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Definition

Definition
The fractional Brownian motion (fBm) with Hurst index H €(0,1) is a
centered Gaussian process B = {BH ¢ > 0} with stationary increments and

the covariance function

e (BB ] = L (22— ).
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Properties of increments
Covariance (Exercise)

E[ (B -B2) (B - BE) | = 5 (Ita — 5127 + 11 - 5o/ — |t1 = 5127 = 25— 5.

NJII—‘

Georgiy Shevchenko (Kyiv University) FBM in a nutshell January 7, 2014 8 /31



Properties of increments

Covariance (Exercise)

E| (81 -B1)) (B~ B2) | -

N | =

2H 2H 2H oH
(Itz—81| +1t1—s2|*" = 1t1 —511"" —|t2 — s3] )

v

Dependence (Exercise)

If s1 <1 <sg<tg (so the intervals [s1,¢1] and [sg, 2] are
non-intersecting), then the increments BZ—Bg and Bg—BH re

@ positively correlated for H > 1/2;
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Properties of increments

Covariance (Exercise)

E| (81 -B1)) (B~ B2) | -

N | =

2H 2H 2H oH
(|t2—81| +1t1—s2|*" = 1t1 —511"" —|t2 — s3] )

v

Dependence (Exercise)
If s1 <1 <sg<tg (so the intervals [s1,¢1] and [sg, 2] are
non-intersecting), then the increments Bg—Bg and Bg—Bg are
@ positively correlated for H > 1/2;
@ negatively correlated if H < 1/2;
@ uncorrelated (independent) for H = 1/2.

Hint: Use the convexity (concavity).
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fBm paths
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Properties of fBm

@ stationary increments

o H-self-similarity
It can be shown (feel free to show this) that fBm with Hurst index H is the
only process with such properties

. . . . . _ H H
Fractional discrete noise: the stationary sequence ¢, =B," , — By, .
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Properties of fBm

@ stationary increments

o H-self-similarity

It can be shown (feel free to show this) that fBm with Hurst index H is the
only process with such properties

H o

Fractional discrete noise: the stationary sequence ¢, =B’ |

Covariance:
o (n)=+ ((n+ D2H 4 (n— 1)2H—2n2H) n=>1
H 9 [

So X592, pp(n) = +oo for H >1/2 (the long-range dependence).
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Continuity of fBm

The variance of increments is

E“B?—Bff = |¢—s[2H

Then it can be shown that fBm is y-Hélder continuous:

|BJT - B

<C(w)|t-s|"

for any y € (0,H).
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Continuity of fBm

The variance of increments is

E[(B{I—BE)Z = |t—s2H

Then it can be shown that fBm is y-Hélder continuous:

2

<C(w)|t-s|"

for any y € (0,H).
A nice way is the Garsia—Rodemich—Rumsey inequality:
For f € C([0,T1) and p>0, 8>1/p

fw)— @I _ ( f lef(x) F@IP w

< dxdy
o<v<u<T (U — U)9 l/p [ y|0p+1
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Continuity of fBm

The variance of increments is

E[(B{I—Bf)z = |t—s2H

Then it can be shown that fBm is y-Hélder continuous:

2

<C(w)|t-s|"

for any y € (0,H).
A nice way is the Garsia—Rodemich—Rumsey inequality:
For f € C([0,T1) and p>0, 8>1/p

If @) - f@) _ (f fTIf(x) f(y)|pdxdy)1/p.

o<v<u<T (U — U)9 l/p B [ y|0p+1
Exercise
Deduce the Holder continuity from the GRR inequality. J
January 7, 2014 11 / 31



Semimartingale and Markov properties

Reminder: a semimartingale is a local martingale + adapted process having
locally bounded variation.
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For fBm, the quadratic variation is:
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Semimartingale and Markov properties

Reminder: a semimartingale is a local martingale + adapted process having
locally bounded variation.

What about fBm?

Fact: quadratic variation of a semimartingale is finite and is equal to that
of the local martingale in its decomposition. Moreover, a continuous
semimartingale has a continuous martingale in its decomposition.

