fx!:"! f „Bt
x!:"…exp$ "#%

0

t
ds Q„Bs

x!:"…& 8/t%TM̂1!:",

as n tends to infinity. Let volM denote the volume form on M. Then, for f!V ,
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!E!Fn
x"Fx"!V

2!%
M
volM!dx ""E!Fn

x"Fx""29%
M
volM!dx "!E"Fn

x"Fx""2

!%
M
volM!dx "E!Fn

x"Fx"E!Fn
x"Fx"

!%
M&6&6

volM!dx "P!d:"P!d:!"!Fn
x"Fx"!:"!Fn

x"Fx"!:!"

9%
M&6&6!

volM!dx "P!d:"P!d:!"" f „Bt
x!:"…! f „Bt

x!:!"…"e"2C Re!#"t

!e"2C Re!#"t%
M
volM!dx "E" f !Bt

x""E" f !Bt
x""

!e"2C Re!#"t!et$/2" f "!V
29e"2C Re!#"t! f !V

2 ,

since et$/2 is bounded with a norm of less than one. Therefore

" f „Bt
x!:"…! f „Bt

x!:"…"e"2C Re!#"t<!Fn
x"Fx"!:"!Fn

x"Fx"!:!"

is a )&P&P-integrable majorant. By the above, for all (: ,x),Fn
x"Fx converges to zero. That

implies by Lebesgue’s dominated convergence,

!EFn
x"EFx!V

2→0,

as n→5 .
Since continuous potentials are in L loc

1 (M ), smooth functions with compact support are con-
tained in the domains of - and #q . Since the manifold was assumed to be complete these functions
form a dense subset of V . Therefore we may set P!1 in !2.1". The statement now follows from
the equality

E# f !Bt"exp$ "
t#
n ;k!1

n

Q!Bkt/n"& 8/t%TM̂1'!!et$/2ne"t#Q̂/n"n f .

!2" First of all, it has to be shown that the Feynman–Kac formula only depends on the
equivalence class of Q!L loc

1 (M ). This follows from the fact that since the transition density of
Brownian motion posesses a C5 density with respect to the volume form, the expected occupation
time,

= t
x!A "ªE%

0

t∧TM
8A!Bs

x"ds ,

for a Borel set A!M yields a finite Borel measure on M of total mass less or equal to t that
posesses a density with respect to the volume form as well. From that the following can be directly
concluded.

Lemma 3.2: Let Q!L loc
1 (M ) be bounded with essup "Q"!0. Then

E%
0

t∧TM
Q!Bs

x"ds!%
M
Q!y "= t

x!dy "!0.

Now for a general measurable potential Q with esssup "Q"!0, we have by monotone conver-
gence,
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E(exp$ "#%
0

t
Q!Bs

x"ds & "1(8/t%TM1

! lim
N→5

E(exp$ "#%
0

t
Q!Bs

x"ds & "1(8/t%TM1

9 lim
N→5

"#"e "#N"8/t%TM1E%0
t
Q!Bs

x"ds!0.

Therefore the probability

P$ (exp$ "#%
0

t
Q!Bs

x"ds & "1(8/t%TM170 & !0,

which implies

E# f !Bt"exp$ "#%
0

t
Q!Bs

x"ds & 8/t%TM1'!E% f !Bt
x"8/t%TM1& ,

and the expectation of the Feynman–Kac functional only depends on the class of Q!L loc
1 (M ).

Moreover, the Feynman–Kac formula for Brownian motion is continuous in Q!L5(M ).
Let now Q!L loc

1 (M ) be bounded from below. Then Q∧n!L5(M ) and there is a sequence of
bounded continuous potentials Qn ,k such that

lim
k→5

!Qn ,k"Q∧n!5!0.

