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MACRO and MICRO models

PDE and SPDE

as macroscopic descriptions coming from
microscopic models via, in particular,

– scaling limits
(e.g., for densities)

– scaling of fluctuations
(normal or abnormal, equilibrium or non-equilibrium)

– closure of (infinite linear) moments systems
(leading to non-linear but finite systems of PDEs)

– hierarchical chains (BBGKY etc.)

– heuristic arguments
(e.g., chemotaxis, porous media, mathematical finance, ....)
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MACRO and MICRO models

Some qualitative predictions
based on the use of PDE and SPDE

may be considered as approximations (in a sense)
to possible behaviors of microscopic systems,

which are mathematical caricatures of real world models,
which are .....

”All models are caricatures of reality.”
Mark Kac

MICRO ⇒ MACRO ?

MACRO ⇒ MICRO ?
Inverse problems, calibration, data assimilation, etc.
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Complex Systems: BIO sciences

S.Levin (Princeton)
”Complex Adaptive Systems: Exploring the Known, the Unknown
and the Unknowable”
Bull. AMS, 2002:
(1) diversity and individuality of components
(2) localized interactions among components
(3) the outcomes of interactions used for replication or
enhancement of components
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Complex Systems: SOCIO sciences

Philip Ball ”Critical Mass” (2004): physics of society

– Complexity theory seeks to understand how the order and
stability arise from the interactions of many agents
– We can make predictions about society even in the face of
individual free will, and perhaps even illuminate the limits of that
free will
– It is a science of humans collective behavior

Thomas Hobbes, ”Leviaphan” (1651):
We must ask not just HOW things happen in society,
but WHY.
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Statistical Mechanics for CS

R.Gomory:
The central problem is to develop an appropriate
statistical mechanics that allows one to separate the
knowable unknown from the truly unknowable.
Such mechanics will have to deal with heterogeneous ensembles of
interacting agents and with the continual refreshment of that
ensemble by novel and unpredictable types.
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Statistical Mechanics for CS

The shift from Newtonian determinism to statistical science
is what makes a physics of society possible.

Society itself is fundamentally
a statistical phenomenon.
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Statistical Mechanics for Physics

Equilibrium StatPhys

Non-equilibrium StatPhys

Hamiltonian dynamics

Stochastic dynamics
(e.g., Glauber, Kawasaki, Metropolis, ...)

(Math. StatPhys) ⊂ (ID Analysis)
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Interacting Particle Systems

IPS as models in

condensed matter physics

chemical kinetics

population biology, ecology (individual based models=IBM)

sociology, economics (agent based models=ABM)

Lattice (or) (and) (vs.) Continuous
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Individual Based Models

R. Law et al., Ecology, 84(2003):
IBM is a stochastic (Markov) process
with events comprising
birth,
death,
and movement.

Ecological models:
Bolker/Pacala, 1997, ...
Dickmann/Law, 2000, ...
..................
Birch/Young, 2006
Kondratiev/Srorokhod, 2006
Meleard et al., 2007
Finkelshtein/Kondratiev/Kutovyi, 2007
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We will consider

individual based dynamical competition models

rather than

coexistence regulation mechanisms,
c.f.,
K/Minlos/Zhizhina, ’07 (economics)
K/Kuna/Ohlerich, ’07 (genetics)
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Configuration spaces

X = locally compact Polish space

(e.g., X = Rd below)

σ(dx) intensity measure (= z dx)

Γ = Γ(X) # γ, γ ⊂ X locally finite configuration

F : Γ → R observables
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General facts and notations

The configuration space:

Γ :=
{

γ ⊂ Rd
∣∣ |γ ∩ Λ| < ∞ for all compact Λ ⊂ Rd

}
.

| · | - cardinality of the set.

Vague topology O(Γ):
the weakest topology
s.t. all functions

Γ # γ '→
∑

x∈γ

f(x) ∈ R

are continuous for all f ∈ C0(Rd).

Remark: Γ is a Polish space.
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n-point configuration space:

Γ(n) :=
{
η ⊂ Rd | |η| = n

}
, n ∈ N0.

The space of finite configurations:

Γ0 :=
⊔

n∈N0

Γ(n).
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Classes of functions: L0(Γ0): measurable functions on Γ0,
L0

ls(Γ0): measurable with local support on Γ0

G ∈ L0
ls(Γ0) ⇔ ∃ Λ ∈ Bb(Rd) : G !Γ0\ΓΛ= 0,

Bbs(Γ0): bounded with bounded support on Γ0

G ∈ Bbs(Γ0) ⇔ bounded & ∃N ∈ N,∃ Λ ∈ Bb(Rd) :

G !
Γ0\

⊔N
n=0 Γ(n)

Λ
= 0.

Cylinder functions on Γ:

FL0(Γ): G ∈ L0(Γ), s.t. for some Λ ∈ Bb(Rd).

F (γ) = F (γΛ).
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K-transform

Combinatorial Fourier transform (Lenard; Kondratiev/ Kuna):

KG(γ) :=
∑

ξ!γ

G(ξ),

γ ∈ Γ, G ∈ L0
ls(Γ0);

K−1F (η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ),

η ∈ Γ0, F ∈ FL0(Γ).
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Convolution (Kondratiev/Kuna):

(G1 % G2)(η) :=
∑

(ξ1,ξ2,ξ3)∈P3
∅(η)

G1(ξ1 ∪ ξ2)G2(ξ2 ∪ ξ3),

with property

K(G1 % G2) = KG1 ·KG2,

G1, G2 ∈ L0
ls(Γ0).
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Correlation measure

M1
fm(Γ) = probability measures with finite local moments.

Mlf(Γ0) = locally finite measures on Γ0.

One can define
K∗ : M1

fm(Γ) →Mlf(Γ0) :

∀µ ∈M1
fm(Γ), G ∈ Bbs(Γ0)

∫

Γ
KG(γ)µ(dγ) =

∫

Γ0

G(η) (K∗µ)(dη).

ρµ := K∗µ

is called the correlation measure.
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Theorem
Let µ ∈M1

fm(Γ) be given. For any G ∈ L1(Γ0, ρµ) we define

KG(γ) :=
∑

η!γ

G(η),

where the later series is µ-a.s. absolutely convergent.
Furthermore, we have KG ∈ L1(Γ, µ),

∫

Γ0

G(η) ρµ(dη) =
∫

Γ
(KG)(γ) µ(dγ).
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Lebesgue-Poisson measure

σ = Lebesgue measure on (Rd,B(Rd)).
For any n ∈ N measure σ⊗n can be considered on (̃Rd)n.