For fBm, the quadratic variation is:

@ zero for H €(1/2,1);
@ infinite for H €(0,1/2);

o finite and non-zero for H = 1/2.

Consequently, fBm is not a semimartingale.

It is neither a Markov process.

Georgiy Shevchenko (Kyiv University) FBM in a nutshell January 7, 2014 12 /31



Contents

© Representations of fBm

o
Georgiy Shevchenko (Kyiv University) FBM in a nutshell

=

Ha
January 7, 2014

13 / 31




The Mandelbrot—van Ness (moving average) representation

BY - m f (=22 (o212 aw,

H-1/2 H-1/2 H-1/2
—F(H+1/2)[f(t SH 12w, + f (=972 (=s) dW]
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The Mandelbrot—van Ness (moving average) representation

1 _ _
B = e J e oot

t 0
_ m [/0 (t— sy 12 qWw, +f ((t_s)H—1/2 —(—S)H_1/2)dWs] .

Exercise
Check that this formula defines an fBm (up to a constant). J

Georgiy Shevchenko (Kyiv University) FBM in a nutshell January 7, 2014 14 / 31



The Mandelbrot—van Ness (moving average) representation

H_ 1 /
P TH+1/2) Jr

t 0
[[ (t— sy 12 qWw, +f ((t_s)H—1/2 —(—S)H_1/2)dWs] .
0 —00

[(t _ s)il—l/Q _ (_S)I_;I—I/Q] dWs
B 1
- T(H+1/2)

Exercise
Check that this formula defines an fBm (up to a constant).

Open problem

Let BH be given by the above integral representation. Then B¥ share the
points of local extrema with its underlying Wiener process W.
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Volterra kernel representation

t
BY - [ Kutt.0)aw,
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Volterra kernel representation

t
BY - [ Kutt.0)aw,

where for H €(1/2,1)

t
Ky(t,s) = Cys¥2H f (v —)H-32,H-12 g,
S

, _ HCH-D
with Cu =/ gessm -1
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Volterra kernel representation

t
BH - f Kp(t,s)dWs,
0
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Volterra kernel representation

t
BH = fo Kp(t,s)dW,,

where for H € (0,1/2)

t
Kp(t,s)=CysV?H [tH_l/z —(H - 1/2)[ uH=32y — s)H-12qy,| |
S

- _ HRH-1)
with Cn =/ gesm -1
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Volterra kernel representation

t
BH = fo Ky(t,s)dWs,

where for H € (0,1/2)

t
Kp(t,s)=CysV?H [tH_l/z —(H - 1/2)[ uH=32y — s)H-12qy,| |
S

. _ HEH-1)
with Cn =/ gesm -1
Note that this works for H € (0,1/2) as well. There is also an inverse
representation.
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@ Coeurjolly, J.-F.
Simulation and identification of the fractional Brownian motion: a
bibliographical and comparative study.
Journal of Statistical Software 5, 1-53.
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Problem: we need to estimate H given observations of B¥ at the points
{kT/n,k=1,...,n}.
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Reminder: Realised quadratic variation is

n 2
_ H H
Vo = kZl(BkT/n _B(k—l)T/n) .
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Problem: we need to estimate H given observations of B¥ at the points
{kT/n,k=1,...,n}.

Reminder: Realised quadratic variation is

n

2
_Y (g _pH
Von = kZl(BkT/n _B(k—l)T/n) :

By the self-similarity,
d oH  —2H \~ 2
Von=T"n" Z ék,
k=1

where {¢ép,k =1} is a stationary standard Gaussian sequence with the
covariance

1
() =El&1énl=pp(n) =5 (<n + D 1 (n-1?H —2n2H) , n=1.
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Problem: we need to estimate H given observations of B¥ at the points
{fT/n,k=1,...,n}.

Reminder: Realised quadratic variation is

" (pH H 2
Von= kZl(BkT/n _B(k—l)T/n) :
By the self-similarity,
d 2H —2H \~ 2
Von=T"n" Z ék,
k=1
where {¢ép,k =1} is a stationary standard Gaussian sequence with the
covariance
1
() =El&1énl=pp(n) =5 (<n + D 1 (n - 1)2H—2n2H), n=1
Thanks to the ergodic theorem,
d moH 1-2H1 X~ ;2 m2H 1-2H
Vorn=T""n —Z€k~T n ,l — 00.
n

k=1
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We have
Von ~ Tanl_zH,n — 00.

