Adapted representations and applications

Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila

Kiev National Taras Shevchenko University

8 January 2014, Jagna

Outline

1 Advertisement

2 Problem formulation

3 Preliminaries

5 Application to finance

Georgiy Shevchenko (Kiev University)

Contents

1 Advertisement

2 Problem formulation

3 Preliminaries

Application to finance

Georgiy Shevchenko (Kiev University)

September 9–12, 2014: Fouth edition of the famous MSTA (Modern Stochastics: Theory and Applications) conference series entitled "Fractality and Fractionality".

http://probability.univ.kiev.ua/msta4conf

September 9–12, 2014: Fouth edition of the famous MSTA (Modern Stochastics: Theory and Applications) conference series entitled "Fractality and Fractionality".

http://probability.univ.kiev.ua/msta4conf

Plenary speakers include:

- Jacques Lévy-Véhel, Ecole Centrale Paris, France
- Francesco Mainardi, University of Bologna, Italy
- Mark Meershaert, Michigan State University, USA
- Giovanni Peccati, Luxembourg University, Luxembourg
- Mark Podolskij, Heidelberg University, Germany
- Stefan Samko, Universidade do Algarve, Portugal
- Gennady Samorodnitskiy, Cornell University, USA

September 9–12, 2014: Fouth edition of the famous MSTA (Modern Stochastics: Theory and Applications) conference series entitled "Fractality and Fractionality".

http://probability.univ.kiev.ua/msta4conf

Plenary speakers include:

- Jacques Lévy-Véhel, Ecole Centrale Paris, France
- Francesco Mainardi, University of Bologna, Italy
- Mark Meershaert, Michigan State University, USA
- Giovanni Peccati, Luxembourg University, Luxembourg
- Mark Podolskij, Heidelberg University, Germany
- Stefan Samko, Universidade do Algarve, Portugal
- Gennady Samorodnitskiy, Cornell University, USA

In the third edition, over 250 scientists from 29 countries took part, including such top-level specialists as Marc Yor, Leonid Pastur, Bernt Øksendal, Hanspeter Schmidli, Yuri Bakhtin, Hans-Jurgen Engelbert, Shizan Fang, Peter Imkeller, Enzo Orsingher, Pierre Vallois and others.

Georgiy Shevchenko (Kiev University)

Adapted representations

Contents

Advertisement

2 Problem formulation

B Preliminaries

4 Results

5 Application to finance

Georgiy Shevchenko (Kiev University)

Which random variables ξ can be represented as

$$\xi = \int_0^1 \phi_s \, dB_s^H,$$

where B^H is fractional Brownian motion, ϕ adapted?

Which random variables ξ can be represented as

$$\xi = \int_0^1 \phi_s \, dB_s^H,$$

where B^H is fractional Brownian motion, ϕ adapted?

For Wiener process W, the answer(s) is(are) known :

ξ = ∫₀¹ φ_s dW_s with adapted φ ∈ L²([0,1] × Ω) iff ξ is W-measurable, centered, and square integrable;

Which random variables ξ can be represented as

$$\xi = \int_0^1 \phi_s \, dB_s^H,$$

where B^H is fractional Brownian motion, ϕ adapted?

For Wiener process W, the answer(s) is(are) known :

- ξ = ∫₀¹ φ_s dW_s with adapted φ ∈ L²([0,1] × Ω) iff ξ is W-measurable, centered, and square integrable;
- $\xi = \int_0^1 \phi_s \, dW_s$ with adapted $\phi_{\cdot}(\omega) \in L^2([0,1])$ a.s. iff ξ is *W*-measurable (Dudley (1977)).

Which random variables ξ can be represented as

$$\xi = \int_0^1 \phi_s \, dB_s^H,$$

where B^H is fractional Brownian motion, ϕ adapted?

For Wiener process W, the answer(s) is(are) known :

- ξ = ∫₀¹ φ_s dW_s with adapted φ ∈ L²([0,1] × Ω) iff ξ is W-measurable, centered, and square integrable;
- $\xi = \int_0^1 \phi_s \, dW_s$ with adapted $\phi_{\cdot}(\omega) \in L^2([0,1])$ a.s. iff ξ is *W*-measurable (Dudley (1977)).

Idea: since $\int_0^1 (1-s)^{-2} ds = \infty$, it holds $\underline{\lim_{t\to 1-}} \int_0^t (1-s)^{-1} dW_s = -\infty$ and $\overline{\lim_{t\to 1-}} \int_0^t (1-s)^{-1} dW_s = +\infty$. So, for example, to represent $\xi = 1$ as stochastic integral, let $v_t = \int_0^t (1-s)^{-1} dW_s$, $\tau = \inf\{t : v_t = 1\}$ and put $\phi_t = (1-t)^{-1} \mathbf{1}_{t\leq \tau}$.

Contents

Advertisement

2 Problem formulation

3 Preliminaries

4 Results

5 Application to finance

Georgiy Shevchenko (Kiev University)

Definition

The fractional Brownian motion (fBm) with Hurst index $H \in (0, 1)$ is a centered Gaussian process $B^H = \{B_t^H, t \ge 0\}$ with stationary increments and the covariance function

$$\mathsf{E}\left[B_{t}^{H}B_{s}^{H}\right] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

Definition

The fractional Brownian motion (fBm) with Hurst index $H \in (0, 1)$ is a centered Gaussian process $B^H = \{B_t^H, t \ge 0\}$ with stationary increments and the covariance function

$$\mathsf{E}\left[B_{t}^{H}B_{s}^{H}\right] = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}).$$

For H > 1/2 (the case we consider here) fBm has long memory.