σ(n) = projection on Γ(n).
The Lebesgue-Poisson measure λz, z > 0 on Γ0:

λz :=
∞∑

n=0

zn

n!
σ(n).

The restriction of λz to ΓΛ we also denote by λz.
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Poisson measure

The Poisson measure πz on (Γ,B(Γ)) is given as the projective
limit of the family of measures {πΛ

z }Λ∈Bb(Rd), where πΛ
z is the

measure on ΓΛ defined by

πΛ
z := e−zσ(Λ)λz.
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Correlation functions

A measure µ ∈M1
fm(Γ) is called

locally absolutely continuous

w.r.t. πz iff µΛ := µ ◦ p−1
Λ

is absolutely continuous with respect to πΛ
z = πz ◦ p−1

Λ
for all Λ ∈ Bb(Rd).

In this case ρµ := K∗µ is absolutely continuous w.r.t λz.

kµ(η) :=
dρµ

dλz
(η), η ∈ Γ0.
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k(n)
µ : (Rd)n −→ R+

k(n)
µ (x1, . . . , xn) :=

kµ({x1, . . . , xn})

correlation functions.
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Definition
A measure ρ ∈Mlf (Γ0) is called positive definite if

∫

Γ0

(G % G)(η)ρ(dη) ≥ 0, ∀G ∈ Bbs(Γ0),

where G is a complex conjugate of G. The measure ρ is called
normalized iff ρ({∅}) = 1.
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Theorem (Kondratiev/Kuna)

Let ρ ∈Mlf (Γ0) be given. Assume that ρ is positive definite,
normalized and that for each bounded open Λ ⊂ Rd, for every
C > 0 there exists DΛ, C > 0 s.t.

ρ(Γn
Λ) ≤ DΛ, CCn, n ∈ N0.

Then there exists a unique measure µ ∈M1
fm(Γ) with ρ = K%µ.

Remark: A sufficient condition for the bound in the theorem:

ρ(Γ(n)
Λ ) ≤ (n!)−εΛ(CΛ)n.
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BAD generators

Birth-and-death processes in continuum

(LF )(γ) =
∑

x∈γ

d(x, γ \ x)[F (γ \ x)− F (γ)]+

∫

X
b(x, γ)[F (γ ∪ x)− F (γ)] dx

BIO (ecology) processes are specified by:

b(x, γ) =
∑

y∈γ By(x, γ)

b(x, ∅) = 0
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Existence problem

K/Lytvynov
K/Lytvynov/Röckner

}
Dirichlet forms

K/Kutoviy/Zhizhina
K/Kutoviy/Minlos

}
Glauber dynamics

Holley/Stroock
Ferrari/ Garcia
K/Skorokhod
Garcia/Kurtz





particular classes
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Correlation equations

(= moment equations = hierarchical equations)

µ0 = initial distribution

Xµ0
t ∈ Γ Markov process with initial distribution µ0

µt ∈M1(Γ) distribution at time t > 0
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Correlation functions

f (n)(x1, . . . , xn) symmetric function on Xn,
γ = {x1, x2, . . . } ⊂ X

∫

Γ

∑

{xi1 ,...,xin}⊂γ

f (n)(xi1 , . . . , xin) dµ(γ)

=
1
n!

∫

Xn

f (n)(y1, . . . , yn)k(n)
µ (y1, . . . , yn) dσ(y1) · · · dσ(yn)

µ " (k(n)
µ )∞n=0

Lenard
K/Kuna
Berezansky/K/Kuna/Lytvynov
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Correlation functions dynamics

In components:

∂k(n)
t

∂t
= (LCF kt)(n), n ≥ 0

∂kt

∂t
= LCF kt

LCF : CF evolution generator

General theory of CF generators for BAD processes
and several particular models: [Finkelstein/K/Oliveira ’07]

Compare: BBGKY-hierarchy etc.
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Spatial birth-and-death processes

We consider a Markov pre-generator on Γ, the action of which is
given by

(LF )(γ) := (Lb,dF )(γ) =

=
∑

x∈γ

d(x, γ \ x)D−
x F (γ) +

∫

Rd

b(x, γ)D+
x F (γ)dx,

D−
x F (γ) = F (γ \ x)− F (γ),

D+
x F (γ) = F (γ ∪ x)− F (γ).

Our systems are defined via stochastic dynamics.
Symmetrizing measures?
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A Gibbs measure

µ ∈ G(β, z)

is reversible w.r.t. the stationary Markov process
associated with the generator L in L2(Γ, µ)
(i.e. L is symmetric in L2(Γ, µ)) iff:

b(x, γ) = ze−βE(x, γ)d(x, γ),

(detailed balance condition)

where E(x, γ) is the relative energy of interaction between a
particle located at x and the configuration γ:

E(x, γ) :=
∑

y∈γ

φ(x− y)
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Gibbs measures

A measure µ ∈M1(Γ) is called a Gibbs measure iff

∫

Γ

∑

x∈γ

F (γ, x)µ(dγ) =

=
∫

Γ
µ(dγ)

∫

Rd

zdx exp [−βE(x, γ)]F (γ ∪ x, x)

for any measurable function

F : Γ× Rd → [0, +∞).

G(z, β) = all (grand canonical) Gibbs measures.



Interacting Particle
systems in Continuum:

Continuous vs.
Discrete

Yu. Kondratiev

Introduction

Mathematical
Framework

Glauber dynamics I:
spectral gap

Glauber dynamics for
Gibbs states
Spectral gap
conditions

Glauber dynamics II:
non-equilibrium case

Stochastic IBM

Free growth model
Contact model in
continuum
CM with Kawasaki
dynamics
Free development
with mortality
Ecological models
with competition
Ecological models
with establishment
Dieckmann-Law
model
Competition in
economic models

Spatially
heterogeneous IBM

Glauber dynamics in continuum

Bertini/Cancrini/Cesi ’02 (finite volume systems)

b(x, γ) = ze−βE(x, γ), d(x, γ) = 1.

[Kondratiev/Lytvynov,’03]:
under general conditions on the potential φ and the parameters
β, z there exists a Markov process on Γ with the stationary
measure µ ∈ G(z, β).
The corresponding Markov generator L has form:

(LF )(γ) =
∑

x∈γ

(F (γ \ x)− F (γ))

+z

∫

Rd

exp(−βE(x, γ))(F (γ ∪ x)− F (γ))dx
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We will discuss properties of the operator

H = −L ≥ 0

in L2(Γ, µ) for

µ ∈ G(z, β)
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We will say that the potential φ satisfies the integrability condition
(I), if

∀β > 0 C(β) :=
∫
|1− e−βφ(x)|dx < ∞.