By the above mentioned continuity;

lim
k→5

E# f !Bt"exp$ "#%
0

t
Qn ,k!Bs

x"ds & 8/t%TM1'!E# f !Bt
x"exp$ "#%

0

t
Q∧n!Bs

x"ds & 8/t%TM1' .
On the other hand, since Qn ,k"Q∧n!L5(M ) is bounded as multiplication operator on V , the

domains of

Hn!#"!" 1
2$!#!Q∧n "

and

Hn ,k!#"!" 1
2$!#Qn ,k

coincide, and for all f!D(-)"D(q∧n),

!!Hn ,k!#""Hn!#" f !V9!Qn ,k"Q∧n!5! f !V ,

which implies generalized strong convergence in the sense of Ref. 5, Sec. VIII 1, p. 427. By Ref.
5, Theorem 2.16, p. 504, this finally implies uniform convergence of the corresponding semi-
groups in any finite subinterval of the positive real axis. Therefore !3.1" is proven for potentials
Q∧n .

Now let n tend to infinity. The convergence of the corresponding Feynman–Kac functionals
follows by monotone convergence and the fact that for Re(#)$0,

( f !Bt
x"exp$ "#%

0

t
Q!Bs

x"ds & 8/t%TM1(9" f !Bt
x""e"Re!#"Ct,
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is P integrable.
The convergence of the corresponding operator semigroups follows by the fact mentioned in

Sec. II, that for Re(#)$0 the form sums Hn(#) and H(#) are m-sectorial with a common sector
S(2 ,3) that contains #C!C. Since D„H(#)… is a common core for these operators and (Q∧n)
&(x)→Q(x), Ref. 5, Theorem 1.5, p. 429 implies generalized strong convergence Hn(#)
→H(#) for Re(#)$0 and therefore again by Ref. 5, Theorem 2.16, p. 504 convergence of the
corresponding semigroups.

!3" For a general potential Q!L loc
1 (M ) such that the operators H(#) form a holomorphic

family of type B, the Feynman–Kac formula is obtained by a criterion for convergence of sectorial
forms from above !Ref. 5, Theorem 3.6, p. 455". Consider

Hm!#"ª" 1
2$!#!Q∨"m ".

The associated quadratic forms are densely defined and sectorial for Re(#)$0 and by the above,
the Feynman–Kac formula holds for the corresponding semigroups. By Sec. II the operators
Hm(#) form a holomorphic family of type B for Re(#)$0.

!a" For real parameter #!U"R, the associated quadratic forms decrease, i.e.,

hm!#"! f "<h!#"! f "<c ,

for some c!R, since h(#) was assumed to be sectorial. This implies

D„hm!#"…!D„h!#"…,
for real #, but since the operators hm(#),h(#) form holomorphic families of type !a" this statement
does not depend on #!U .

!b" For f!D„hm(#)… and hmo ( f )ªhm(#)( f )"h(#)( f ),

"Im„hmo ! f "…"!"Im!#""„f ,!Q∨!"m ""Q " f …! "Im!#""
Re!#" Re!#"„f ,!Q∨!"m ""Q " f …

!K Re!hm
o ! f "…,

since Q∨("m)"Q<0.
!c" Smooth functions C0

5(M ) with compact support form a common core of h(#) and hm(#)
for all m. By monotone convergence,

„f ,Q∨!"m " f …→! f ,Qf ",

for f!C0
5(M ) as m tends to infinity.

Now !a", !b", and !c" are the conditions under which the convergence criterion for quadratic
forms mentioned above can be applied. It yields generalized strong convergence,

Hm!#"→H!#",

for #!U as m tends to infinity.
By Ref. 5, Theorem 1.2, p. 427 generalized strong convergence of the generators implies

strong convergence of the resolvents for Re(,)%2(#). Again, by Ref. 5, Theorem 2.16, p. 504, this
implies convergence of the corresponding semigroups.

On the other hand,

lim
m→5

E# f !Bt"exp$ "#%
0

t
!Q∨"m "!Bs

x"ds & 8/t%TM1'!E# f !Bt
x"exp$ "#%

0

t
Q!Bs

x"ds & 8/t%TM1' ,
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compactly for real #!U"R by monotone convergence. For general #!U convergence follows by
Vitali’s theorem !Ref. 9, p. 154". "

Corollary 3.3: Under the assumptions above the resolvent of H(#) can be expressed by

„H!#"",…"1 f !x "!Ex# %
0

5

dt f !Bt"exp$ %
0

t„,"#Q!Bs"…ds & 8/t%TM1' ,
for Re(,)%2(#), where S„2(#),3(#)… is a sector corresponding to H(#).