Definition

The fractional Brownian motion (fBm) with Hurst index $H \in (0, 1)$ is a centered Gaussian process $B^H = \{B_t^H, t \ge 0\}$ with stationary increments and the covariance function

$$\mathsf{E}\left[B_{t}^{H}B_{s}^{H}\right] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H}).$$

For H > 1/2 (the case we consider here) fBm has long memory. B^{H} is almost surely Hölder continuous with any exponent $\gamma < H$.

For $\alpha \in (0, 1)$ fractional derivatives

$$(D_{a+}^{\alpha}f)(x) = \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(x)}{(x-a)^{\alpha}} + \alpha \int_{a}^{x} \frac{f(x) - f(u)}{(x-u)^{1+\alpha}} du \right) \mathbf{1}_{(a,b)}(x),$$

$$(D_{b-}^{1-\alpha}g)(x) = \frac{e^{i\pi\alpha}}{\Gamma(\alpha)} \left(\frac{g(x)}{(b-x)^{1-\alpha}} + (1-\alpha) \int_{x}^{b} \frac{g(x) - g(u)}{(u-x)^{2-\alpha}} du \right) \mathbf{1}_{(a,b)}(x).$$

For $\alpha \in (0, 1)$ fractional derivatives

$$(D_{a+}^{\alpha}f)(x) = \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(x)}{(x-a)^{\alpha}} + \alpha \int_{a}^{x} \frac{f(x) - f(u)}{(x-u)^{1+\alpha}} du \right) \mathbf{1}_{(a,b)}(x),$$

$$(D_{b-}^{1-\alpha}g)(x) = \frac{e^{i\pi\alpha}}{\Gamma(\alpha)} \left(\frac{g(x)}{(b-x)^{1-\alpha}} + (1-\alpha) \int_{x}^{b} \frac{g(x) - g(u)}{(u-x)^{2-\alpha}} du \right) \mathbf{1}_{(a,b)}(x).$$

Assume that $D_{a+}^{\alpha} f \in L_p[a, b]$, $D_{b-}^{1-\alpha}g_{b-} \in L_q[a, b]$ for some $p \in (1, 1/\alpha)$, q = p/(p-1), where $g_{b-}(x) = g(x) - g(b)$.

For $\alpha \in (0, 1)$ fractional derivatives

$$(D_{a+}^{\alpha}f)(x) = \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(x)}{(x-a)^{\alpha}} + \alpha \int_{a}^{x} \frac{f(x) - f(u)}{(x-u)^{1+\alpha}} du \right) \mathbf{1}_{(a,b)}(x),$$

$$(D_{b-}^{1-\alpha}g)(x) = \frac{e^{i\pi\alpha}}{\Gamma(\alpha)} \left(\frac{g(x)}{(b-x)^{1-\alpha}} + (1-\alpha) \int_{x}^{b} \frac{g(x) - g(u)}{(u-x)^{2-\alpha}} du \right) \mathbf{1}_{(a,b)}(x).$$

Assume that $D_{a+}^{\alpha} f \in L_p[a, b]$, $D_{b-}^{1-\alpha} g_{b-} \in L_q[a, b]$ for some $p \in (1, 1/\alpha)$, q = p/(p-1), where $g_{b-}(x) = g(x) - g(b)$. We can define

$$\int_a^b f(x)dg(x) = e^{-i\pi\alpha} \int_a^b \left(D_{a+}^{\alpha}f \right)(x) \left(D_{b-}^{1-\alpha}g_{b-} \right)(x)dx.$$

For $\alpha \in (0, 1)$ fractional derivatives

$$(D_{a+}^{\alpha}f)(x) = \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(x)}{(x-a)^{\alpha}} + \alpha \int_{a}^{x} \frac{f(x) - f(u)}{(x-u)^{1+\alpha}} du \right) \mathbf{1}_{(a,b)}(x),$$

$$(D_{b-}^{1-\alpha}g)(x) = \frac{e^{i\pi\alpha}}{\Gamma(\alpha)} \left(\frac{g(x)}{(b-x)^{1-\alpha}} + (1-\alpha) \int_{x}^{b} \frac{g(x) - g(u)}{(u-x)^{2-\alpha}} du \right) \mathbf{1}_{(a,b)}(x).$$

Assume that $D_{a+}^{\alpha} f \in L_p[a, b]$, $D_{b-}^{1-\alpha} g_{b-} \in L_q[a, b]$ for some $p \in (1, 1/\alpha)$, q = p/(p-1), where $g_{b-}(x) = g(x) - g(b)$. We can define

$$\int_a^b f(x)dg(x) = e^{-i\pi\alpha} \int_a^b \left(D_{a+}^{\alpha}f \right)(x) \left(D_{b-}^{1-\alpha}g_{b-} \right)(x)dx.$$

If $f \in C^{\mu}[a, b]$, $g \in C^{\nu}[a, b]$ with $\mu + \nu > 1$, then $\int_{a}^{b} f(x)dg(x)$ is a limit of integral sums.