So

H, = 1 (1-1ogy Vo om) — H,m — oo.
2m
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We have
Von ~ TZHnl_zH,n — 0.

So 1
ﬁmI—(1—10g2V2,2m)—>H,m—>OO.
2m
Also 1 V.
H,==>[1-logy —=—|— H,m — co.
" 2 ( 0g2 V2,2m—1 ) b o

This is usually a better estimator.
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We have
Vo ~ TZHn1_2H,n — 00.

So 1
ﬁm = — (1—10g2V2,2m) —»H,m — OQ.
2m
Also 1 V.
H,=-11-1 : — H,m — oo.
m 2 ( Og2 V2,2m—1) ,m oo

This is usually a better estimator.

To eliminate a possible drift, consider second order differences:

n-1 2
I H H H
Von= kZl (B(k+1)T/n + B 11rin _2BkT/n) ;

the asymptotic is the same up to a constant (exercise), although the
variance is bigger.
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What about the confidence intervals?
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What about the confidence intervals?
The situation is delicate:

For H €(0,3/4), there is a usual central limit theorem:
n2 (1, , — T2 — N (0,03 ), n — oo,

in law, where

2 1 o 2
oy =5+ 2 pylm).
2 m=1
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What about the confidence intervals?
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For H €(0,3/4), there is a usual central limit theorem:
n V2 (nzH—lVg,n _ T2H) _ N(O,U%{T4H),n — 00,
in law, where

2 1 2
oy =5+ 2 pylm).
2 m=1

Hence it is possible to construct an asymptotic confidence interval (the
limit variance contains H, but it is possible to plug in an estimator).
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What about the confidence intervals?
The situation is delicate:

For H €(0,3/4), there is a usual central limit theorem:
n V2 (nzH—IVZ’n _ T2H) _ N(O,U%{TAH),I”L — 00,
in law, where

2 1 2
oy =5+ 2 pylm).
2 m=1

Hence it is possible to construct an asymptotic confidence interval (the
limit variance contains H, but it is possible to plug in an estimator).

But for H €(3/4,1), we have a non-central limit theorem! Namely,
n2-2H (nzH—1V2’n _ TZH) —yT?H 5 = oo,

in law, where {f has some very special “Rosenblatt distribution”
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What about the confidence intervals?
The situation is delicate:

For H €(0,3/4), there is a usual central limit theorem:
n V2 (nzH—IVZ’n _ T2H) _ N(O,U?{TAH),I”L — 00,

in law, where

2 1 2
oy =5+ 2 pylm).
2 m=1

Hence it is possible to construct an asymptotic confidence interval (the
limit variance contains H, but it is possible to plug in an estimator).

But for H €(3/4,1), we have a non-central limit theorem! Namely,
n2-2H (nzH—1V2’n _ TZH) —yT?H 5 = oo,

in law, where (g has some very special “Rosenblatt distribution”, essentially
depending on H!
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Confidence intervals
So one needs to consider alternatives, e.g. the realized cubic variation

n 3
Vo = kzl (B —Blisyrm) -
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Confidence intervals
So one needs to consider alternatives, e.g. the realized cubic variation

n 3
Vo = kzl (B —Blisyrm) -

For H €(0,1/2],
n3H_1/2V3,n . N(O,U%LITGH);
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Confidence intervals
So one needs to consider alternatives, e.g. the realized cubic variation

n 3
Vo = kzl (B —Blisyrm) -

For H €(0,1/2],

n3H_1/2V3,n - N(O,O’%I’ITGH);
for H €(1/2,1),

n*"Vy » — N(0,0%; , T%).
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Confidence intervals

So one needs to consider alternatives, e.g. the realized cubic variation

3
Van —kZ (BkT/n B(k 1)T/n) :

For H €(0,1/2],
n3H_1/2V3,n - N(O,O‘%I’ITGH);
for H €(1/2,1),
n*"Vy » — N(0,0%; , T%).
Here

1
2 3
UH,l - 6 3 Z pH(m)

for H € (0,1/2) and 0%, =3 for H e (1/2,1).
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Confidence intervals
So one needs to consider alternatives, e.g. the realized cubic variation

n

3
Van=2, (BgT/n _Bg—DT/n) :

For H €(0,1/2],
n3H_1/2V3,n - N(O,O’%I,ITGH);
for H €(1/2,1),
n*"Vy » — N(0,0%; , T%).