Remark 3.4: The Feynman–Kac formula admits the following generalization: Instead of the
Laplacian, it could be taken by any symmetric differential operator densely defined on V that is
bounded from below and that generates a uniquely determined Markov semigroup with a transi-
tion probability that posesses a C5 density with respect to the volume form.

Remark 3.5: It should also be noted that if Q is $ bounded with relative bound b% 1
2, the

operators

H!#"ª" 1
2$##Q

form a holomorphic family of type B for "#"%1/2b !Ref. 5, Sec. VII.4, Theorem 4.16, p. 403". By
!3.1" this implies the validity of the Feynman–Kac formula as well and especially yields the
Feynman–Kac Formula for

Hª" 1
2$!Q .

IV. DOMAIN OF HOLOMORPHY FOR THE RESOLVENT

The results above for a single # in the parameter space of H(#) also hold uniformly for
parameters varying in a compact set. This will now be made precise.

Proposition 4.1 Let: T(#) be any holomorphic family of type B for #!U!C and K!!U a
relatively compact subset. Then we have the following.

!1" All numerical ranges of T(#),#!K are contained in a common sector S(2K ,3K).
!2" The set,

UKª„C"S!2K ,3K"…&K ,

is contained in the domain of holomorphy of the resolvent,

R!, ,#"!„T!#"",…"1.

!3" For (, ,#)!UK with Re(,)%2K the resolvent is given by the Laplace integral,

R!, ,#" f!%
0

5

dt e,te"tT!#" f .

Proof:

!1" This property is called local uniform sectoriality in Ref. 5, Theorem 4.2, p. 395.
!2" See the remark after the definition of m-sectoriality, Ref. 5, Chap. V, p. 280.
!3" It follows from the fact that ,"T(#) for Re(,)%2K generates a contraction semigroup. "

Remark 4.2: Since by the above for Q!L loc
1 (M ) with Q<0 the form sum

H!#"!" 1
2$!#Q
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yields a holomorphic family of type B for Re(#)$0, and for each K!!/#:Re(#)$01 a common
sector can be chosen with vertex 2K!0, the corresponding resolvent R(, ,#) can be represented by
the Laplace transform for each Re(,)%0.

The following remark is important for the proof of the transformation formula of Theorem
6.3.

Remark 4.3: Holomorphic families of type B and their resolvent functions enjoy the unique
continuation property, i.e., if the resolvent functions of two holomorphic families coincide on
some open set U!C2, the two families coincide as well.

Proof: Reference 5, Remark 1.6, p. 368. "

V. HARMONIC MORPHISMS AND BROWNIAN MOTION

Harmonic morphisms are twice continuously differentiable mappings between Riemannian
manifolds such that composition with harmonic functions on the target manifold yields a harmonic
function on the preimage.

Harmonic morphisms can as well be characterized by their geometric and stochastic proper-
ties. The following definitions and results can be found in Refs. 10 and 2.

Definition 5.1 (harmonic morphism): Let (M ,gM),(N ,gN) be Riemannian manifolds and
$M ,$N their Laplace–Beltrami operators. A twice continuously differentiable map ':M→N is
called harmonic morphism if the pullback of germs of harmonic functions on N yields germs of
harmonic functions on M, i.e.,

$N f'!x "!0⇒$M! f !'"x!0.

Definition 5.2 (horizontally conformal map): A C2 mapping ':M→N between Riemannian
manifolds is called horizontally conformal, if for every x!M such that Tx'70, the restriction of
the tangent map,

Tx'"Kx#:Kx
#→T'!x "N ,

to the orthogonal complement of Kxªker(Tx')!TxM is surjective and conformal,

d'!x "ª) !Tx'! , if x is a regular point,
0, otherwise,

is called the dilation of '.
Theorem 5.3 !geometric characterization": For a C2 map ':M→N are equivalent.

!1" ' is a harmonic morphism.
!2" ' is harmonic and horizontally conformal.

Proof: Reference 10 Theorem, p. 123. "
Remark 5.4: !1" By the semiconformality of harmonic morphisms, the tangent map is equal to

zero for each nonregular point.
!2" The set of nonregular points for a nonconstant harmonic morphism ':M→N can be

covered by a countable collection of submanifolds of M of codimension less or equal to two and
therefore is polar in M !compare Ref. 10, p. 116, Remark".