For any $\alpha \in (1 - H, 1)$, $D_{b-}^{1-\alpha}B_{b-}^{H} \in L_{\infty}[a, b]$, so we can define for f with $D_{a+}^{\alpha}f \in L_{1}[a, b]$

$$\int_a^b f_s dB_s^H = e^{-i\pi\alpha} \int_a^b \left(D_{a+}^\alpha f \right)(x) \left(D_{b-}^{1-\alpha} B_{b-}^H \right)(x) dx.$$

For any $\alpha \in (1 - H, 1)$, $D_{b-}^{1-\alpha}B_{b-}^{H} \in L_{\infty}[a, b]$, so we can define for f with $D_{a+}^{\alpha}f \in L_{1}[a, b]$

$$\int_a^b f_s dB_s^H = e^{-i\pi\alpha} \int_a^b \left(D_{a+}^\alpha f \right)(x) \left(D_{b-}^{1-\alpha} B_{b-}^H \right)(x) dx.$$

Consider the following norm for $\alpha \in (1 - H, 1/2)$:

$$\|f\|_{1,\alpha,[a,b]} = \int_a^b \left(\frac{|f(s)|}{(s-a)^{\alpha}} + \int_a^s \frac{|f(s)-f(z)|}{(s-z)^{1+\alpha}} dz\right) ds.$$

For simplicity we will abbreviate $\|\cdot\|_{\alpha,t} = \|\cdot\|_{1,\alpha,[0,t]}$.

For any $\alpha \in (1 - H, 1)$, $D_{b-}^{1-\alpha}B_{b-}^{H} \in L_{\infty}[a, b]$, so we can define for f with $D_{a+}^{\alpha}f \in L_{1}[a, b]$

$$\int_a^b f_s dB_s^H = e^{-i\pi\alpha} \int_a^b \left(D_{a+}^\alpha f \right)(x) \left(D_{b-}^{1-\alpha} B_{b-}^H \right)(x) dx.$$

Consider the following norm for $\alpha \in (1 - H, 1/2)$:

$$\|f\|_{1,\alpha,[a,b]} = \int_a^b \left(\frac{|f(s)|}{(s-a)^{\alpha}} + \int_a^s \frac{|f(s)-f(z)|}{(s-z)^{1+\alpha}} dz\right) ds.$$

For simplicity we will abbreviate $\|\cdot\|_{\alpha,t} = \|\cdot\|_{1,\alpha,[0,t]}$.

Theorem (Azmoodeh, Mishura, Valkeila (2011))

Let $f : \mathbb{R} \to \mathbb{R}$ be a function of locally bounded variation, $F(x) = \int_0^x f(y) dy$. Then for any $\alpha \in (1 - H, 1/2) ||f(B^H_{\cdot})||_{\alpha,1} < \infty$ a.s. and

$$F(B_t^H) = \int_0^t f(B_s^H) dB_s^H.$$

For
$$F(x) = |x|$$
:

$$\left|B_{t}^{H}\right| = \int_{0}^{t} \operatorname{sign} B_{s}^{H} dB_{s}^{H}.$$

For
$$F(x) = |x|$$
:

$$|B_t^H| = \int_0^t \operatorname{sign} B_s^H dB_s^H.$$

Why the integral even defined?

For
$$F(x) = |x|$$
:
 $|B_t^H| = \int_0^t \operatorname{sign} B_s^H dB_s^H$.

Why the integral even defined?

Fact: for $0 < s \le t \le 1$ $P(B_s^H B_t^H < 0) \le C(t-s)^H t^{-H}$.

$$\mathsf{E}\left[\|\operatorname{sign} B^{H}\|_{\alpha,t}\right] = \mathsf{E}\left[\int_{0}^{t} \left(\frac{|\operatorname{sign} B_{s}^{H}|}{s^{\alpha}} + \int_{0}^{s} \frac{|\operatorname{sign} B_{s}^{H} - \operatorname{sign} B_{z}^{H}|}{(s-z)^{1+\alpha}} dz \, ds\right)\right]$$

$$\leq C + \int_{0}^{t} \int_{0}^{s} \frac{\mathsf{E}\left[|\operatorname{sign} B_{s}^{H} - \operatorname{sign} B_{z}^{H}|\right]}{(s-z)^{1+\alpha}} dz \, ds$$

$$= C + 2 \int_{0}^{t} \int_{0}^{s} \frac{P(B_{s}^{H} B_{z}^{H} < 0)}{(s-z)^{1+\alpha}} dz \, ds$$

$$\leq C + C \int_{0}^{t} \int_{0}^{s} (s-z)^{H-1-\alpha} s^{-H} dz \, ds < \infty.$$

.

Contents

Advertisement

2 Problem formulation

3 Preliminaries

Application to finance

Georgiy Shevchenko (Kiev University)

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a complete probability space endowed with a P-complete *left-continuous* filtration $\mathbb{F} = \{\mathcal{F}_t, t \in [0, 1]\}$, and B^H be \mathbb{F} -adapted fractional Brownian motion.

