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Abstract

We clarify the mathematical setting of spectral coarse graining of com-
plex networks as recently introduced in [1, 2]. We show that this con-
cept is equivalent with lumping of a Markov chain and give exact dual
eigenvector conditions for strong lumpability of a complex network.
We apply this mathematical setting to the size reduction of oscillator
networks preserving synchronizability.
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1 Introduction

Large assemblies of interacting dynamical systems have received much
attention in several fields of science (see Boccaletti et al. [3] for a
recent review). The way to describe such systems is to model them as
networks whose nodes represent the dynamical units, and whose links
stand for the interactions between them.
This unifies structure and dynamics into complex dynamic networks
and merges the discrete world of graph theory with the world of dy-
namical systems. The “in-between” gives rise to new questions involv-
ing robustness, spreading and synchronization. The crucial role played
by the network topology for answering these questions is by now well
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established. The notorious difficulties for a full analysis however re-
main, mainly because of the characteristics of the involved networks
[4]. They have the following properties:

• Large: The size of the network typically ranges from hundreds
of thousands to billions of vertices.

• Sparse: The number of edges is linear, i.e., within a small mul-
tiple of the number of vertices.

• Small world: They join two properties: small distances (two
vertices are joined by a short path) and clustering (two vertices
sharing a common neighbor are more likely to know each other)

• Power law degree distribution: The number k of adjacent
vertices of a fixed vertex follows a power law distribution p(k) ∝
k−β.

In this paper, we deal with the first point and shall focus on reducing
the complexity of large dynamical networks using the mathematical
framework of “lumping a Markov chain”[5]. Our paper is motivated
by the recent work of Gfeller and Los Rios [1, 2] wherein the authors
reinvent the concept of “lumping” in order to achieve size reduction
of large networks preserving on the same time spectral properties of
the underlying graph. This is tantamount of preserving the large scale
behaviour of the nearest neighbor random walk on the initial network
if considered on the coarse grained network. We expose this idea
within the language of “lumpability” and clarify how and why spectral
properties of the network are conserved. As an example, we show how
lumpability is used to select a topology in the coupling configuration
that provides enhancement of the synchronization features.

The proposed size-reduction method is related to the problem of find-
ing clusters in a network. These methods are capable of delivering
impressive image segmentation results as demonstrated for example
in [6, 7]. Intuitively, clusters are recognized as parts of the network
where a random walker, once in one of the parts, tends to remain.

2 Coarse graining oscillator networks

In [2] Gfeller and Los Rios propose a coarse graining technique for large
oscillator networks which preserves synchronizability. The authors
consider a system of N identical oscillators with a coupling given by
a connected graph Γ = (V,E). Γ has vertex set V with |V | = N and
undirected edge set E containing whether loops nor multiple edges.
The (combinatorial) Laplacian is L = D−A where A is the adjacency
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matrix and D denotes the diagonal matrix with di equal the degree of
vertex i ∈ V . The equations of motion of the system are

ẋi = F(xi) + σ
N∑

j=1

LijH(xj), i ∈ V (1)

with xi ∈ Rd the state variables, F : Rd → Rd a differentiable evo-
lution function, σ the coupling strength and with H : Rd → Rd a
differentiable coupling function. In this model neither F nor H de-
pend on the vertices and hence the information about the network
topology is carried entirely in the Laplacian L. For this reason the
focus is on the eigenvalues and eigenvectors of the Laplacian when
coarse graining the network Γ.
It is well known that the eigenvalues of L are all real and satisfy
0 = λ1 < λ2 ≤ ... ≤ λN (see [4] for background material). It is less
well known that for a large class of functions F and H, the network
capability to give rise to synchronized dynamics is governed by the
ratio λN/λ2 between the largest and the second smallest eigenvalue of
L: “the more packed the eigenvalues of L are, the higher is the chance
of having all Lyapunov exponents – associated to the dynamics (1)
– within the stability range for some fixed σ” [8]. Therefore, the
possibility of preserving some eigenvalues of L when coarse graining
Γ is important.