The following proposition is a direct consequence of the stochastic characterization of har-
monic morphisms in Ref. 2 and will be the main tool to prove the transformation formula. To
avoid the construction of ‘‘> welding,’’ the harmonic morphism is assumed to be surjective.

Proposition 5.5: Let ':M→N be a harmonic morphism of dilation d' . Let further be
)(x)ªd'

2 (x) and BN, BM be Brownian motion on N, M, respectively. Consider now the time
transform
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>! t "ª%
0

t
)!Bs

M "ds ,

and its inverse,

t!>"ªinf/s<0:>!s "!>1.

Then the image under ' of time-transformed Brownian motion Z>(:)ªBt(>)
M (:) coincides in law

with Brownian motion on N, i.e.,

'!Z>
y!:"…?B>

N ,x!:",

for any y!'"1(x).
Remark 5.6 (stochastic characterization): Harmonic morphisms can as well be characterized

by a slightly modified stochastic property as in Proposition !5.5" !see Ref. 2, Theorem 1, p. 224".

VI. THE TRANSFORMATION FORMULA

The transformation formula just consists of inserting special harmonic morphisms into the
Feynman–Kac formula for the resolvent. The harmonic morphisms used in the sequel are assumed
to be proper in order to be able to lift distributions. In the sequel the explosion times of N,M are
denoted by TN , TM , respectively.

Lemma 6.1: Let ':M→N be a proper and surjective harmonic morphism. Then, the domain
D('*) of the linear map,

'*:D!'*"→L2!M ",

with

'* f !x "ª)!x "•! f !'"!x ";
()!d'

2 ) is dense in L2(N).
Proof: Compactly supported functions are dense in L2(N). By a proper map they are lifted to

compactly supported functions in L2(M ). That means C0
5(N)!D('*). "

Proposition 6.2: Let ' be as above and Q!L loc
1 (N) be a measurable potential such that

H!#"!" 1
2$n!#Q

is a holomorphic family of type B on L2(N) for #!U!C, U open. Then for #!K!!U with
corresponding uniform sector S(2K ,3K) and Re(,)%2K the resolvent equals

R!, ,#" f !x "!Ey%
0

5

dt '* f !B>
M "exp$ %

0

>
ds '*!,"#Q "!Bs

M " & 8/t%TM1 ,

for any y!'"1(x).
Proof: By Corollary 3.3 the resolvent can be represented by a Feynman–Kac formula,

R!, ,#" f !x "!Ex%
0

5

d> f !Bt
N"exp$ %

0

t
d@!,"#Q "!B@

N" & 8/>%TN1 .

Since '(Z>
y)?B>

x by Proposition 5.5,

R!, ,#" f !x "!Ey%
0

5

d> f !'!Z>"exp$ %
0

t
d@!,"#Q "„'!Z@"…& 8/>%TN1 .

By the time transform >(t ,:)!A0
t ds )(Bs

M), i.e.,
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d>!)!Bt
M "dt ,

and by Z>?Bt(>)
M :

R!, ,#" f !x "!Ey%
0

t!> ,:"
dt )!Bt

M "• f !'!Bt
M "exp$ %

0

t
ds )!Bs

M "!,"#Q "„'!Bs
M "…& 8/>%TN1

!Ey%
0

5

dt '* f !Bt
M "exp$ %

0

t
ds '*!,"#Q "!Bs

M " & 8/t%TM1 ,

since t(TN)!TM almost surely. "

If '*Q+C equals a constant, then

'*!,"#Q "!x "!,)!x ""C# .

This is interesting because, in that case, by the uniqueness of analytic continuation, the trans-
formed expectation value can again be interpreted as a resolvent, namely the resolvent of the
operator

G!("!" 1
2$!() ,

where the coupling parameter and the resolvent parameter change place. Since ) is non-negative
and continuous, the domain of G(() contains C0

5(M ) and forms a holomorphic family of type B
for Re(()$0 !Remark 4.2".