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a complete probability space endowed with a P-complete *left-continuous* filtration $\mathbb{F} = \{\mathcal{F}_t, t \in [0, 1]\}$, and B^H be \mathbb{F} -adapted fractional Brownian motion.

Lemma

There exists an \mathbb{F} -adapted process $\varphi = \{\varphi_t, t \in [0, 1]\}$ such that

For any t < 1 and α ∈ (1 − H, 1/2) ||φ||_{α,t} < ∞ a.s., so integral v_t = ∫₀^t φ_sdB_s^H exists as a generalized Lebesgue–Stieltjes integral.
 lim_{t→1-} v_t = ∞ a.s.

Key ingredient of the proof is small ball estimate for fBm:

$$P\left(\sup_{t\in[0,T]}|B_t^H|<\epsilon
ight)\leq e^{-cT\epsilon^{-1/H}} \ \ ext{for}\ \epsilon\leq T^H.$$

Proof

Fix arbitrary $\gamma \in (1, 1/H)$ and $\beta \in (0, \frac{1}{\gamma H} - 1)$. Let $\Delta_n = n^{-\gamma}/\zeta(\gamma)$, $\zeta(\gamma) = \sum_{n \ge 1} n^{-\gamma}, t_n = \sum_{k=1}^n \Delta_k, n \ge 0$, we have $t_n \to 1-, n \to \infty$. Denote also $f_{\beta}(x) = (1 + \beta) x^{\beta} \operatorname{sign} x$, so that $\int_0^x f_{\beta}(z) dz = |x|^{1+\beta}, x \in \mathbb{R}$. Let $\tau_n = \min\left\{t \ge t_{n-1} : \left|B_t^H - B_{t_{n-1}}^H\right| \ge n^{-1/(1+\beta)}\right\} \land t_n$ and define $\varphi_t = \sum_{n=1}^\infty f_{\beta}(B_t^H - B_{t_n}^H)\mathbb{1}_{[t_{n-1},\tau_n)}(t).$

Estimate $\|\varphi\|_{\alpha,t} < \infty$ is easy. By the ltô formula, for $t \in [t_{n-1}, t_n)$

$$\mathbf{v}_{t} = \int_{0}^{t} \varphi_{s} dB_{s}^{H} = \sum_{k=1}^{n-1} \left| \Delta B_{k}^{H} \right|^{1+\beta} + \left| B_{t \wedge \tau_{n}}^{H} - B_{t_{n-1}}^{H} \right|^{1+\beta},$$

where $\Delta B_k^H = B_{\tau_k}^H - B_{t_{k-1}}^H$, $k \ge 1$. We have $v_t \ge v_{t_n}$ for $t \ge t_n$, so it is enough to show that $v_{t_n} \to \infty$, equivalently, $\sum_{n=1}^{\infty} |\Delta B_n^H|^{1+\beta} = \infty$.

Observe that $|\Delta B_n^H|^{1+\beta} \ge 1/n$ provided that $\tau_n < t_n$. Therefore, defining $A_n = \left\{ \sup_{t \in [t_{n-1}, t_n]} \left| B_t^H - B_{t_{n-1}}^H \right| < n^{-1/(1+\beta)} \right\}$, $n \ge 1$, it is enough to show that almost surely only finite number of the events A_n happens. Using the small ball estimate and stationarity of increments of B^H , we obtain

$$\mathsf{P}(A_n) = \mathsf{P}\left(\sup_{t\in[0,\Delta_n]} \left|B_t^H\right| < n^{-1/(1+\beta)}\right) \le \exp\left\{-c\zeta(\gamma)^{-1}n^{-\gamma+\frac{1}{H(1+\beta)}}\right\},$$

so $\sum_{n\geq 1} P(A_n) < \infty$ since $\frac{1}{H(1+\beta)} > \gamma$. Thus, we get the desired statement from the Borel-Cantelli lemma.

For any distribution function G there exists an adapted process ζ such that $\|\zeta\|_{\alpha,1} < \infty$ and the distribution function of $\int_0^1 \zeta_s dB_s^H$ is G.

For any distribution function *G* there exists an adapted process ζ such that $\|\zeta\|_{\alpha,1} < \infty$ and the distribution function of $\int_0^1 \zeta_s dB_s^H$ is *G*.

Proof. Take a monotone function $g : \mathbb{R} \to \mathbb{R}$ such that $g(B_{1/2}^H)$ has distribution *G*. Let φ be the process constructed in lemma, $v_t = \int_{1/2}^t \varphi_s dB_s^H$. Define $\tau = \min\left\{t \ge 1/2 : v_t = |g(B_{1/2}^H)|\right\}$. Since $v_t \to \infty$ as $t \to 1-$ a.s., we have $\tau < 1$ a.s. Now put

 $\zeta_t = \varphi_t \operatorname{sign} g(B_{1/2}^H) \mathbf{1}_{[1/2,\tau]}(t).$

For any \mathcal{F}_1 -measurable variable ξ there exists an \mathbb{F} -adapted process ψ such that

- For any t < 1 and $\alpha \in (1 H, 1/2)$ $\|\psi\|_{\alpha,t} < \infty$ a.s.
- $\lim_{t\to 1} \int_0^t \psi_s dB_s^H = \xi$ a.s.