Theorem (Kondratiev/Lytvynov)

Suppose that the potential φ ≥ 0 and satisfies the integrability
condition. For any µ ∈ G(z, β) the operator H is essentially
self-adjoint in L2(Γ, µ).
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Poincaré inequality for Glauber generator

(HF, F )L2(µ) =
∫

Γ

µ(dγ)
∫

Rd

γ(dx)|(D−
x F )(γ)|2

Theorem (Poincaré Inequality)

Assume additionally

δ := zC(β) <
1
e
.

Then for the unique Gibbs measure µ ∈ G(z, β) holds

(HF, F )L2(µ) ≥ (1− δ)
∫

Γ
(F (γ)− < F >µ)2dµ(γ),

for all F ∈ D(H).
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Remark: all known proofs

Bertini/Cancrini/Cesi 2002 (finite volume)

Wu 2003 (finite volume)

Kondratiev/Lytvynov 2003

Kondratiev/Minlos/Zhizhina 2004
(+ one-particle subspaces etc.)

use the condition φ ≥ 0.
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Definition (IbP formula)

The function r : X × Γ −→ R+ which fulfills
∫

Γ

µ(dγ)
∑

x∈γ

f(x, γ \ x) =

∫

X

ν(dx)

∫

Γ

µ(dγ)r(x, γ)f(x, γ)

for all measurable functions f : X × Γ → R+ is called Papangelou
intensity (PI) of a measure µ on (Γ,B(Γ)).
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Glauber dynamics of continuous particle systems

Consider the Dirichlet form of the Glauber dynamics on L2(Γ, µ),
where

E(F,G) :=
∫

Γ

µ(dγ)
∫

Rd

γ(dx)(D−
x F )(γ)(D−

x G)(γ)

D−
x F (γ) = F (γ \ x)− F (γ)

D+
x F (γ) = F (γ ∪ x)− F (γ).
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The bilinear form E is closable on L2(Γ, µ)
and its closure is a Dirichlet form.
The generator (−L, D(L)) of the form (E , D(E))
is given by

(LF )(γ) =
∑

x∈γ

(F (γ \ x)− F (γ))

+
∫

Rd

r(x, γ)(F (γ ∪ x)− F (γ))dx
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Theorem
Under mild conditions on Papangelou intensity, there exists a Hunt
process

M = (ΩΩΩ,F, (Ft)t≥0, (ΘΘΘt)t≥0, (X(t))t≥0, (Pγ)γ∈Γ)

on Γ which is properly associated with (E , D(E)).
M is up to µ-equivalence unique. In particular, M is µ-symmetric
and has µ as an invariant measure.
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“Carré du champ” and “Carré du champ itéré”

Define the ”carré du champ” corresponding to L as

#(F,G) :=
1
2
(L(FG)− FLG−GLF ).

"(F, G) =
1

2

∑

x∈γ

D−
x F (γ)D−

x G(γ) +
1

2

∫
r(x, γ)D+

x F (γ)D+
x G(γ)dx.

Iterating the definition of ”carré du champ” introduce “carré du
champ itéré” #2

2#2(F, F ) := L#(F, F )− 2#(F,LF ).
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Coercivity identity

Through direct calculations we obtain

E(F, F ) =
∫

Γ
#(F, F )(γ)µ(dγ).

∫

Γ
(LF )2(γ)µ(dγ) =

∫

Γ
#2(F, F )(γ)µ(dγ)
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Theorem

∫

Γ
(LF )2(γ)µ(dγ) =

∫

Γ
#2(F, F )(γ)µ(dγ)

=
∫

Γ
#(F, F )(γ)µ(dγ) +

∫

Γ

∑

x∈γ

∑

y∈γ\x

(
D−

x D−
y F

)2 (γ)µ(dγ)

+
∫

Γ

∫

Rd

r(x, γ)
∫

Rd

D+
x r(y, ·)(γ)D+

y F (γ)D+
x F (γ)dydxµ(dγ)
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Sufficient condition for spectral gap

The Poincaré inequality

c

∫ (
f −

∫
fdµ

)2

dµ ≤ E(f, f).

The largest possible c gives the spectral gap of the generator H.
Coercivity inequality: for a nonnegative (essentially self-adjoint)
operator H (generator of E)

∫

Γ
(HF )2(γ)µ(dγ) ≥ cE(F, F ), c > 0

If fulfilled, then (0, c) does not belong to the spectrum of H.
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Rewriting in terms of the ”carré du champ” and #2

∫

Γ
#2(F, F )(γ)µ(dγ) ≥ c

∫

Γ
#(F, F )(γ)µ(dγ).

The following inequality is sufficient:

(1− c)

∫

Γ

∫

Rd
r(x, γ)(D+

x F )2(γ)dxµ(dγ)

+

∫

Γ

∫

Rd

∫

Rd
r(x, γ)D+

x r(y, ·)(γ)D+
y F (γ)D+

x F (γ)dydxµ(dγ) ≥ 0
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Definition
A (generalized) function B : Rd × Rd −→ C is called a positive
definite kernel if for all ψ ∈ C∞0 (Rd) holds

∫

Rd

∫

Rd

B(x, y)ψ(x)ψ(y)dxdy(= 〈B, ψ ⊗ ψ〉) ≥ 0.

Theorem
If for µ-a.a. γ the kernel

r(x, γ)(r(y, γ)− r(y, γ ∪ x)) + (1− c)
√

r(x, γ)
√

r(y, γ)δ(x− y)

is positive definite then the coercivity inequality holds for H with
constant c.
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Coercivity inequality for Gibbs measures

Theorem
Let µ be a Gibbs measure for a pair potential φ and activity z. If
for each fixed γ the kernel

e−
1
2 E(x,γ)e−

1
2 E(y,γ)z(1− e−φ(x−y)) + (1− c)δ(x− y)

is positive definite then the coercivity inequality holds for H with
constant c.

The condition above with c = 1 holds if
∫

Rd

∫

Rd

(1− e−φ(x−y))ψ(y)ψ(x)dxdy ≥ 0 (1)

for all ψ ∈ C0(Rd).
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Definition
A measurable function u : Rd −→ C is called positive definite if
for all ψ ∈ C0(Rd)

∫

Rd

∫

Rd

u(x− y)ψ(x)ψ(y)dxdy ≥ 0.