Theorem 6.3 !transformation formula": Let

H!#"!" 1
2$!#Q

be a holomorphic family of type B on L2(N) on an open subset U!C such that

U#ªU"/z:Re!z "$01

and

U"ªU"/z:Re!z "%01,

are both nonempty. Let K!!U . Then, the resolvent RH(, ,#) is holomorphic in UK . Let ':M
→N be a proper and surjective harmonic morphism with '*Q+C70.

Then

G!("!" 1
2$!()

is a holomorphic family of type B for Re(()$0 on L2(M ) and

RH!, ,#" f !x "!RG!"C# ,","'* f !y ",

for all y!'"1(x).
Proof: Choose K such that

K#ªK"/z:Re!z "$01

and

K"ªK"/z:Re!z "%01

are both nonempty. By !Proposition 6.2",
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RH!, ,#" f !x "!Ey%
0

5

dt '* f !Bt
M "exp$ %

0

t
ds '*!,"#Q "!Bs

M " & 8/t%TM1

!Ey%
0

5

dt '* f !Bt
M "exp$ %

0

t
ds!"C##,)"!Bs

M " & 8/t%TM1

!Ey%
0

5

dt '* f !Bt
M "exp$ %

0

t
ds„"C#"!",")!Bs"…& 8/t%TM1

!RG!"C# ,","'* f !y ".

The above equality holds for (, ,#)!UK , therefore Re(,)%2K∧0, which implies that the
intersection of Re(",)$"2K∨0 with that part of the parameter space, where G(() forms a
holomorphic family of type B, is an open set. On the other hand, by Remark 4.2, the last equality
holds for those values of #, where the Laplace integral can indeed be interpreted as a resolvent.
Depending on the sign of C this is the case for #!K# if C%0 and for #!K" if C$0. Now since
the identity holds on some open subset of UK!C2 both resolvent functions coincide by Remark
4.3.

VII. EXAMPLE

By the above formula, a well-known correspondence3,4 between the harmonic oscillator in
dimension 4 and the Coulomb System in dimension 3 can be established.

Consider Coulomb’s potential,

Q!x "ª"
1

"x" :R
3→R.

The family H(#)ª" 1
2$"̇#/r is of type B for every #!C, since Q is in the Kato class.

Definition 7.1 (Kuustanheimo–Stiefel transform): The mapping

'!!'1,'2,'3":R4→R3,

given by quadratic forms,

wiª' i!x"!!x,eix", i!1,2,3,

with

e1ª$ 1 0 0 0
0 1 0 0
0 0 "1 0
0 0 0 "1

& , e2ª$ 0 0 0 1
0 0 "1 0
0 "1 0 0
1 0 0 0

& , esª$ 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

&
is called the Kuustanheimo–Stiefel transform. Its restriction to S3!R4 is the Hopf map.

' is a harmonic morphism of the so-called Clifford type,11 since

/ei ,e j1ªeie j#e jei!2- i j ,

which means that the matrices e1 , e2 , e3 yield an irreducible representation of the Clifford
algebra Cl3* !see Ref. 6".

The square of the dilation of ' is given by

)!x"!„“' i!x",“' j!x"…!4!eix!2!4!x!2,

254 J. Math. Phys., Vol. 41, No. 1, January 2000 Olaf Wittich

Downloaded 22 Jul 2008 to 193.136.232.3. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



since the matrices ei are orthogonal.
' is proper since !'(x)!!!x!2 and surjective by computing explicitly that the preimage of a

point x!R3"/01 is given by a one-sphere.
Finally, by

'*$ "
1
"x" &!"

4"x"2

!'!x"! !"4,

and )(x)!4!x!2 the correspondence

R$ ,;" 1
2 $"̇

#

"w" & f !w"!R$ "4#;"
1
2 $!4,"x"2&'* f !x"

is obtained.

VIII. THE DUAL SEMIGROUP. COMPUTATION OF THE RESOLVENT KERNEL

Throughout this section the assumptions of Theorem 6.3 remain valid. The resolvent and
semigroup kernels for H(#), G((), respectively, are denoted by upper indices M,N corresponding
to the underlying manifold. If some statement holds for both of them, the index is omitted.
Remember that the vertex of the common sector for H(#), #!K is denoted by 2K !Proposition
4.1".