For any \mathcal{F}_1 -measurable variable ξ there exists an \mathbb{F} -adapted process ψ such that

- For any t < 1 and $\alpha \in (1 H, 1/2)$ $\|\psi\|_{\alpha,t} < \infty$ a.s.
- $\lim_{t\to 1} \int_0^t \psi_s dB_s^H = \xi \ a.s.$

Proof. $z_t = \tan \mathbb{E}[\arctan \xi | \mathcal{F}_t]$ is \mathbb{F} -adapted and $z_t \to \xi$, $t \to 1-$.

Let $\{t_n, n \ge 1\}$ be arbitrary increasing sequence of points from [0, 1] converging to 1.

By Lemma, there exists an \mathbb{F} -adapted process φ^n on $[t_n, t_{n+1}]$ such that $v_t^n = \int_{t_n}^t \varphi_s^n dB_s^H \to +\infty$, $t \to t_{n+1}-$. Now denote $\xi_n = z_{t_n}$ and $\delta_n = \xi_n - \xi_{n-1}$, $n \ge 2$, $\delta_1 = \xi_1$. Take $\tau_n = \min \{t \ge t_n : v_t^n = |\delta_n|\}$ and define

$$\psi_t = \sum_{n \ge 1} \varphi_t^n \mathbb{1}_{[t_n, \tau_n]}(t) \operatorname{sign} \delta_n.$$

Main theorem

Theorem

Let for a random variable ξ there exist an \mathbb{F} -adapted almost surely a-Hölder continuous process $\{z_t, t \in [0,1]\}$ such that $z_1 = \xi$. Then for any $\alpha \in (1 - H, (1 - H + a) \land 1/2)$ there exists an \mathbb{F} -adapted process ψ such that $\|\psi\|_{\alpha,1} < \infty$ and $\int_0^1 \psi_s dB_s^H = \xi$.

Main theorem

Theorem

Let for a random variable ξ there exist an \mathbb{F} -adapted almost surely a-Hölder continuous process $\{z_t, t \in [0,1]\}$ such that $z_1 = \xi$. Then for any $\alpha \in (1 - H, (1 - H + a) \land 1/2)$ there exists an \mathbb{F} -adapted process ψ such that $\|\psi\|_{\alpha,1} < \infty$ and $\int_0^1 \psi_s dB_s^H = \xi$.

(Blue) assumption is equivalent to: there exist a > 0, sequence $\{t_n, n \ge 1\}$, $t_n \uparrow 1$, sequence of rv's $\{\xi_n, n \ge 1\}$ such that ξ_n is \mathcal{F}_{t_n} -measurable and $|\xi_n - \xi| = O(|t_n - 1|^a), n \to \infty$.

Main theorem

Theorem

Let for a random variable ξ there exist an \mathbb{F} -adapted almost surely a-Hölder continuous process $\{z_t, t \in [0,1]\}$ such that $z_1 = \xi$. Then for any $\alpha \in (1 - H, (1 - H + a) \land 1/2)$ there exists an \mathbb{F} -adapted process ψ such that $\|\psi\|_{\alpha,1} < \infty$ and $\int_0^1 \psi_s dB_s^H = \xi$.

(Blue) assumption is equivalent to: there exist a > 0, sequence $\{t_n, n \ge 1\}$, $t_n \uparrow 1$, sequence of rv's $\{\xi_n, n \ge 1\}$ such that ξ_n is \mathcal{F}_{t_n} -measurable and $|\xi_n - \xi| = O(|t_n - 1|^a), n \to \infty$.

Theorem

Let ξ be an \mathcal{F}_1 -measurable random variable and let there exist an \mathbb{F} -adapted continuous process ψ such that for some $\alpha > 1 - H$ $\|\psi\|_{\alpha,1} < \infty$ a.s. and $\int_0^1 \psi_s dB_s^H = \xi$. Then the assumption of main theorem is satisfied.

Main theorem

Theorem

Let for a random variable ξ there exist an \mathbb{F} -adapted almost surely a-Hölder continuous process $\{z_t, t \in [0,1]\}$ such that $z_1 = \xi$. Then for any $\alpha \in (1 - H, (1 - H + a) \land 1/2)$ there exists an \mathbb{F} -adapted process ψ such that $\|\psi\|_{\alpha,1} < \infty$ and $\int_0^1 \psi_s dB_s^H = \xi$.

(Blue) assumption is equivalent to: there exist a > 0, sequence $\{t_n, n \ge 1\}$, $t_n \uparrow 1$, sequence of rv's $\{\xi_n, n \ge 1\}$ such that ξ_n is \mathcal{F}_{t_n} -measurable and $|\xi_n - \xi| = O(|t_n - 1|^a), n \to \infty$.

Theorem

Let ξ be an \mathcal{F}_1 -measurable random variable and let there exist an \mathbb{F} -adapted continuous process ψ such that for some $\alpha > 1 - H$ $\|\psi\|_{\alpha,1} < \infty$ a.s. and $\int_0^1 \psi_s dB_s^H = \xi$. Then the assumption of main theorem is satisfied.

 $\xi = F(B_{s_1}^H, \dots, B_{s_n}^H)$, where $F : \mathbb{R}^n \to \mathbb{R}$ is locally Hölder continuous with respect to each variable. (Set $z_t = F(B_{s_1 \wedge t}^H, \dots, B_{s_n \wedge t}^H)$.)

