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Question

Which random variables ξ can be represented as

ξ =

∫ 1

0
φs dBH

s ,

where BH is fractional Brownian motion, φ adapted?

For Wiener process W , the answer(s) is(are) known :

ξ =
∫ 1

0 φs dWs with adapted φ ∈ L2([0, 1]×Ω) iff ξ is W -measurable,
centered, and square integrable;

ξ =
∫ 1

0 φs dWs with adapted φ·(ω) ∈ L2([0, 1]) a.s. iff ξ is
W -measurable (Dudley (1977)).

Idea: since
∫ 1

0 (1− s)−2ds =∞, it holds limt→1−
∫ t

0 (1− s)−1dWs = −∞
and limt→1−

∫ t
0 (1− s)−1dWs = +∞. So, for example, to represent ξ = 1

as stochastic integral, let vt =
∫ t

0 (1− s)−1dWs , τ = inf{t : vt = 1} and
put φt = (1− t)−11t≤τ .
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Definition

The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a
centered Gaussian process BH = {BH

t , t ≥ 0} with stationary increments
and the covariance function

E
[

BH
t BH

s

]
=

1

2
(t2H + s2H − |t − s|2H).

For H > 1/2 (the case we consider here) fBm has long memory.

BH is almost surely Hölder continuous with any exponent γ < H.
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Integration

For α ∈ (0, 1) fractional derivatives

(
Dα
a+f
)
(x) =

1

Γ(1− α)

(
f (x)

(x − a)α
+ α

∫ x

a

f (x)− f (u)

(x − u)1+α
du

)
1(a,b)(x),

(
D1−α
b− g

)
(x) =

e iπα

Γ(α)

(
g(x)

(b − x)1−α + (1− α)

∫ b

x

g(x)− g(u)

(u − x)2−α du

)
1(a,b)(x).

Assume that Dα
a+f ∈ Lp[a, b], D1−α

b− gb− ∈ Lq[a, b] for some p ∈ (1, 1/α),
q = p/(p − 1), where gb−(x) = g(x)− g(b).

We can define∫ b

a
f (x)dg(x) = e−iπα

∫ b

a

(
Dα
a+f
)
(x)
(
D1−α
b− gb−

)
(x)dx .

If f ∈ Cµ[a, b], g ∈ C ν [a, b] with µ+ ν > 1, then
∫ b
a f (x)dg(x) is a limit

of integral sums.
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For any α ∈ (1− H, 1), D1−α
b− BH

b− ∈ L∞[a, b], so we can define for f with
Dα
a+f ∈ L1[a, b]∫ b

a
fsdBH

s = e−iπα
∫ b

a

(
Dα
a+f
)
(x)
(
D1−α
b− BH

b−
)
(x)dx .

Consider the following norm for α ∈ (1− H, 1/2):

‖f ‖1,α,[a,b] =

∫ b

a

(
|f (s)|

(s − a)α
+

∫ s

a

|f (s)− f (z)|
(s − z)1+α

dz

)
ds.

For simplicity we will abbreviate ‖·‖α,t = ‖·‖1,α,[0,t].

Theorem (Azmoodeh, Mishura, Valkeila (2011))

Let f : R→ R be a function of locally bounded variation,
F (x) =

∫ x
0 f (y)dy. Then for any α ∈ (1− H, 1/2) ‖f (BH

· )‖α,1 <∞ a.s.
and

F (BH
t ) =

∫ t

0
f (BH

s )dBH
s .
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For F (x) = |x |: ∣∣BH
t

∣∣ =

∫ t

0
sign BH

s dBH
s .

Why the integral even defined?

Fact: for 0 < s ≤ t ≤ 1 P(BH
s BH

t < 0) ≤ C (t − s)Ht−H .

E
[
‖sign BH‖α,t

]
= E

[∫ t

0

(∣∣sign BH
s

∣∣
sα

+

∫ s

0

∣∣sign BH
s − sign BH

z

∣∣
(s − z)1+α

dz ds

)]

≤ C +

∫ t

0

∫ s

0

E
[ ∣∣sign BH

s − sign BH
z

∣∣ ]
(s − z)1+α

dz ds

= C + 2

∫ t

0

∫ s

0

P(BH
s BH

z < 0)

(s − z)1+α
dz ds

≤ C + C

∫ t

0

∫ s

0
(s − z)H−1−αs−Hdz ds <∞.
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Let (Ω,F ,P) be a complete probability space endowed with a P-complete
left-continuous filtration F = {Ft , t ∈ [0, 1]}, and BH be F-adapted
fractional Brownian motion.

Lemma

There exists an F-adapted process ϕ = {ϕt , t ∈ [0, 1]} such that

For any t < 1 and α ∈ (1− H, 1/2) ‖ϕ‖α,t <∞ a.s., so integral
vt =

∫ t
0 ϕsdBH

s exists as a generalized Lebesgue–Stieltjes integral.

limt→1− vt =∞ a.s.