Denote by kt
N(#;x ,dy) the kernel of the Feynman–Kac semigroup generated by H(#), #

!K . The resolvent kernel,

RH!# ,," f !x "!%
n
2N!# ,,;x ,dy " f !y ",

can, for Re(,)%2K) be computed by the Laplace transform,

2N!# ,,;x ,dy "!
w %

0

5

dt e,tk t
N!#;x ,dy ",

where !
w
means that this equality is, in general, valid only in the weak sense, i.e., for each

continuous function B with compact support,

%
N
2N!# ,,;x ,dy "B!y "!%

0

5

dt e,tk t
N!#;x ,dy "B!y ".

In the case of existing densities, this statement can be reformulated as follows.
Lemma 8.1: If the transition kernel possesses a density with respect to the volume form, i.e.,

kt!x ,dy "!kt!x ,y "volN!dy ",

then the resolvent kernel possesses a density with respect to the volume form as well. This density
2(,;x ,y) is also obtained by the Laplace transform

2!# ,,;x ,y "!
w %

0

5

dt e,tk t!#;x ,y ".

The following fact is a consequence of the weak continuity of the dual semigroup.
Proposition 8.2: The Feynman–Kac kernel is obtained by

kt!#;x ,y "!
w
Ex#-y!Bt"exp#"#%

0

t
Q!Bs"ds '8/TM$t1' ,
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where -y denotes the Delta distribution with support /y1.
By using Brownian bridges, the integration about the position of Brownian motion at time t

can be carried out explicitly.
Definition 8.3: A Brownian bridge bs with initial point x!b0(:) and final point y!bt(:) is

the stochastic process,

b:%0,t&&/:!6::!0 "!x ,:! t "!y1→N ,

given by bs(:)ª:(s) and distributed by the conditional probability

Qx ,y ,t!d:"ªPx„d:"Bt!:"!y ,TN!:"$t…,
where Px denotes the probability distribution of Brownian motion on the manifold with starting
point x.

The same construction works for M. Brownian motion on M,N, respectively, is not distin-
guished by notation. It will be clear from the context which one is meant.

This yields the following expression for the kernel.
Proposition 8.4: The Feynman–Kac Kernel is given by

kt!#;x ,dy "!
w
pt!x ,dy "Ex ,y ,t#exp"#%

0

t
Q!bs"ds ' ,

where Ex ,y ,t denotes expectation with respect to Qx ,y ,t and, as above,

pt!x ,dy "ªPx„Bt!:"!dy ,T!:"$t…,
where T denotes the explosion time on M,N, respectively.

Proof: The computation is carried out for N. By !Proposition 8.2",

kt
N!#;x ,dy "!

w
Ex#-y!Bt"exp#"#%

0

t
Q!Bs"ds '8/TN$t1'

!
w %

N
Px!Bt!du ,TN$t "Ex#-y!Bt"exp#"#%

0

t
Q!Bs"ds '8/TN$t1(Bt!u ,TN$t '

!
w %

N
Pt
N!x ,du "-y!u "Ex#exp#"#%

0

t
Q!Bs"ds '8/TN$t1(Bt!u ,TN$t '

!
w
pt
N!x ,dy "Ex ,y ,t#exp#"#%

0

t
Q!bs"ds ' ' .

"
Corollary 8.5: If pt(x ,dy)!pt(x ,y)vol(dy) possesses a density with respect to the volume

form on M,N, respectively, then

kt!#;x ,y "!
w
pt!x ,y "Ex ,y ,t#exp#"#%

0

t
Q!bs"ds ' ' .

Under the same assumptions the resolvent kernel can (Lemma 8.1) be expressed by

2!# ,,;x ,y "!
w %

0

5

dt pt!x ,y "Ex ,y ,t#exp# %0t!,"#Q "!bs"ds ' ' ,
for Re(,)%2K in the case of H(#),#!K and for Re(,)%0 in the case of G(#),Re(#)$0.
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By these considerations the Feynman–Kac formula for holomorphic families of type B !3.1"
and the transformation formulas Proposition !6.2" and Theorem !6.3" can be transferred to the
corresponding kernels.

Corollary 8.6: The following reformulations of the relevant formulas are valid.