 $\xi = F(B_{s_1}^H, \dots, B_{s_n}^H)$, where $F : \mathbb{R}^n \to \mathbb{R}$ is locally Hölder continuous with respect to each variable. (Set $z_t = F(B_{s_1 \land t}^H, \dots, B_{s_n \land t}^H)$.)

Example

 $\xi = G(\{B_s^H, s \in [0, 1]\})$, where $G : C[0, 1] \to \mathbb{R}$ is locally Hölder continuous with respect to the supremum norm on C[0, 1]. In the case one can set $z_t = G(\{B_{s \land t}^H, s \in [0, 1]\})$.

 $\xi = F(B_{s_1}^H, \dots, B_{s_n}^H)$, where $F : \mathbb{R}^n \to \mathbb{R}$ is locally Hölder continuous with respect to each variable. (Set $z_t = F(B_{s_1 \land t}^H, \dots, B_{s_n \land t}^H)$.)

Example

 $\xi = G(\{B_s^H, s \in [0, 1]\})$, where $G : C[0, 1] \to \mathbb{R}$ is locally Hölder continuous with respect to the supremum norm on C[0, 1]. In the case one can set $z_t = G(\{B_{s \land t}^H, s \in [0, 1]\})$.

Example

 $\xi = \mathbb{1}_A$, $A \in \mathcal{F} \Rightarrow$ any simple \mathcal{F} -measurable rv satisfies the assumption.

 $\xi = F(B_{s_1}^H, \dots, B_{s_n}^H)$, where $F : \mathbb{R}^n \to \mathbb{R}$ is locally Hölder continuous with respect to each variable. (Set $z_t = F(B_{s_1 \wedge t}^H, \dots, B_{s_n \wedge t}^H)$.)

Example

 $\xi = G(\{B_s^H, s \in [0, 1]\})$, where $G : C[0, 1] \to \mathbb{R}$ is locally Hölder continuous with respect to the supremum norm on C[0, 1]. In the case one can set $z_t = G(\{B_{s \land t}^H, s \in [0, 1]\})$.

Example

 $\xi = \mathbb{1}_A$, $A \in \mathcal{F} \Rightarrow$ any simple \mathcal{F} -measurable rv satisfies the assumption.

Example

Assume that $\mathbb{F} = \{\mathcal{F}_t = \sigma(B_s^H, s \in [0, t]), t \in [0, 1]\}$. It is well known that there exists a Wiener process W such that its natural filtration coincides with \mathbb{F} . Define $\xi = \int_{1/2}^1 g(t) dW_t$, where $g(t) = (1 - t)^{-1/2} |\log(1 - t)|^{-1}$. Then ξ does *not* satisfy the main theorem assumption.

Choose special γ , κ , let $\Delta_n = n^{-\gamma}/\zeta(\gamma)$, $t_n = \sum_{k=1}^n \Delta_k$. Denote $\xi_n = z_{t_n}$, $\delta_n = |\xi_n - \xi_{n-1}|$.

Choose special γ , κ , let $\Delta_n = n^{-\gamma}/\zeta(\gamma)$, $t_n = \sum_{k=1}^n \Delta_k$. Denote $\xi_n = z_{t_n}$, $\delta_n = |\xi_n - \xi_{n-1}|$. 1. Set $\psi_t = 0$ for $t \in [t_0, t_1]$.

Choose special γ , κ , let $\Delta_n = n^{-\gamma}/\zeta(\gamma)$, $t_n = \sum_{k=1}^n \Delta_k$. Denote $\xi_n = z_{t_n}$, $\delta_n = |\xi_n - \xi_{n-1}|$. 1. Set $\psi_t = 0$ for $t \in [t_0, t_1]$. 2. Denote $v_t = \int_0^t \psi_s dB_s^H$ and assume ψ is constructed on $[t_0, t_{n-1}]$ for

2. Denote $v_t = \int_0^t \psi_s dB_s^H$ and assume ψ is constructed on $[t_0, t_{n-1}]$ for some $n \ge 2$. Goal: to achieve $v_{t_n} = \xi_{n-1}$.

3. Construction on $(t_{n-1}, t_n]$.

Choose special γ , κ , let $\Delta_n = n^{-\gamma}/\zeta(\gamma)$, $t_n = \sum_{k=1}^n \Delta_k$. Denote $\xi_n = z_{t_n}$, $\delta_n = |\xi_n - \xi_{n-1}|$. 1. Set $\psi_t = 0$ for $t \in [t_0, t_1]$. 2. Denote $v_t = \int_0^t \psi_s dB_s^H$ and assume ψ is constructed on $[t_0, t_{n-1}]$ for

2. Denote $v_t = \int_0^{\infty} \psi_s dB_s^{r}$ and assume ψ is constructed on $[t_0, t_{n-1}]$ for some $n \ge 2$. Goal: to achieve $v_{t_n} = \xi_{n-1}$.

3. Construction on $(t_{n-1}, t_n]$.

<u>Case A</u> $v_{t_{n-1}} = \xi_{n-2}$.