Condition (1) means that x '→ 1− e−φ(x) is a positive definite
function.
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Examples

φ(x) f(x) Parameters

− ln(1− e−tx2
cos(ax)), e−tx2

cos(ax), t > 0, a ∈ R

− ln(1− e−t|x| cos(ax)), e−t|x| cos(ax), t > 0, a ∈ R

− ln

(
1− cos(ax)

1 + σ2x2

)
,

1
1 + σ2x2

cos(ax), σ > 0, a ∈ R

In all examples above one can change cos(ax) to sin(ax)
ax .

We can also give d-dimensional examples.
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Theorem
Let f be a continuous positive definite function which is (R).
Define φ := − ln(1− f).Then φ is (SS) and (R). For every
tempered Gibbs measure µ with potential φ the generator H
fulfills the coercivity inequality for c = 1.

Now we consider which properties a potential necessarily has
which fulfills condition (1).

Theorem
Let φ be a potential which fulfills condition (1) and is (S), (R),
and continuous. Then it is of the form φ := − ln(1− f) and hence
also (SS). Furthermore, φ is integrable, itself positive definite in
the sense of generalized functions, and

lim
x→0

φ(x)
−2 ln(x)

≤ 1.
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Lemma
Let f : R → [0, 1], f ∈ C2(R), even function, decreasing and
convex on R+. Denote φ(x) = − ln(1− f(x)). Then
fβ = 1− e−βφ(x) is also positive definite for all β such that
0 ≤ β ≤ 1.
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In the d-dimensional case we can give following examples:
φ(x) = − ln(1− f(x)).

f(x) Parameters

e−t|x|2 cos(a · x) x ∈ Rd, t > 0, a ∈ Rd

e−t|x|2
d∏

j=1

sin(ajxj)

ajxj
x ∈ Rd, t > 0

( r
|x| )

n/2Jn/2(r|x|) r ≥ 0, n > 2d− 1

2n/2Γ( n+1
2 )

√
π

· t

(|x|2+t2)
n+1

2
t > 0, n > d− 1

where Jn/2 is the Bessel function of the first kind.
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Dirichlet forms '→ equilibrium Markov processes

Possible initial states:
absolute continuous w.r.t. reversible measures

Non-equilibrium dynamics: general initial states

Problem: how far from equilibrium stochastic dynamics makes
sense?

Mathematical formulation: admissible classes of initial measures

References:
K/Kutoviy/Zhizhina, J.Math.Phys., 2006
K/Kutoviy/Minlos, J.Funct.Anal., 2008
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General scheme of construction of
non-equilibrium process

# Let ρ : Γ0 → R be arbitrary positive function. Denote

M1
ρ(Γ) :=

{
µ ∈M1(Γ) | kµ ≤ const · ρ

}
.

# Let L be a Markov pre-generator defined on some set of
functions F(Γ) given on the configuration space Γ.
Comments:

∂Ft

∂t
= LFt, (KE)

Ft = etLF0 (Markov semigroup)

∂µt

∂t
= L%µt, (DKE = FPE)

µt = etL"

µ0 (state evolution)
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# Let
L̂ := K−1LK

be a formal K- transform or symbol of the operator L (our
starting object).

# We consider
L̂ : D(L̂) ⊂ L→ L

in a Banach space

L := L1(Γ0, ρ dλ1) =
∞⊕

n=0

L1
(
Γ(n), ρ(n)σ(n)

)
.

Suppose that domain of this operator is such that it is closed
and densely defined in L.

# Suppose that (L̂, D(L̂)) is a generator of a semigroup in L:

L̂ → Ût, t≥0
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# Introducing duality between Banach spaces L and

K(ρ) :=
{
k : Γ0 → R | k · ρ−1 ∈ L∞(Γ0, λ1)

}
:

<< G, k >>:=

=
∫

Γ0

G · kdλ1 =
∫

Γ0

G · k

ρ
· ρdλ1, G ∈ L,

we construct semigroup Û%
t , t ≥ 0 on K(ρ).

# Suppose that function ρ in the definition of K(ρ) satisfies
Ruelle-type bound. Let k ∈ K(ρ) is a correlation function (i.e.
the corresponding correlation measure is normalized, positive
definite) and let

kt := Û%
t k, t ≥ 0

denotes an evolution of function k.

# Assume that for any t ≥ 0, kt ∈ K(ρ) is positive definite,
normalized function.
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By the main CF theorem one can easily construct a semigroup on
M1

ρ:
k → µ,

kt = Û%
t k → U%

t µ, t ≥ 0,

µt = U%
t µ ∈M1

ρ.

The existence of semigroup U%
t , t≥0 on M1

ρ implies the existence
of process (Xµ

t )t≥0 associated with generator L for any initial
distribution µ ∈M1

ρ.
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Spatial birth-and-death processes

We consider a Markov pre-generator on Γ, the action of which is
given by

(LF )(γ) := (Lb,dF )(γ) =

=
∑

x∈γ

d(x, γ \ x)D−
x F (γ) +

∫

Rd

b(x, γ)D+
x F (γ)dx,

D−
x F (γ) = F (γ \ x)− F (γ),

D+
x F (γ) = F (γ ∪ x)− F (γ).
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It is known that a Gibbs measure

µ ∈ G(β, z)

is reversible w.r.t. the stationary Markov process
associated with the generator L in L2(Γ, µ)
(i.e. L is symmetric in L2(Γ, µ)) iff:

b(x, γ) = ze−βE(x, γ)d(x, γ),

where E(x, γ) is the relative energy of interaction between a
particle located at x and the configuration γ:

E(x, γ) :=
∑

y∈γ

φ(x− y)
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Gibbs measures

A measure µ ∈M1(Γ) is called a Gibbs measure iff

∫

Γ

∑

x∈γ

F (γ, x)µ(dγ) =

=
∫

Γ
µ(dγ)

∫

Rd

zdx exp [−βE(x, γ)]F (γ ∪ x, x)

for any measurable function

F : Γ× Rd → [0, +∞).

G(z, β) = all Gibbs measures.
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Glauber dynamics (G±)

Consider as above the case

b(x, γ) = ze−βE(x, γ), d(x, γ) = 1.

The corresponding generator: L+ := L.

Glauber dynamics (G−):

b(x, γ) = z, d(x, γ) = eβE(x, γ).