In order to find a coarse graining procedure which preserves parts of
the spectrum of L Gfeller and Los Rios observe that if two nodes,
say 1 and 2, have exactly the same neighbors, they display exactly
the same dynamical behavior, that is ẋ1(t) = ẋ2(t). Hence these two
nodes are safely merged together without loosing too much informa-
tion. Proceeding along this idea they deduced a matrix formulation
for the coarse graining scheme which gives the Laplacian L̃ of the
reduced network in the form

L̃ = KLR (2)

where K and R are rectangular matrices defined by

Ri,C = δC,i and KC,i =
1
|C|δC,i, (3)

where C = 1, ..., Ñ stands for the label of the groups of merged nodes,
|C| the cardinality of the set C of merged nodes and δC,i equals 1
if i ∈ C and zero otherwise. They note that if groups are formed
such that the components of a right eigenvector uα are equal within
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each group, the reduced vector Kuα is a right eigenvector of L̃ with
eigenvalue λα since

RKuα = uα (4)

The point is that the matrix condition (2) together with (4) is for-
mally equivalent to what is called lumping a random walk (see
proposition 1) and is a common aggregation method in the theory of
Markov chains [5]. This gives immediate access to a number of results
relevant for the spectral properties of the “lumped network”. A few
of them are exposed in the next section.

3 Lumping networks

Lumping a Markov chain addresses the fundamental question under
what conditions does a function of a Markov process still join the
Markov-property [9]. By definition, a (strongly) lumpable Markov
chain allows for a state space reduction without loosing the Markov
property [5]. Applied to networks, this concept will translate into size
reduction without loosing too much of the spectral properties of the
original network.
We first introduce the concept of lumping a network by recalling the
existing definition for Markov chains. We then give an eigenvector
condition useful for checking if a given partition of the state space
leads to a lumped Markov chain (proposition 1) and a dual eigenvector
condition in order to find potential lumpings (proposition 3). It is this
dual condition which allows for controlled size reduction of complex
networks preserving specific spectral properties.

Consider a homogeneous Markov chain X = {Xt}t∈N with finite state
space S = {1, ...,N} and transition probability matrix P with entries
pij = Pr(Xt+1 = j | Xt = i).
Definition. The Markov chain X is strongly lumpable with respect
to a given partition L = {L1, ..., LM} of the state space S, if for any
pair of sets L and L′ in L and any state i in L the probability of going
from i to L′ does not depend on i:

Pr(Xt+1 ∈ L′ | Xt = i) =
∑

j∈L′

pij, is independent of i.

Remarks.

1. The transition probabilities

pLL′ = Pr(Xt+1 ∈ L′ | Xt ∈ L) =
∑

j∈L′

pij
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define a Markov chain X̂, the lumped chain, with state space L.
The lumped chain just reports in which orbit the original chain
is.

2. The definition goes back to what is commonly called Dynkins
criteria: the lumped chain is Markov if and only if

∑
j∈L′ pij

doesn’t depend on the choice of i in L.

3. Besides strong lumpability, other forms of lumpability exist [10].
We will not make use of these variants.

Example (from [11]). Set a = 1
5 and b = 1

4 . Consider a homogeneous
Markov chain X with state space S = {1, ..., 8} and transition proba-
bility matrix P. We lump the state space according to the partition
{{1, 2}, {3, 4}, {5, 6, 7, 8}} and find the transition probabilities P̃:

P =

1 2 3 4 5 6 7 8
1 0 a a a a 0 a 0
2 a 0 a a 0 a 0 a
3 a a 0 a 0 a a 0
4 a a a 0 a 0 0 a
5 b 0 0 b 0 0 b b
6 0 b b 0 0 0 b b
7 b 0 b 0 b b 0 0
8 0 b 0 b b b 0 0

P̃ =

L1 L2 L3

L1 a 2a 2a
L2 2a a 2a
L3 b b 2b

As it is clear from the definition, lumping a Markov chain corresponds
to a kind of projection, one that reduces dimensionality from the num-
ber of states to the number of lumps. We have indeed the following
lumpability criterion [12]:

Proposition 1. Given a partition {Lj}j=1..M of the state space
S = {1, ...,N} of a Markov chain X with transition matrix P. Form
the N × M matrix R whose columns are indicator variables for the
elements of the partition: rij = 1 if state i belongs to set Lj , 0 oth-
erwise. Let K = (RTR)−1RT . Then X is lumpable if and only if
RKPR = PR in which case the transition matrix of the lumped
chain X̃ = XR is

P̃ := KPR. (5)

Note that the relation between the Laplacians L and L̃ in (5) is exactly
the same as the one between P̃ and P expressed in (2). This motivates
the following

Definition. Given a partition L = {L1, ..., LM} of the vertex set V of
a connected undirected graph Γ = (V,E). We say that Γ is strongly
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lumpable with respect to L if the nearest neighbor random walk on Γ
is lumpable.

Recall that for a connected undirected graph Γ = (V,E) without loops
nor multiple edges the nearest neighbor random walk on Γ is defined
as follows. The random walker on V moves from i to a neighboring j
with probability depending on the degree of i. This walk has transition
matrix

pij = (D−1A)ij =
{ 1

di
if i and j are adjacent,

0 otherwise,

where A is the adjacency matrix. The unique stationary distribution
π(i) is proportional to the number of edges that meet at i :

π(i) =
di

V ol(G)
, with V ol(G) =

∑

j

dj . (6)

By inspection, the pair P, π is seen to be reversible: π(i)pij = π(j)pji.
We note that any reversible Markov chain can be represented as a
random walk on an (edge weighted) graph.

Example. For the above example we have

R =





L1 L2 L3

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1





K =




1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4





The columns of R are necessarily orthogonal. Because they are in-
dicators for the lumps, we refer to their span 〈R〉 as “lump space”.
The orthogonal projection onto lump space is given by the symmetric
matrix P⊥ = RK and reads for our example

P⊥ =





1
2

1
2 0 0 0 0 0 0

1
2

1
2 0 0 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 1
4

1
4

1
4

1
4





.

6



With the projection P⊥, which is a transition matrix in its own right,
the lumpability criterion proposition 1 can be restated as: PR equals
its projection onto lump space P⊥PR. Note that this is condition (4)
as introduced by Gfeller and Los Rios.

Using proposition 1, one infers easily a necessary lumpability criterion
involving left eigenvectors of the transition matrix P [12]:

Proposition 2. The eigenvalues of P̃ (resp. L̃) are a subset of the
eigenvalues of P (resp. L).

Hence, the spectral gap of P̃ is never smaller than that of P and the
same is true for L̃. This makes lumping a possible strategy for accel-
erating convergence of a random walk towards stationary distribution.

Moreover, the ratio of the biggest and the second smallest eigenvalue
of the lumped network is never smaller than that of the original net-
work. This is what makes lumping a possible strategy for improving
synchronizability.

Two questions rises: how likely is it that a given network is lumpable?
and if a network is lumpable, how can we find a lumping in order to
preserve a specific part of the spectrum of L?
Unfortunately, the first question has a partial answer which is not very
promising: We will indeed see in section 4 that a large graph “picked
at random” will almost surely not be lumpable.
To answer the second question we take a closer lock to what is known
for Markov chains. According to the result of Barr and Thomas [12]
we have that if vP = λv than ṽP̃ = λṽ with ṽ = vR. It follows
that if λ is an eigenvalue of both P and P̃, then ṽ is an eigenvector
of P̃, but if λ is not an eigenvalue of P̃ then ṽ = vR = 0 i.e, v is
orthogonal to the lump space. Hence R eliminates left eigenvectors,
the ones orthogonal to the lump space 〈R〉.
This simple observation has recently been developed by M.N. Ja-
cobi and O. Görnerup [13]. They note that a set of left eigenvectors
{vα}α∈J satisfying the condition vαR = 0 is spanned by complemen-
tary right eigenvectors uα. These right eigenvectors span the lump
space 〈R〉. The point is now that, requiring that R consists of zeros
and ones correspond to a criterion of repeated elements within each
complementary right eigenvector uα. This yields possible lumpings by
simply identifying repeated elements in the right eigenvectors. Their
precise result is the following:
Proposition 3. Assume that P is a diagonalizable transition matrix
with full rank1 describing a homogeneous Markov process Xt+1 = XtP

1The transition matrix (1− ζ)P+ ζ1, 0 ≤ ζ < 1, allows exactly the same lumping as P
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with state space S = {1, ...,N}. Consider a set {uα}α∈I of linearly
independent right eigenvectors of P (i.e., Puα = λαuα) with I ⊂
S. Form state equivalence classes defined by states with identical
elements in all eigenvectors uα, i.e. i ∼ j iff uα

i = uα
j for all α ∈ I.