Here

1
2 3
UH,1_6 3 Z pH(m)

for H €(0,1/2) and 0%{ 1 =3 for He(1/2,1). Again, the asymptotic variance

depends on H, but one can plug in an estimator.

Write the confidence intervals for H explicitly in terms of V3 5.

Exercise J
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Simulation

Among many ways to simulate fBm, the circulant (Wood-Chan) method is
probably simplest and most efficient.
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probably simplest and most efficient.

It is enough to simulate the increments on a sufficiently dense grid:

H H _ pH H _ pH H_ pH
BT/N’ B2T/N BT/N’ B3T/N BQT/N’ te BT B(N—l)T/N'
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Simulation

Among many ways to simulate fBm, the circulant (Wood-Chan) method is
probably simplest and most efficient.
It is enough to simulate the increments on a sufficiently dense grid:

H H H H H H_pH
Byn: Bopin = Brn: Bsrn —Bapne -+ Br ~Biv-nmin-
By the self-similarity, it is sufficient to simulate the fractional discrete noise
&1,&9,...,&n and multiply it by (T/N)H.
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Simulation

Among many ways to simulate fBm, the circulant (Wood-Chan) method is
probably simplest and most efficient.
It is enough to simulate the increments on a sufficiently dense grid:

H H H H H H _ pH
BT/N' B2T/N _BT/N’ B3T/N _B2T/N’ e BT _B(N—I)T/N'
By the self-similarity, it is sufficient to simulate the fractional discrete noise
&1,&9,...,&n and multiply it by (T/N)H.
Reminder: fractional discrete noise is a stationary standard Gaussian
sequence with the covariance

((n+ 1)2H+(n— 1)2H—2n2H), n=1.

N | —

PH(n) = E[€16n+1] = PH(n) =
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Among many ways to simulate fBm, the circulant (Wood-Chan) method is
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It is enough to simulate the increments on a sufficiently dense grid:

H H H H H H _ pH
BT/N' B2T/N _BT/N’ B3T/N _B2T/N’ e BT _B(N—I)T/N'
By the self-similarity, it is sufficient to simulate the fractional discrete noise
&1,&9,...,&n and multiply it by (T/N)H.
Reminder: fractional discrete noise is a stationary standard Gaussian
sequence with the covariance

((n+ 1)2H+(n— 1)2H—2n2H), n=1.
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So we have a centered Gaussian vector with known covariance matrix

py(1) 1 pg(1)
Py (2) P (1) 1

Cov(¢) =

py(N=2) p (N-3) py(N-4)
pg(N-1) py(N-2) p, (N-3)

We can obtain it by transforming linearly

PN =3) py(N-2)
py(N-4) p,(N-3)

1 pg(D)
Pp(1) 1

(€1,€2,. ., EN)T =8 x ({1,025, (W),

a vector ({1,{g,...,{n) of independent standard Gaussians; S is an N x N

matrix such that SST = Cov(¢).
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So we have a centered Gaussian vector with known covariance matrix

1 gD g (2) e pg(N=-2) pp(N-1)
Py (1) 1 py(D) o pg(N=3) py(N-2)
2 1 1 N -4 N-3
Cov($) = pH_( ) pH.( ) : _ ot : > Pl : )
pg(N-2) py(N-3) py(N-4) .. 1 pg(D
pg(N-1) py(N-2) py(N-3) ... Pp(1) 1

We can obtain it by transforming linearly

(€1,€2,. ., EN)T =8 x ({1,025, (W),

a vector ({1,{g,...,{n) of independent standard Gaussians; S is an N x N
matrix such that SST = Cov(¢).