The corresponding generator: L−.
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The symbol of Glauber generator on the space of
finite configurations

Potential: φ : Rd → R ∪ {+∞} Borel, even function.
(I) Integrability: ∀β > 0

c(β) :=
∫

Rd

|1− e−βφ(x)|dx < ∞,

(P) Positivity: φ(x) ≥ 0 for all x ∈ Rd.
The image of L under the K-transform has the following form:

(L̂G)(η) := (K−1LKG)(η) = −|η|G(η)+

+z
∑

ξ⊆η

∫

Rd

G(ξ ∪ x)
∏

y∈η\ξ

(e−βφ(x−y) − 1)e−βE(x, ξ)dx =

= (L0G)(η) + z(L1G)(η), G ∈ Bbs(Γ0).
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Non-equilibrium dynamics (G+). Construction of
a semigroup.

λ = Lebesgue-Poisson measure on Γ0 with z = 1.
For fixed C > 0 and β > 0, we consider operator L̂ in

LC, β := L1(Γ0, C
|η|e−βE(η)dλ(η)).

Let κ := z > 0 be the parameter of the considering model. Then

(L̂G)(η) = (L̂κG)(η) = (L0G)(η) + κ(L1G)(η),

G ∈ D(L1) = D(L0) =

= {G ∈ LC, β | |η|G(η) ∈ LC, β} .
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Theorem
For any C > 0, and for all κ, β > 0 which satisfy

κ exp (C(β)C) < C, (2)

the operator L̂κ is a generator of a holomorphic semigroup in
LC, β .
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Construction of non-equilibrium Markov process

Fix any triple C, κ and β: κ exp (C(β)C) < C.

Ût(C, κ,β) be holomorphic semigroup generated by L̂κ

KC, β :=
{

k : Γ0 → R+ | k(·) C−|·|eβE(·) ∈ L∞(Γ0, λ)
}

the space for possible correlation functions.

Duality between quasi-observables G ∈ LC, β and functions
k ∈ KC, β :

〈〈G, k〉〉 := 〈G, k〉L2(Γ0, λ) .
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Remark: 1. 〈G, k〉L2(Γ0, λ) =

=
∫

Γ0

G(η)C |η|e−βE(η)k(η)C−|η|eβE(η)dλ(η) < ∞.

2. k(·) C−|·|eβE(·) ∈ L∞(Γ0, λ) implies

k(η) ≤ const C|η|e−βE(η).

Duality determines semigroup on KC, β :

Ût(C, κ,β) ←→ Û%
t (C, κ,β).
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Lemma
Let positive constants C, κ and β which satisfy

κ exp (C(β)C) < C

be arbitrary and fixed. The semigroup Û%
t (C, κ,β) on KC, β

preserves positive definiteness, i.e.
〈〈

G % G, Û%
t (C, κ,β)k

〉〉
≥ 0, ∀G ∈ Bbs(Γ0)

if
〈〈G % G, k〉〉 ≥ 0,

for any G ∈ Bbs(Γ0).
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Let MC, β - the set of all probability measures on Γ, locally
absolutely continuous with respect to Poisson measure, with
locally finite moments, whose correlation functions satisfy bound

k(η) ≤ const C|η|e−βE(η).

Theorem
Suppose that conditions (I) and (P) are satisfied. For any triple of
positive constants C, κ and β which satisfy

κ exp (C(β)C) < C

and any µ ∈MC, β there exists Markov process Xµ
t ∈ Γ with

initial distribution µ associated with generator Lκ.
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Glauber dynamics G−

b(x, γ) = z, d(x, γ) = eβE(x, γ).

For arbitrary and fixed C > 0 we consider L̂− in

LC := L1(Γ0, C |η|dλ(η)).

For the potential φ assume:

(S) Stability: ∃B ≥ 0, s.t. ∀η ∈ Γ0

E(η) :=
∑

{x, y}⊂η

φ(x− y) ≥ −B|η|,

(SI) Strong Integrability:

Cst(β) :=
∫

Rd

|1− eβφ(x)|dx < ∞
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Theorem
For any C > 0, and for all κ, β > 0 which satisfy

eCst(β) + κe2BβC−1 < 2

the operator L̂− is a generator of a holomorphic semigroup in LC .
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Stochastic growth

BIO: independent growth (plants)

Dispersion kernel:

a+(x− y) dx
0 ≤ a+ ∈ L1(Rd) even.

Generator:

(LIGF )(γ) =
∑

y∈γ

∫
Rd a+(x− y)[F (γ ∪ x)− F (γ)] dx
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Stochastic growth

SOCIO-ECO: free development=independent birth
(creation by an outer free will)

(LIBF )(γ) = z
∫

Rd(F (γ ∪ x)− F (γ))dx

GENETICS: generalized mutation models

Evans/Steinsalz/Wichtner, 2005
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Density of population

Independent Growth: kt(x) ∼ Ceλt, t →∞

Independent Birth: kt(x) ∼ Ct, t →∞

Free Evolution Models

Problem: to analyze stochastic evolution models in the presence
of global regulations and local competitions
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IG with mortality = Contact Model

Generator:

(LF )(γ) =
∑

x∈γ m[F (γ \ x)− F (γ)]+
∑

y∈γ

∫
Rd a+(x− y)[F (γ ∪ x)− F (γ)] dx

m = global mortality intensity

Existence of Markov process:

[K/Skorokhod, 06] finite range a+

[Finkelstein/K/Skorokhod, 07] general case a+
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Correlation equations for CM

[K/Kutoviy/Pirogov, 07]

What can happen?

Take translation-invariant initial condition

kt(x) ≡ ρt.
∂ρt

∂t = −(m− 〈a+〉)ρt

m > 〈a+〉 ⇒ ρt → 0
m < 〈a+〉 ⇒ ρt → +∞
m = 〈a+〉 ⇒ ρt ≡ ρ0

m = 〈a+〉 critical value of mortality

Possible invariant state: for m = 〈a+〉
m = mcr
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CF time evolution

∂k(n)
t

∂t
(x1, . . . , xn) =

−nmk(n)
t (x1, . . . , xn)+

n∑

i=1

[∑

j +=i

a+(xi − xj)
]
k(n−1)

t (x1, . . . , x̌i, . . . , xn)+

n∑

i=1

∫

Rd

a+(xi − y)k(n)
t (x1, . . . , xi−1, y, xi+1, . . . , xn) dy
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Theorem
Let k(n)

0 ≤ Cnn!, n ≥ 0.