The equivalence classes define a partitioning L of the state space.
This partitioning is a lumping of the Markov chain if the number of
partition elements equals the number of eigenvectors, i.e. |L| = |I|.
Conversely, if L is a lumping then there exist |L| linearly independent
right eigenvectors that are invariant under permutations within the
lumps.
Example (from [11] and [13]). Consider again the Markov chain
of the first example with transition matrix P. The associated right
eigenvectors uα have the following structure (columns sorted in order
of decreasing |λ|):

(u1, u2, ..., u8) =





1 0 0 −1 0 1 −1 1
1 0 0 1 0 −1 −1 1
1 0 −1 0 −1 0 1 1
1 0 1 0 1 0 1 1
1 −1 −c1 c1 c2 c2 0 −5

4
1 −1 c1 −c1 −c2 −c2 0 −5

4
1 1 c1 c1 −c2 c2 0 −5

4
1 1 −c1 −c1 c2 −c2 0 −5

4





for some numerical constants c1 and c2. The eigenvalues are:

λ1 = 1, λ2 = −1
2
, λ3,4 =

−1 −
√

11
10

, λ5,6 =
−1 +

√
11

10
, λ7 = −1

5
, λ8 =

1
10

.

All possible lumpings of P and the corresponding subsets of right
eigenvectors are given in table 1.

It is instructive to illustrate a partition by folding the graph associated
with P (see figure 1).

The partition L3 for example can be obtained through folding the
graph along the x and y axes passing through the center of the graph.
Symmetries in the graph do indeed suggest lumpings. One way to
find them is to use proposition 3. The equivalence relation between
identical elements in the right eigenvectors implies invariance under a
permutation symmetry. In the case of L3 the group of permutation
symmetries SL3 can be identified with the Klein four-group

SL3 = S2 × S2

according to Theorem 1. The rank condition is therefore not a real restriction.
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Lumping Subset of eigenvectors

L1 =
{
{1, 2, 3, 4, 5, 6, 7, 8}

}
{u1}

L2 =
{
{1, 2, 3, 4}, {5, 6, 7, 8}

}
{u1, u8}

L3 =
{
{1, 2}, {3, 4}, {5, 6, 7, 8}

}
{u1, u7, u8}

L4 =
{
{1, 2, 3, 4}, {5, 6}, {7, 8}

}
{u1, u2, u8}

L5 =
{
{1, 2}, {3, 4}, {5, 6}, {7, 8}

}
{u1, u2, u7, u8}

L6 =
{
{1, 2}, {3}, {4}, {5, 8}, {6, 7}

}
{u1, u3, u5, u7, u8}

L7 =
{
{1}, {2}, {3, 4}, {5, 7}, {6, 8}

}
{u1, u4, u6, u7, u8}

L8 =
{
{1, 3}, {2, 4}, {5, 6}, {7}, {8}

}
{u1, u2, u3 + u4, u5 − u6, u8}

L9 =
{
{1, 4}, {2, 3}, {5}, {6}, {7, 8}

}
{u1, u2, u3 − u4, u5 + u6, u8}

L10 =
{
{1}, {2}, ..., {7}, {8}

}
{u1, u2, ..., u7, u8}

Table 1: All possible lumpings of P and associated eigenvectors.
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Figure 1: Folding a graph
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where S2 is the symmetric group with two elements. The lumpings
are orbits of the permutation group acting on the graph. This give
rise to a promising connection with orbit and representation theory.