Key ingredient of the proof is small ball estimate for fBm:

P

(
sup

t∈[0,T ]
|BH

t | < ε

)
≤ e−cT ε

−1/H
for ε ≤ TH .
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Proof

Fix arbitrary γ ∈ (1, 1/H) and β ∈ (0, 1
γH − 1). Let ∆n = n−γ/ζ(γ),

ζ(γ) =
∑

n≥1 n−γ ,tn =
∑n

k=1 ∆k , n ≥ 0, we have tn → 1−, n→∞.

Denote also fβ(x) = (1 + β)xβ sign x , so that
∫ x

0 fβ(z)dz = |x |1+β, x ∈ R.

Let τn = min
{

t ≥ tn−1 :
∣∣∣BH

t − BH
tn−1

∣∣∣ ≥ n−1/(1+β)
}
∧ tn and define

ϕt =
∞∑
n=1

fβ(BH
t − BH

tn )1[tn−1,τn)(t).

Estimate ‖ϕ‖α,t <∞ is easy.

By the Itô formula, for t ∈ [tn−1, tn)

vt =

∫ t

0
ϕsdBH

s =
n−1∑
k=1

∣∣∣∆BH
k

∣∣∣1+β
+
∣∣∣BH

t∧τn − BH
tn−1

∣∣∣1+β
,

where ∆BH
k = BH

τk
− BH

tk−1
, k ≥ 1. We have vt ≥ vtn for t ≥ tn, so it is

enough to show that vtn →∞, equivalently,
∑∞

n=1

∣∣∆BH
n

∣∣1+β
=∞.
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Observe that
∣∣∆BH

n

∣∣1+β ≥ 1/n provided that τn < tn. Therefore, defining

An =
{

supt∈[tn−1,tn]

∣∣∣BH
t − BH

tn−1

∣∣∣ < n−1/(1+β)
}

, n ≥ 1, it is enough to

show that almost surely only finite number of the events An happens.
Using the small ball estimate and stationarity of increments of BH , we
obtain

P(An) = P

(
sup

t∈[0,∆n]

∣∣∣BH
t

∣∣∣ < n−1/(1+β)

)
≤ exp

{
−cζ(γ)−1n

−γ+ 1
H(1+β)

}
,

so
∑

n≥1 P(An) <∞ since 1
H(1+β) > γ. Thus, we get the desired

statement from the Borel-Cantelli lemma.
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Theorem

For any distribution function G there exists an adapted process ζ such
that ‖ζ‖α,1 <∞ and the distribution function of

∫ 1
0 ζsdBH

s is G .

Proof. Take a monotone function g : R→ R such that g(BH
1/2) has

distribution G . Let ϕ be the process constructed in lemma,

vt =
∫ t

1/2 ϕsdBH
s . Define τ = min

{
t ≥ 1/2 : vt = |g(BH

1/2)|
}

. Since

vt →∞ as t → 1− a.s., we have τ < 1 a.s. Now put

ζt = ϕt sign g(BH
1/2)1[1/2,τ ](t).
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Theorem

For any F1-measurable variable ξ there exists an F-adapted process ψ such
that

For any t < 1 and α ∈ (1− H, 1/2) ‖ψ‖α,t <∞ a.s.

limt→1

∫ t
0 ψsdBH

s = ξ a.s.

Proof. zt = tanE[arctan ξ|Ft ] is F-adapted and zt → ξ, t → 1−.

Let {tn, n ≥ 1} be arbitrary increasing sequence of points from [0, 1]
converging to 1.

By Lemma, there exists an F-adapted process ϕn on [tn, tn+1] such that
vn
t =

∫ t
tn
ϕn
s dBH

s → +∞, t → tn+1−.

Now denote ξn = ztn and δn = ξn − ξn−1, n ≥ 2, δ1 = ξ1. Take
τn = min {t ≥ tn : vn

t = |δn|} and define

ψt =
∑
n≥1

ϕn
t 1[tn,τn](t) sign δn.
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Main theorem

Theorem

Let for a random variable ξ there exist an F-adapted almost surely
a-Hölder continuous process {zt , t ∈ [0, 1]} such that z1 = ξ. Then for any
α ∈ (1− H, (1− H + a) ∧ 1/2) there exists an F-adapted process ψ such

that ‖ψ‖α,1 <∞ and
∫ 1

0 ψsdBH
s = ξ.

(Blue) assumption is equivalent to: there exist a > 0, sequence
{tn, n ≥ 1}, tn ↑ 1, sequence of rv’s {ξn, n ≥ 1} such that ξn is
Ftn -measurable and |ξn − ξ| = O(|tn − 1|a), n→∞.

Theorem

Let ξ be an F1-measurable random variable and let there exist an
F-adapted continuous process ψ such that for some α > 1− H
‖ψ‖α,1 <∞ a.s. and

∫ 1
0 ψsdBH

s = ξ. Then the assumption of main
theorem is satisfied.
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Example

ξ = F (BH
s1
, . . . ,BH

sn ), where F : Rn → R is locally Hölder continuous with
respect to each variable. (Set zt = F (BH

s1∧t , . . . ,B
H
sn∧t).)