Then k(n)
t (x1, . . . , xn) ≤ An(C + t)nen(<a+>−m)tn!.

Remark:

actually for a Poisson initial state and x1, ..., xn inside a small ball

k(n)
t (x1, . . . , xn) 9 Cn

t n!, t > 0, n →∞,

that means

strong clustering!
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Invariant measures

Let d ≥ 3.

Stationary equation:

∂kt

∂t
= 0

Theorem
Assume a+:

∫
Rd |x|2a+(x) dx < ∞.

∀ρ > 0 ∃! solution (k(n),ρ)∞n=0 corresponding to a measure

µρ ∈M1(Γ) with k(1),ρ(x) = ρ.

We have k(n),ρ(x) ≤ C(ρ)n(n!)2, n ≥ 1.
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For d ≤ 2 µρ does not exist!

The point: ∫

|p|≤1

dp

ã(0)− ã(p)
< ∞

necessary condition for the existence of k(2),ρ(x, y).
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CM + Kawasaki dynamics (plankton model)

K/Kutoviy/Struckmeier ’08
Equilibrium state for CM needs d ≥ 3.
d = 2?
Consider a CM with a motion of individuals:
take into account different time scales
Generator in the bio-time scale:

(LF )(γ) =
∑

x∈γ

∫

Rd

κ(x− y)[F (γ \ x ∪ y)− F (γ)] dy + (LCMF )(γ)

= ((LK + LCM)F )(γ)

L = LK(κ) + LCM(m, a+)
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Critical value m = 〈a+〉.

Assume long tail jumps:

∫

|p|≤1

1
1− κ̃(p)

dp < ∞

For example:

κ̃(p) = e−|p|
α

,

1 ≤ α < 2 (stable distributions)
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Theorem
∀ρ > 0 ∃! invariant measure µρ for CM with Kawasaki dynamics.

Interpretation: super-diffusive stochastic dynamics of
individuals in bio-time scale.
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Independent birth with mortality

Surgailis process:

(LF )(γ) = m
∑

x∈γ(F (γ \ x)− F (γ))+

z
∫

Rd(F (γ ∪ x)− F (γ))dx

Unique invariant measure is the Poisson measure on Γ with
intensity

z

m

ANY non-zero mortality stabilizes the system!
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Bolker-Pacala model

(= CM + density dependent mortality)

L = LCM + L(a−)

(LF )(γ) =
∑

x∈γ



m +
∑

x′∈γ\x

a−(x− x′)



 [F (γ \ x)− F (γ)]

+
∑

y∈γ

∫

Rd

a+(x− y)[F (γ ∪ x)− F (γ)]dx

a+(x− y) – dispersion kernel
a−(x− y) – competition kernel
0 ≤ a± ∈ L1(Rd)
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CF evolution

[Finkelshtein/K/Kutoviy, 2007]
Generator on correlation functions:

(LCF k)(η) = −k(η)
[
m|η|+ κ−Ea−(η)

]
−

κ−
∫

Rd

∑

y∈η

a−(x− y)k(η ∪ x)dx+

+κ+
∑

x∈η

k(η \ x)
∑

y∈η\x

a+(x− y)+

κ+

∫

Rd

∑

x∈η

a+(x− y)k(η \ x ∪ y)dy.
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Ecological problem

May the competition mechanism lead to

the ”regularly distributed” in space population

with bounded in time density?

Necessary condition: big enough mortality m
(that follows from an accretivity assumption)
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Competition assumptions (CA):

∃C > 0 : a+(x) ≤ Ca−(x)

m > C〈a−〉+ 〈a+〉

that means strong enough competition and mortality
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Theorem
Let (CA) fulfilled. For any initial CF s.t.

k(n)
0 ≤ Cn, n ∈ N

there exists the unique solution of the CF equation

k(n)
t , t ≥ 0, n ∈ N, satisfying the same bound

This gives a sub-Poissonian bound,

i.e., the strong enough competition

destroys the clustering in CM!
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CM with establishment

[Finkelshtein/K. 2007]

a+(x− y) −→ a+(x− y)e−Eφ(x,γ)

e−Eφ(x,γ) = e(x, γ) establishment rate

Eφ(x, γ) =
∑

x′∈γ
φ(x− x′)

competition for survival

Bolker-Pacala establishment rate

e(x, γ) =
1

1 + Eφ(x, γ)
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Generator

(LF )(γ) =
∑

x∈γ

m[F (γ \ x)− F (γ)]+

∑

y∈γ

∫

Rd

a+(x− y)e(x, γ)[F (γ ∪ x)− F (γ)]dx
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Stability condition: m > 0, ∃β > 0 : a+(x) ≤ βφ(x)
L = L(m, a+, φ)

Theorem
Under stability condition there exists a unique Markov process on
Γ for L(m, a+, φ) (for certain class of initial configurations).

Proof is based on a delicate use of

a [Garcia/Kurtz, 2006] existence result
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Correlation functions in CM with establishment

Time evolution of CF

Theorem (K/Finkelstein ’07)

Assume stability condition is true and initial CFs satisfy a

sub-Poisson bound k(n)
0 ≤ Cn, n ≥ 1.

Then there exists C1 > 0 s.t. for the time dependent CFs holds

k(n)
t ≤ Cn

1 , n ≥ 1.

Remark:
The establishment mechanism is more effective
comparing with density dependent mortality:

we do not need to have a big enough mortality
to organize control over time-space behavior
of the population
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Density dependent fecundity

b(x, γ) =
∑

y∈γ

a+(x− y)f(y, γ \ y)

,

f(y, γ \ y) = e−Eφ(y,γ\y)

Open problem:
produces the fecundity an effective regulation of
the population?
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Dieckmann-Law model

[Finkelshtein/Kondratiev, ’08] (in preparation)

(LF )(γ) =
∑

x∈γ



m +
∑

x′∈γ\x

a−(x− x′)



 [F (γ \ x)− F (γ)]

+
∑

y∈γ

∫

Rd

a+(x− y)



1 +
∑

y′∈γ\y

b(y − y′)



 [F (γ ∪ x)− F (γ)]dx
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Dieckmann-Law model without competition

i)DLM without local competition(a− ≡ 0).

Assume existence of corresponding MP Xt ∈ Γ.