4 Orbit theory
2Let a connected graph Γ = (V,E) have vertex set V and undirected
edge set E. We allow loops but not multiple edges. Let w(i, j) be
positive weights on the edges (note that since the graph is undirected
we have w(i, j) = w(j, i) for (i, j) ∈ E and that for unweighted graphs
we have w(i, j) equal to either 0 or 1 according to the entry of the
adjacency matrix).
These ingredients define a random walk on V that moves from i to a
neighboring j with probability proportional to w(i, j). This walk has
transition matrix

pij =
w(i, j)
W (i)

, where W (i) =
∑

j

w(i, j). (7)

The Markov chain with transition matrix P = (pij) has unique sta-
tionary distribution π(i) proportional to the sum of the edge weights
that meet at i :

π(i) =
W (i)
W

, with W =
∑

j

W (j). (8)

Using the symmetry of w(i, j), the pair P, π is seen to be reversible:
π(i)pij = π(j)pji. For a given reversible Markov chain P with station-
ary distribution π define L2(π) = {f : V → R} with inner product

〈f1, f2〉 =
∑

i

f1(i)f2(i)π(i).

The matrix P = (pij) operates on L2 by Pf(i) =
∑

j pijf(j) and
reversibility of the chain is equivalent to self-adjointness of P.

Definition. An automorphism of a weighted graph is a permutation
g : V → V respecting edges and weights i.e., such that if (i, j) ∈ E,
then (gi, gj) ∈ E and w(i, j) = w(gi, gj). The set of automorphisms
together with the composition roule forms the (full) automorphism
group of the graph.

Example. The symmetry group of a square D4 actes on the graph Γ
given in figure 1. Every subgroup of D4 is naturally an automorphism
group of Γ.

2This section follows the excellent paper [14] by Boyd et al.
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Let G be a group of automorphisms. We note the following elementary
facts: G acts on L2(π) by

Tgf(i) = f(g−1i).

We have the relation

TgP = PTg, g ∈ G.

and the couple (T,L2(π)) is a unitary representation of G. We have
indeed

Proposition 4. For random walk on an edge weighted graph defined
as in eq. (7), the stationary distribution π eq. (8) is invariant under
all automorphisms G.

Proof.

Tgπ(i) =
∑

j

w(g−1i, j)
W

=
∑

k

w(g−1i, g−1k)
W

=
∑

k

w(i, k)
W

= π(i). !

Orbit theory is based on the following observation:

Proposition 5. Let H be a group of automorphisms acting on a
connected graph Γ = (V,E). The vertex set V partitions into orbits
Oi = {hi | h ∈ H}. Then the nearest neighbor random walk on Γ is
lumpable with respect to the partition induced by the orbits of Γ.

Proof. It is enough to proof that pOi,Oj := pv,Oj =
∑

u∈Oj
pv,u does

not depend on the choice of v in Oi. Take v′ ∈ Oi with v = h′v′ for
some h′ ∈ H. Then,
∑

u∈Oj

pv,u =
1

W (v)

∑

u∈Oj

w(v, u) =
1

W (h′v′)

∑

u∈Oj

w(v′, h′−1u)

=
1

W (v′)

∑

ũ∈h′Oj

w(v′, ũ) =
∑

u∈Oj

pv′,u. !

The transition matrix of the orbit chain is denoted by PH = (pOi,Oj).

Example. The the orbits of the 10 subgroups of D4 (trivial group
S1, the cyclic group C2 (5 times), the Klein four-group D2 twice, the
cyclic group C4 (once) and the full group D4) generate all lumpings
of 1 except L1, the trivial one (all states in one lump).

Propositions 2 and 3 find an elegant reformulation in this setting. We
give passage conditions for spectral properties when going from the
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orbit graph to the initial graph and vice-versa. In the following let
(P, π) be a reversible Markov chain with automorphism group G. Let
H ⊆ G be a subgroup and define PH as above:

Lifting.

1. If f is an eigenfunction of PH with eigenvalue λ, then λ is an
eigenvalue of P with H-invariant eigenfunction f which is con-
stant on orbits: f(v) = f(Ov).

2. Conversely, every H-invariant eigenfunction appears uniquely
from this construction.

Projection.