Example

ξ = G (
{

BH
s , s ∈ [0, 1]

}
), where G : C [0, 1]→ R is locally Hölder

continuous with respect to the supremum norm on C [0, 1]. In the case one
can set zt = G (

{
BH
s∧t , s ∈ [0, 1]

}
).

Example

ξ = 1A, A ∈ F ⇒ any simple F-measurable rv satisfies the assumption.

Example

Assume that F =
{
Ft = σ(BH

s , s ∈ [0, t]), t ∈ [0, 1]
}

. It is well known that
there exists a Wiener process W such that its natural filtration coincides
with F. Define ξ =

∫ 1
1/2 g(t)dWt , where g(t) = (1− t)−1/2 |log(1− t)|−1.

Then ξ does not satisfy the main theorem assumption.
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Sketch of the proof

Choose special γ, κ, let ∆n = n−γ/ζ(γ), tn =
∑n

k=1 ∆k .

Denote ξn = ztn , δn = |ξn − ξn−1|.

1. Set ψt = 0 for t ∈ [t0, t1].

2. Denote vt =
∫ t

0 ψsdBH
s and assume ψ is constructed on [t0, tn−1] for

some n ≥ 2. Goal: to achieve vtn = ξn−1.

3. Construction on (tn−1, tn].

Case A vtn−1 = ξn−2.

Define
τn = min

{
t ≥ tn−1 : nκ

∣∣∣BH
t − BH

tn−1

∣∣∣ = δn−1

}
∧ tn

and set

ψt = nκ sign(BH
t − BH

tn−1
) sign(ξn−1 − ξn−2)1t≤τn

for t ∈ [tn−1, tn). By the Itô formula,

vtn = vtn−1 + nκ
∣∣BH
τn − BH

tn−1

∣∣ sign(ξn−1 − vtn−1),

so we have vtn = ξn−1 provided τn < tn.
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Sketch of the proof (cont’d)

Case B vtn−1 6= ξn−2.

Let ϕn
t be an adapted process on [tn−1, tn] such that

vn
t :=

∫ tn
tn−1

ϕn
s dBH

s →∞, t → tn−, define

τn = min
{

t ≥ tn−1 : vn
t =

∣∣ξn−1 − vtn−1

∣∣}
and set

ψt = ϕn
t sign(ξn−1 − vtn−1)1t≤τn

for t ∈ [tn−1, tn). Then vtn = ξn−1.

Next we argue using the Borel–Cantelli lemma and the small ball estimate
that almost surely there is N(ω) such that vtn = ξn−1 for n ≥ N(ω).

Finally we show that ‖ψ‖α,1 <∞, which together with the previous gives∫ 1
0 ψsdBH

s = ξ.
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Consider a fractional (B,S)-market:

Bt = exp

{∫ t

0
rsds

}
St = S0 exp

{
µt + σBH

t

}
.

Interest rate r can be random. Let F be the filtration generated by B and
S .

Definition

Portfolio is F-adapted process Π = (Πt)t∈[0,1] = (π0
t , π

1
t )t∈[0,1].

Value of portfolio Π at time t is

V Π
t = π0

t Bt + π1
t St .

Portfolio is self-financing (SF) if

dV Π
t = π0

t dBt + π1
t dSt .
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Discounted value of a self-financing portfolio

C Π
t = V Π

t B−1
t .

It is easy to check that
dC Π

t = π1
t dXt ,

where Xt = StB
−1
t is the discounted risky asset price process.

Definition

A SF portfolio Π is arbitrage if V Π
0 = 0, V Π

1 ≥ 0 a.s., and
P
(
V Π

1 > 0
)
> 0. It is strong arbitrage if there is c > 0 s.t. V Π

1 ≥ c a.s.

Definition

Contingent claim is F1-measurable r.v. ξ ≥ 0.
ξ is hedgeable, if there is SF portfolio Π (a hedge or replicating portfolio
for ξ) s.t. V Π

1 = ξ a.s.
ξ is weakly hedgeable if there is SF portfolio Π (a weak hedge), s.t.
limt→1− V Π

t = ξ a.s.
Initial portfolio value V Π

0 is hedging cost (weak hedging cost).
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Theorem

The fractional (B, S)-market model admits strong arbitrage.

Theorem

For any distribution function F there is SF portfolio Π with V Π
0 = 0 such

that its discounted terminal capital C Π
1 has distribution F .

Theorem

Any contingent claim ξ in the fractional (B,S)-market is weakly
hedgeable. Moreover, its weak hedging cost can be any real number.

Theorem

Assume that for a contingent claim ξ there exists an F-adapted almost
surely Hölder continuous process {zt , t ∈ [0, 1]} with z1 = ξ. Then ξ is
hedgeable and its hedging cost can be any real number.
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