For Λ ⊂ Rd bounded put

nΛ
t = E(|Xt ∩ Λ|)

Then ∃t0 :

nΛ
t → +∞

t → t0− (explosion).
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Dieckmann-Law model: non-explosion

ii) DLM: non-explosion via competition d ≥ 2
Construction of a Lyapunov functional
(cf. [K/Skorokhod, ’06]

eδ(x) =
1

1 + |x|δ , δ > d

Ψδ(x, y) = eδ(x)eδ(y)
|x− y|+ 1
|x− y| 11{x+=y}

Lδ(γ) = 〈eδ, γ〉

Eδ(γ) =
∑

{x,y}⊂γ

Ψδ(x, y)

Vδ(γ) = Lδ + Eδ
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Assume

a+(x) ≤ A

(1 + |x|)2δ

Introduce Aδ = AC(δ, d) > 0

Theorem
Assume

a−(x) ≥ 2Aδb(x)

⇒ ∃C > 0 :
LVδ(γ) ≤ CVδ(γ).

If, additionally, m ≥ 2Aδ〈a+〉 ⇒

LVδ(γ) ≤ 0
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Independent development with competition

b(x, γ) = z > 0 (independent birth with constant intensity)

(i) d(x, γ \ x) = eβE(x,γ\x) =⇒ generator L−

E(x, γ \ x) =
∑

y∈γ\x φ(x− y)

(ii) d(x, γ \ x) = m +
∑

y∈γ\x a−(x− y) =⇒ generator Lm

(iii) d(x, γ \ x) =
∑

y∈γ\x a−(x− y) =⇒ generator L0
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(i) Glauber dynamics G−

Symmetrizing measures for L− are

grand canonical Gibbs measures Ggc(β,φ, z)

L− '−→ Xt ∈ Γ equilibrium Glauber dynamics
via the Dirichlet form method [K/Lytvynov, ’05]

Non-equilibrium GD:

[K/Kutovyi/Minlos,’07]

via CF evolution (see Lecture 2).
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(ii) Surgailis process with competition

(LmF )(γ) =∑
x∈γ(m +

∑
y∈γ\x a−(x− y))(F (γ \ x)− F (γ))+

z
∫

(F (γ ∪ x)− F (γ))dx

Here we have a sub-Poissonian evolution of CFs.
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(iii) Stabilization via competition

[Finkelstein/K, 2007]

Consider (ii) with m=0
pure competition mechanism (i.e., without global regulation)

(L0F )(γ) =∑
x∈γ

∑
y∈γ\x a−(x− y)(F (γ \ x)− F (γ))+

z
∫

(F (γ ∪ x)− F (γ))dx

Hierarchical equations for CF

do not give any a priori information

about the density of the system.
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Mean density bound

Let Xt ∈ Γ will be MP corresponding to L0 and an initial measure
with bounded density.

Let Λ = B (0, R) be a ball with center at origin and radius R > 0.
Introduce the mean density

ρΛ
t :=

1
|Λ|

∫

Λ
k(1)

t (x) dx.

Our aim is to produce a time bound for this density
and any such volume Λ.
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Theorem
Let a− be a continuous function of positive type on Rd.

Then the mean density

ρΛ
t :=

1
|Λ|

∫

Λ
k(1)

t (x) dx

is uniformly bounded in t > 0 and Λ.
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Comments

We use the explicit form of the generator instead of CF equation.
Denote γΛ = γ ∩ Λ.
Then

L0|γΛ| ≤ −
C

|Λ| |γΛ|2 + z|Λ|

That gives easily for ρt = ρΛ
t

d

dt
ρt ≤ z − Cρ2

t .

The proof follows from an analysis of this differential inequality.
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General competition models in economics

b(x, γ) ≡ λ > 0.

Then
(LF )(γ) =

∑

x∈γ

d(x, γ \ x)
[
F (γ \ x)− F (γ)

]

+λ

∫

Rd

[
F (γ ∪ x)− F (γ)

]
dx.
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Examples

1. Surgalis process

d(x, γ \ x) ≡ m > 0.

Invariant measure: Poisson measure with intensity λ
m .

2. G−-dynamics

d(x, γ \ x) = exp
{ ∑

y∈γ\x

φ(x− y)
}

Invariant measure: Gibbs measure, heuristically given by

dµφ(γ) = ”
1

Zφ
exp

{
−

∑

{x,y}⊂γ

φ(x− y)
}
dπλ”.
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Examples

3. ”Linear part of G−-dynamic”

d(x, γ \ x) = m +
∑

y∈γ\x

c(x− y), m > 0, 0 ≤ c ∈ L1(Rd)

ex = 1 + x + . . .
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Examples

4. ”Pure local competition model”

d(x, γ \ x) =
∑

y∈γ\x

c(x− y), 0 ≤ c ∈ L1(Rd).

Hence,

(LSF )(γ) =
∑

x∈γ

∑

y∈γ\x

c(x− y)
[
F (γ \ x)− F (γ)

]

+ λ

∫

Rd

[
F (γ ∪ x)− F (γ)

]
dx. (3)
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Boundness of a density

Suppose that process Xt exists. Define the first correlation
function via

E
[ ∑

x∈Xt(·)

ϕ(x)
]

=
∫

Rd

ϕ(x)k(1)
t (x)dx.

Theorem
Let c ∈ L1(Rd) is a continuous function of positive type on Rd.
Then the function

1
|Λ|

∫

Λ
k(1)

t (x)dx

is uniformly bounded by t and Λ if its initial value is uniformly
bounded by Λ.
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Proof

Let Λ = B (0, R) be a ball with center at origin and radius R > 0.
Let h > 0 and Λh = {x : infy∈Λ |x− y| < h} . Then for h < R

σ (Λ, h) :=
∣∣Λh \ Λ

∣∣
|Λ| =

∣∣Λh
∣∣

|Λ| − 1 =
(R + h)d

Rd
− 1

=
(

1 +
h

R

)d

− 1 < 2d − 1

By [Lewis et al.] for any η := {xk}n
k=1 ⊂ Λ

∑

k +=j

c(xk − xj) = 2Ec (η) ≥ n2

|Λ|
[〈c〉 − δ (h)]2

[〈c〉+ δ (h) + σ (Λ, h) 〈c〉] ,

where

δ (h) = 2
∫

|x|>h
c (x) dx.
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Proof

Hence,

2Ec (η) ≥ n2

|Λ|
[〈c〉 − δ (h)]2

[〈c〉+ δ (h) + (2d − 1) 〈c〉]

=
n2

|Λ|
[〈c〉 − δ (h)]2

[2d〈c〉+ δ (h)]
.