So we need to find the square root S of the matrix Cov(¢).
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We assume that N =29 +1 (for technical reasons).
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We assume that N =29 +1 (for technical reasons).

Idea: to extract the square root, enlarge the matrix Cov(¢) by embedding it
into a circulant matrix

Co C1 c2 ... CM-2 CM-1
CM-1 Cco ¢c1 ... CM-3 CM-2
cmM-2 CmM-1 €0 ... CM-4 CM-3
C= . .
co c3 C4 ... co c1
C1 C2 c3 ... CM-1 co

where M =2(N —-1) and

co=1,

ppk),  k=12,.,N-1,
cr, =
T lopM-k), E=N,N+1,...,M-1.
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The circulant matrix C is easily diagonalized:
C=QAQ",
where A = diag(As,..., Ax), @ = (¢jz) 15—, With
M-1 ;
o Jk
Ap = cjex {—LZn——},
k J;) j €Xp M

1 { '2njk}
ik = ——expy{—127n— .
R e W
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The circulant matrix C is easily diagonalized:
C=QAQ",

where A = diag(As,..., Ax), @ = (¢jz) 15—, With

M-1 _]k
Ap = cjex {—i2n—},
k J;) jexp M

1 e { '2njk}
ik = ——expy{—127n— .
R e W

Exercise
Check that C =QAQ™. J
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Now finding square root is straightforward: R = @ AY2Q*, where
A2 = diag(A72,..., A1),
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Now finding square root is straightforward: R = @ AY2Q*, where
V2 _ g; 1/2 12

AT2 =diag(A7%,..., A30).

So we have that the vector

(61?"'5€M)T ZR((I,---;(M)T :QA1/2Q*((1’---,(M)T

is centered Gaussian with the covariance matrix C.
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Now finding square root is straightforward: R = @ AY2Q*, where
V2 _ g; 1/2 12
AT2 =diag(A7%,..., A30).

So we have that the vector
€1, &) =RW1,...,00) " =QA1/2Q*(51,---,(M)T

is centered Gaussian with the covariance matrix C. Hence, éq,...,¢éy is a
fractional discrete noise
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Now finding square root is straightforward: R = @ AY2Q*, where
V2 _ g; 1/2 12
AT2 =diag(A7%,..., A30).

So we have that the vector
€1, &) =RW1,...,00) " =QA1/2Q*(51,---,(M)T

is centered Gaussian with the covariance matrix C. Hence, éq,...,¢éy is a
fractional discrete noise, as well as éni1,EN+2,...,¢M.
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Now finding square root is straightforward: R = @ AY2Q*, where
A2 = diag(A72,..., A1),

So we have that the vector
E1eeséan) =R, ., () = QAY2Q7 (1., 0an)T

is centered Gaussian with the covariance matrix C. Hence, éq,...,¢éy is a
fractional discrete noise, as well as &x11,En412,...,E. Warning: these two
vectors are dependent.
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Now finding square root is straightforward: R = @ AY2Q*, where
12 _ g 1/2 12

AT2 =diag(A7%,..., A30).

So we have that the vector

E1esé) =R1,e 00 T = QA?Q7 (L1, )T

is centered Gaussian with the covariance matrix C. Hence, éq,...,¢éy is a
fractional discrete noise, as well as &x11,En412,...,E. Warning: these two
vectors are dependent.

Another observation: Aq,...,Ay is just FFT of cg,...,cp-1;
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Now finding square root is straightforward: R = @ AY2Q*, where
12 _ g 1/2 12

AT2 =diag(A7%,..., A30).

So we have that the vector

E1esé) =R1,e 00 T = QA?Q7 (L1, )T

is centered Gaussian with the covariance matrix C. Hence, éq,...,¢éy is a
fractional discrete noise, as well as &x11,En412,...,E. Warning: these two
vectors are dependent.

Another observation: Aq,...,Ay is just FFT of cg,...,cp—1; multiplying by
@ is taking FFT and dividing by v M,
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Now finding square root is straightforward: R = @ AY2Q*, where
12 _ g 1/2 12
AT2 =diag(A7%,..., A30).