Choose special γ , κ , let $\Delta_n = n^{-\gamma}/\zeta(\gamma)$, $t_n = \sum_{k=1}^n \Delta_k$. Denote $\xi_n = z_{t_n}$, $\delta_n = |\xi_n - \xi_{n-1}|$. 1. Set $\psi_t = 0$ for $t \in [t_0, t_1]$. 2. Denote $v_t = \int_0^t \psi_s dB_s^H$ and assume ψ is constructed on $[t_0, t_{n-1}]$ for

some $n \ge 2$. Goal: to achieve $v_{t_n} = \xi_{n-1}$.

- 3. Construction on $(t_{n-1}, t_n]$.
- <u>Case A</u> $v_{t_{n-1}} = \xi_{n-2}$.

Define

$$\tau_n = \min\left\{t \ge t_{n-1} : n^{\kappa} \left|B_t^H - B_{t_{n-1}}^H\right| = \delta_{n-1}\right\} \wedge t_n$$

and set

$$\psi_t = n^{\kappa} \operatorname{sign}(B_t^H - B_{t_{n-1}}^H) \operatorname{sign}(\xi_{n-1} - \xi_{n-2}) \mathbb{1}_{t \le \tau_n}$$

for $t \in [t_{n-1}, t_n)$. By the Itô formula,

$$v_{t_n} = v_{t_{n-1}} + n^{\kappa} \big| B_{\tau_n}^H - B_{t_{n-1}}^H \big| \operatorname{sign}(\xi_{n-1} - v_{t_{n-1}}),$$

so we have $v_{t_n} = \xi_{n-1}$ provided $\tau_n < t_n$. Georgiv Shevchenko (Kiev University) Adapted representations

<u>Case B</u> $v_{t_{n-1}} \neq \xi_{n-2}$.

<u>Case B</u> $v_{t_{n-1}} \neq \xi_{n-2}$. Let φ_t^n be an adapted process on $[t_{n-1}, t_n]$ such that $v_t^n := \int_{t_{n-1}}^{t_n} \varphi_s^n dB_s^H \to \infty, \ t \to t_n-$, define

$$\tau_n = \min\left\{t \ge t_{n-1} : v_t^n = \left|\xi_{n-1} - v_{t_{n-1}}\right|\right\}$$

and set

$$\psi_t = \varphi_t^n \operatorname{sign}(\xi_{n-1} - v_{t_{n-1}}) \mathbb{1}_{t \le \tau_n}$$

for $t \in [t_{n-1}, t_n)$. Then $v_{t_n} = \xi_{n-1}$.

<u>Case B</u> $v_{t_{n-1}} \neq \xi_{n-2}$. Let φ_t^n be an adapted process on $[t_{n-1}, t_n]$ such that $v_t^n := \int_{t_{n-1}}^{t_n} \varphi_s^n dB_s^H \to \infty, \ t \to t_n-$, define

$$\tau_n = \min\left\{t \ge t_{n-1} : v_t^n = \left|\xi_{n-1} - v_{t_{n-1}}\right|\right\}$$

and set

$$\psi_t = \varphi_t^n \operatorname{sign}(\xi_{n-1} - v_{t_{n-1}}) \mathbb{1}_{t \le \tau_n}$$

for $t \in [t_{n-1}, t_n)$. Then $v_{t_n} = \xi_{n-1}$.

Next we argue using the Borel–Cantelli lemma and the small ball estimate that almost surely there is $N(\omega)$ such that $v_{t_n} = \xi_{n-1}$ for $n \ge N(\omega)$.

<u>Case B</u> $v_{t_{n-1}} \neq \xi_{n-2}$. Let φ_t^n be an adapted process on $[t_{n-1}, t_n]$ such that $v_t^n := \int_{t_{n-1}}^{t_n} \varphi_s^n dB_s^H \to \infty, \ t \to t_n-$, define

$$\tau_n = \min\left\{t \ge t_{n-1} : v_t^n = \left|\xi_{n-1} - v_{t_{n-1}}\right|\right\}$$

and set

$$\psi_t = \varphi_t^n \operatorname{sign}(\xi_{n-1} - v_{t_{n-1}}) \mathbb{1}_{t \le \tau_n}$$

for $t \in [t_{n-1}, t_n)$. Then $v_{t_n} = \xi_{n-1}$.

Next we argue using the Borel–Cantelli lemma and the small ball estimate that almost surely there is $N(\omega)$ such that $v_{t_n} = \xi_{n-1}$ for $n \ge N(\omega)$. Finally we show that $\|\psi\|_{\alpha,1} < \infty$, which together with the previous gives $\int_0^1 \psi_s dB_s^H = \xi$.

Contents

Advertisement

2 Problem formulation

3 Preliminaries

5 Application to finance

Consider a fractional (B, S)-market:

$$B_t = \exp\left\{\int_0^t r_s ds\right\}$$
$$S_t = S_0 \exp\left\{\mu t + \sigma B_t^H\right\}.$$

Interest rate *r* can be random. Let \mathbb{F} be the filtration generated by *B* and *S*.

Consider a fractional (B, S)-market:

$$B_t = \exp\left\{\int_0^t r_s ds\right\}$$
$$S_t = S_0 \exp\left\{\mu t + \sigma B_t^H\right\}.$$

Interest rate r can be random. Let \mathbb{F} be the filtration generated by B and S.