1. Let f be an eigenfunction of P with eigenvalue λ and let f(j) =∑
h∈H f(h−1j). If f(j) -= 0, then f is an eigenfunction for PH

with eigenvalue λ.

2. Let f be an eigenfunction of P with eigenvalue λ. Then λ appears
as an eigenvalue in PH if H has a fixed point v∗ with f(v∗) -= 0.

In view of our applications of spectral coarse graining we may ask
which orbit chains are needed to get all the eigenvalues of the original
chain. The following theorem gives a simple answer [14].

Theorem. Let G be the automorphism group of the reversible Markov
chain (P, π). Suppose that V = O1 ∪ ... ∪ Ok as a disjoint union of
G-orbits. Choose vertices oi ∈ Oi for i = 1...k and denote by Hi the
isotropy groups associated to oi i.e., Hi = {g ∈ G | goi = oi}. Then,
all eigenvalues of P occur among the eigenvalues of {PHi}k

i=1.
The drawback of orbit theory is that the automorphism group for large
graphs are trivial. Erdös and Rényi showed [15].
Theorem. Almost all graphs have no non-trivial automorphisms.
That is, the proportion of graphs on n vertices which have a non trivial
automorphism tends to zero as n → ∞. We therefore have to relay on
approximations in order to lump large networks. The basic idea of how
to lump approximately a network comes from image segmentation [6]
and is based on the observation that lifted eigenvectors are constant
on orbits.

5 Approximated lumping

According to proposition 3 if L = {L1, ..., LM} is a lumping of a
Markov chain P there exists |L| linearly independent right eigenvec-
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tors {uα}α∈I which are constant on the lumps. Hence for these eigen-
vectors there exists constants ci, depending on α ∈ I, such that

uα
i =






c1 if i ∈ L1
...

...
cM if i ∈ LM

(9)

Following [6], we call a vector satisfying (9) a piecewise constant vector
w.r.t. the partition L and define an abstract algorithm for lumping a
network:

1. Compute P from A and its eigenvalues and eigenvectors

2. Select the eigenvalues {λα}α∈I which should be preserved (for
example the second and the last one) and the corresponding
right eigenvectors uα.

3. construct an approximate lumping by finding the approximately
equal elements in the selected eigenvectors.

This last step may be implemented by dividing the intervals – enclosed
by the smallest and largest components of the selected eigenvalues –
into a fixed number of pieces and then to collect elements falling within
the same interval.
Example. We consider the random walk on the simplest graph (apart
the trivial graph with one vertex) with trivial automorphism group.

! #
#
#$

$
$!

!
! ! !

1 2

3

4 5 6
P =





0 1 0 0 0 0
1
3 0 1

3
1
3 0 0

0 1
2 0 1

2 0 0
0 1

3
1
3 0 1

3 0
0 1

3
1
3 0 1

3 0
0 0 0 1

2 0 1
2

0 0 0 0 1 0





.

The spectrum of P is spect(P ) = {1,±
√

2/2,− 1
3 ±

√
10
6 ,−1

3}. To form
lumps we select λ2 =

√
2/2, λ6 = −1

3 − 1
6

√
10 and the corresponding

right eigenvectors

p2 = (0.404, 0.286, 0.202, 0,−0.488,−0.690)T

p6 = (0.192,−0.165,−0.096, 0.330,−0.590, 0.686)T .

We then divide the interval between the largest and smallest compo-
nents of p2 (resp. p6) by the number of lumps we want (here 3), to get
a threshold value ε2 (resp. ε6). Identifying components lying within
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distance ε2 (resp. ε6) gives

V2 =





1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1




resp.V6 =





1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 1 0




.

Hence the suggested lumping V respecting both V2 and V6 together
with the transition matrix for the lumped chain read as

V =





1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




P̃ =





0.7222 0.2778 0 0
0.6667 0 0.3333 0

0 0.5000 0 0.5000
0 0 1.0000 0



 .

The spectrum of P̃ is {1, 0.712,−0.156,−0.833} and the ratio λ6/λ2 =
−1.217 changes only slightly (less than 4%) for the lumped chain:
λ̃4/λ̃2 = −1.171.
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