!1" Under the assumptions of Proposition (3.1), the resolvent kernel 2(, ,#;x ,dy) of the holomor-
phic family can be expressed by

2!,,#;x,dy"!
w %

0

5

dt pt!x,dy"Ex,y,t#exp#%0t (,"#Q!bs"ds''.
!2" Under the assumptions of Proposition (6.2), the resolvent kernel is obtained by

2N!,,#;x,dy"!
w
Ez#%05dt'*-y!Bt"exp#%0t ds'*„,"#Q!Bs"…8/TM$t1' ' ,

!3" where z!'"1(x).
!4" If, furthermore, as in Theorem 6.3,

'*Q+C,

then

%
n
2N!,,#;x,du"f!u"!%

M
2M!"C#,",;z,dv")!z"f!'!v"

for f continuous with compact support.
In the case of existing densities this can be made more explicit by a decomposition of the

volume form along the fibers of the harmonic morphism, a procedure that is well known and
summarized in the following Lemma.

Lemma 8.7: Let * denote the Hodge–Star operator and ':M→N a harmonic morphism.
Consider points z!'"1(y), where y!M is such that all points in the fiber are regular values of
'. Then we have the following.

!1" There is an open neighborhood U(y)!N and a diffeomorphism,

C:U!y"&Fy→
?
'"1„U!y "…,

Fyª'"1(y). For simplicity, the composition '!C is again denoted by '.
!2" For z!C(u , f ) ,

volM!dz "!'z* volN∧
*'z* volN

!'z* volN!2 !
dz "!'z* volN!du "∧)"n!u , f "*'z* volN!d f ".

The last equality holds because by horizontal semiconformality, the square of the determinant
of the cotangent mapping equals )n. This yields the following modification of !3" of Corollary
8.6.

Corollary 8.8: Let n!dim(N) and y!N a point such that all preimages are regular values of
the harmonic morphism. Then, under the assumptions of Proposition (6.2),

2N!# ,, , ;x ,y "!
w %

Fy
'z* volN!d f ")!2"n "/2!y , f "2M„"C# ,",;z ,!y , f "….

Proof: By the transformation formula
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2N!, ,#;x ,y "!
w %

0

5

dt%
M
pt
M!z ,dz!"'*-y!z!"Ez ,z!,t#exp# %0t'*!,"#Q "!bs"ds ' '

!
w %

0

5

dt%
M
volM!dz!"pt

M!z ,z!"'*-y!z!"Ez ,z!,t#exp# %0t'*!,"#Q "!bs"ds ' '
!
w %

!u , f "!U!y "&Fy
'* volN!du "∧*'* volN!d f ")!2"n "/2!u , f "-y!u "

&%
0

5

dt pt
M„z ,!u , f "…Ez ,!u , f ",t#exp# %0t'*!,"#Q "!bs"ds ' '

!
w %

f!Fy
*'* volN!d f ")!2"n "/2!y , f "%

0

5

dt pt
N„z ,!y , f "…Ez ,!y , f ",t

&#exp# %0t'*!,"#Q "!bs"ds ' '
!
w %

f!Fy
*'* volN!d f ")!2"n "/2!y , f "2„"C# ,",;z ,!y , f "….

Example 8.9: In the case of the example of Sec. VII, the preimage of a point y!R3 can be
computed explicitly. If in spherical coordinates,

y!r„sin!C"cos!D ",sin!C"sin!D ",cos!C"…,
the preimage is given by

'"1!y "!/U!r ,C ,D ,3""3!%0,44"1,

where

U!r ,C ,D ,3"!!r$ cos$ C2 & cos$D#3

2 & ,
"cos$ C2 & sin$D#3

2 & ,sin$ C2 & cos$D"3

2 & ,sin$ C2 & sin$D"3

2 & & .
Now by (8.8) and the fact that the volume element is given by

'z* volN! 1
2"x"3 d3 ,

the kernel can be expressed by

2N!# ,,;x ,y "!
w 1
2 "y " %

0

44
d3 2M„"C# ,",;z ,U!r ,C ,D ,3"…,

where z!'"1(x) and r, C, D as above. The kernel on the right-hand side is given by Mehler’s
formula.
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