Definition

Portfolio is \mathbb{F} -adapted process $\Pi = (\Pi_t)_{t \in [0,1]} = (\pi_t^0, \pi_t^1)_{t \in [0,1]}$. Value of portfolio Π at time t is

$$V_t^{\mathsf{\Pi}} = \pi_t^0 B_t + \pi_t^1 S_t.$$

Portfolio is self-financing (SF) if

$$dV_t^{\Pi} = \pi_t^0 dB_t + \pi_t^1 dS_t.$$

 $C_t^{\Pi} = V_t^{\Pi} B_t^{-1}.$

It is easy to check that

$$dC_t^{\Pi} = \pi_t^1 dX_t,$$

where $X_t = S_t B_t^{-1}$ is the discounted risky asset price process.

 $C_t^{\Pi} = V_t^{\Pi} B_t^{-1}.$

It is easy to check that

$$dC_t^{\Pi} = \pi_t^1 dX_t,$$

where $X_t = S_t B_t^{-1}$ is the discounted risky asset price process.

Definition

A SF portfolio Π is arbitrage if $V_0^{\Pi} = 0$, $V_1^{\Pi} \ge 0$ a.s., and P $(V_1^{\Pi} > 0) > 0$. It is strong arbitrage if there is c > 0 s.t. $V_1^{\Pi} \ge c$ a.s.

 $C_t^{\Pi} = V_t^{\Pi} B_t^{-1}.$

It is easy to check that

$$dC_t^{\Pi} = \pi_t^1 dX_t,$$

where $X_t = S_t B_t^{-1}$ is the discounted risky asset price process.

Definition

A SF portfolio Π is arbitrage if $V_0^{\Pi} = 0$, $V_1^{\Pi} \ge 0$ a.s., and P $(V_1^{\Pi} > 0) > 0$. It is strong arbitrage if there is c > 0 s.t. $V_1^{\Pi} \ge c$ a.s.

Definition

Contingent claim is \mathcal{F}_1 -measurable r.v. $\xi \geq 0$.

 $C_t^{\Pi} = V_t^{\Pi} B_t^{-1}.$

It is easy to check that

$$dC_t^{\Pi} = \pi_t^1 dX_t,$$

where $X_t = S_t B_t^{-1}$ is the discounted risky asset price process.

Definition

A SF portfolio Π is arbitrage if $V_0^{\Pi} = 0$, $V_1^{\Pi} \ge 0$ a.s., and P $(V_1^{\Pi} > 0) > 0$. It is strong arbitrage if there is c > 0 s.t. $V_1^{\Pi} \ge c$ a.s.

Definition

Contingent claim is \mathcal{F}_1 -measurable r.v. $\xi \ge 0$. ξ is hedgeable, if there is SF portfolio Π (a hedge or replicating portfolio for ξ) s.t. $V_1^{\Pi} = \xi$ a.s.

 $C_t^{\Pi} = V_t^{\Pi} B_t^{-1}.$

It is easy to check that

$$dC_t^{\Pi} = \pi_t^1 dX_t,$$

where $X_t = S_t B_t^{-1}$ is the discounted risky asset price process.

Definition

A SF portfolio Π is arbitrage if $V_0^{\Pi} = 0$, $V_1^{\Pi} \ge 0$ a.s., and P $(V_1^{\Pi} > 0) > 0$. It is strong arbitrage if there is c > 0 s.t. $V_1^{\Pi} \ge c$ a.s.

Definition

Contingent claim is \mathcal{F}_1 -measurable r.v. $\xi \ge 0$. ξ is hedgeable, if there is SF portfolio Π (a hedge or replicating portfolio for ξ) s.t. $V_1^{\Pi} = \xi$ a.s. ξ is weakly hedgeable if there is SF portfolio Π (a weak hedge), s.t. $\lim_{t\to 1^-} V_t^{\Pi} = \xi$ a.s. Initial portfolio value V_0^{Π} is hedging cost (weak hedging cost).

The fractional (B, S)-market model admits strong arbitrage.

The fractional (B, S)-market model admits strong arbitrage.

Theorem

For any distribution function F there is SF portfolio Π with $V_0^{\Pi} = 0$ such that its discounted terminal capital C_1^{Π} has distribution F.

The fractional (B, S)-market model admits strong arbitrage.

Theorem

For any distribution function F there is SF portfolio Π with $V_0^{\Pi} = 0$ such that its discounted terminal capital C_1^{Π} has distribution F.

Theorem

Any contingent claim ξ in the fractional (B, S)-market is weakly hedgeable. Moreover, its weak hedging cost can be any real number.

The fractional (B, S)-market model admits strong arbitrage.

Theorem

For any distribution function F there is SF portfolio Π with $V_0^{\Pi} = 0$ such that its discounted terminal capital C_1^{Π} has distribution F.

Theorem

Any contingent claim ξ in the fractional (B, S)-market is weakly hedgeable. Moreover, its weak hedging cost can be any real number.

Theorem

Assume that for a contingent claim ξ there exists an \mathbb{F} -adapted almost surely Hölder continuous process $\{z_t, t \in [0, 1]\}$ with $z_1 = \xi$. Then ξ is hedgeable and its hedging cost can be any real number.