Set

C = C (h, d) :=
[〈c〉 − δ (h)]2

2d〈c〉+ δ (h)
> 0

if only

〈c〉 − δ(h) =
∫

|x|≤h
c (x) dx−

∫

|x|>h
c (x) dx := 0.
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Proof

Note that for F (γ) =
∑

x∈γ ϕ(x)

(LSF ) (γ) = −
∑

x∈γ




∑

y∈γ\x

c (x− y)



 ϕ (x) + λ

∫

Rd

ϕ (x) dx.

Let ϕ (x) = 1Λ (x), Λ ∈ Bc

(
Rd

)
. Then

(LSF ) (γ) = −
∑

x∈γΛ




∑

y∈γ\x

c (x− y)



 + λ |Λ|

≤ −
∑

x∈γΛ




∑

y∈γΛ\x

c (x− y)



 + λ |Λ|

= −2Ec (γΛ) + λ |Λ| ≤− C

|Λ| |γΛ|2 + λ |Λ| .
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Proof

Set
nΛ

t = E (|Xt ∩ Λ|) .

Then

d

dt
nΛ

t = E (LS |Xt ∩ Λ|)

≤ E
(

λ |Λ|− C

|Λ| |Xt ∩ Λ|2
)

≤ λ |Λ|− C

|Λ|

(
E (|Xt ∩ Λ|)

)2

= λ |Λ|− C

|Λ|
(
nΛ

t

)2
.
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Proof

Since

nΛ
t =

∫

Λ
k(1)

t (x) dx

we have for

ρt = ρΛ
t :=

1
|Λ|

∫

Λ
k(1)

t (x) dx

that the following inequality holds

d

dt
ρt ≤ λ− Cρ2

t .

Therefore, if we consider Cauchy problem

{ d

dt
g (t) = λ− Cg2 (t)

g (0) = g0

and ρ0 ≤ g0 then ρt ≤ g (t).
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Proof

One has
√

Cdg (t)√
Cg (t) +

√
λ
−

√
Cdg (t)√

Cg (t)−
√

λ
= 2

√
Cλdt;

ln

∣∣∣
√

Cg (t) +
√

λ
∣∣∣

∣∣∣
√

Cg (t)−
√

λ
∣∣∣
− ln D̃ = 2

√
cλt, D̃ > 0;

√
Cg (t) +

√
λ√

Cg (t)−
√

λ
= De2

√
cλt, D > 0;

√
Cg (t) +

√
λ = De2

√
Cλt
√

Cg (t)−De2
√

Cλt
√

λ;

g (t) =
De2

√
Cλt
√

λ +
√

λ

De2
√

Cλt
√

C −
√

C
=

√
λ

C

(
1 +

2
De2

√
Cλt − 1

)
.
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Proof
Then

g0 = g (0) =
√

λ

C

(
1 +

2
D − 1

)
.

Let g0 be such that D = 1 + ε. Thus, if for any Λ

ρΛ
0 = ρ0 ≤

√
λ

C

(
1 +

2
ε

)

one has that

ρt ≤
√

λ

C

(
1 +

2
(1 + ε) e2

√
Cλt − 1

)
.

Note that for t ≥ 0

(1 + ε) e2
√

cλt − 1 ≥ ε > 0.

As a result, for any Λ ∈ Bc(Rd)

ρΛ
t = ρt ≤

√
λ

C

(
1 +

2
ε

)
.
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Heterogeneous Contact Models:
random mortality

Lattice case: Joo/Lebowitz, Phys.Rev.E72, 2005

Mortality rate m → m(x, ω) ≥ 0
Density evolution

∂kt(x)
∂t

= La+
kt(x)− V (x)kt(x)

where

La+
f(x) =

∫
a+(x− y)[f(y)− f(x)]dy

V (x, ω) = m(x, ω)− 〈a+〉

Parabolic Anderson problem for pure jump generator
(CTRW in continuum)
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Random establishment

a+(x− y) → a+(x− y)b(x, ω)

Generator

(LF )(γ) =
∑

x∈γ

m(x)[F (γ \ x)− F (γ)]+

∑

y∈γ

∫

Rd

a+(x− y)b(x, ω)[F (γ ∪ x)− F (γ)]dx
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Density evolution

∂kt(x)
∂t

= La+

b kt(x)− V (x)kt(x)

La+

b f(x) = b(x, ω)
∫

a+(x− y)[f(y)− f(x)]dy

V (x, ω) = m(x, ω)− b(x, ω)〈a+〉

La+

b is symmetric in

L2(Rd, b−1(x)dx)

(quenched random measure?).
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Random fecundity

Random fecundity rate

Rd # y '→ κ(y, ω) ≥ 0

Birth rate

b(x, γ, ω) =
∑

y∈γ

a+(x− y)κ(y, ω)
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Density evolution

∂kt(x)
∂t

= La+

κ kt(x)− V (x)kt(x)

La+

κ f(x) =
∫

a+(x− y)κ(y, ω)[f(y)− f(x)]dy

V (x, ω) = m(x, ω)− 〈a+(x− ·)κ(·, ω)〉

La+

κ is symmetric in

L2(Rd, κ(x, ω)dx)
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CTRW in random environment

Two types of quenched jump generators:

La+

b f(x) = b(x, ω)
∫

a+(x− y)[f(y)− f(x)]dy

La+

κ f(x) =
∫

a+(x− y)κ(y, ω)[f(y)− f(x)]dy
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Feynman-Kac formula

Quenched CTRW:

La+,ω
b,κ → ξω

t

Density of population:

kt(x) = Ex[k0(ξω
t )e−

∫ t
0 V (ξω

s )ds]

Quenched vs. annealed

(cf., e.g., Donsker/Varadhan, Gaertner/Molchanov, Sznitman, ...)
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Other aspects of IBM

– multi-type systems
(Finkelshtein/K; F/K/Skorokhod),

– mutation-selection models in genetics
(K/Minlos/Pirogov; K/Kuna/Ohlerich)

– scaling limits
(Finkelshtein/K/Kuna/Kutovyi; Finkelshtein/K/Lytvynov;
Finkelshtein/K/Kutovyi)
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– Kawasaki dynamics in continuum
(K/Lytvynov/Roeckner;K/Kuna/Oliveira/Streit)

– plankton dynamics
(K/Kutovyi/Struckmeier)

– stochastic evolutions in evolving random environments
(Boldrighini/K/Minlos/Pellegrinotti; Struckmeier)

– spectral analysis of Markov generators
(K/Lytvynov; K/Minlos; K/Zhizhina; K/Kuna/Ohlerich)
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