So we have that the vector
E1eeséan) =R, ., () = QAY2Q7 (1., 0an)T

is centered Gaussian with the covariance matrix C. Hence, éq,...,¢éy is a
fractional discrete noise, as well as &x11,En412,...,E. Warning: these two
vectors are dependent.

Another observation: Aq,...,Ay is just FFT of cg,...,cp—1; multiplying by
Q is taking FFT and dividing by vV/M; multiplying by @* is taking inverse
FFT and multiplying by v M.
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Algorithm

Q@ Set N=27+1and M =29*1
© Calculate p,(1),...,p5(N = 1) and find co,c1,...,cp-1
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Algorithm

Q Set N=29+1 and M =29+1
@ Calculate pyy(1),...,p,(N 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am
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Algorithm

Q Set N=29+1 and M =29+1
@ Calculate pyy(1),...,p,(N 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am

@ Generate independent standard Gaussian (1,...,{u
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Algorithm

O Set N=29+1and M =27*!

© Calculate p,(1),...,p5(N = 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am

@ Generate independent standard Gaussian (1,...,{u

@ Take inverse FFT of {1,...,{y to get ﬁQ*((l,...,CM)T
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Algorithm

O Set N=29+1and M =27*!

© Calculate p,(1),...,p5(N = 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am

@ Generate independent standard Gaussian (1,...,{u

@ Take inverse FFT of {1,...,{y to get ﬁQ*((l,...,CM)T

O Multiply the last by VA1,...,vV2Au
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Algorithm

O Set N=29+1and M =27*!

© Calculate p,(1),...,p5(N = 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am

@ Generate independent standard Gaussian (1,...,{u

@ Take inverse FFT of {1,...,{u to get ﬁQ*((l,...,(M)T

O Multiply the last by VA1,...,vV2Au
@ Take FFT of result to get

1
&1, s = x/MQAl/z\/—A_lQ*(zl,...,cM)T =R(1,....C) "

Georgiy Shevchenko (Kyiv University) FBM in a nutshell January 7, 2014 29 /31



Algorithm

@ Set N=27+1and M =27+1

© Calculate p,(1),...,p5(N = 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am

@ Generate independent standard Gaussian (1,...,{u

@ Take inverse FFT of {1,...,{u to get \/LHQ*((L...,CM)T

O Multiply the last by VA1,...,vV2Au
@ Take FFT of result to get

1
&1, s = x/MQAW\/—MQ*(zl,...,cM)T =R(1,....C) "

O Take real part of ¢1,...,&N to get fractional discrete noise
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Algorithm

@ Set N=27+1and M =27+1

© Calculate p,(1),...,p5(N = 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am

@ Generate independent standard Gaussian (1,...,{u

@ Take inverse FFT of {1,...,{u to get \/LMQ*((L...,CM)T

O Multiply the last by VA1,...,vV2Au
@ Take FFT of result to get

1
&1, s = x/MQAW\/—MQ*(zl,...,cM)T =R(1,....C) "

O Take real part of ¢1,...,&N to get fractional discrete noise
@ Multiply by (T/N)H to get increments of fBm;
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Algorithm

@ Set N=27+1and M =27+1

© Calculate p,(1),...,p5(N = 1) and find co,c1,...,cp-1
© Take FFT to get A4,...,Am

@ Generate independent standard Gaussian (1,...,{u

@ Take inverse FFT of {1,...,{u to get \/LMQ*((L...,CM)T

O Multiply the last by VA1,...,vV2Au
@ Take FFT of result to get

1
&1, s = x/MQAW\/—MQ*(zl,...,cM)T =R(1,....C) "

O Take real part of ¢1,...,&N to get fractional discrete noise
@ Multiply by (T/N)H to get increments of fBm;

@ Take cumulative sums to get fBm
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Matlab code (guaranteed to work)

T = 3; H=0.

7; G = 2«H; % fBm with H = 0.7 on [0, 3]
q = 20; N1 = 2»
(

g; M = 2xN1; % about million values; N1 = N-1
+

rhoH = @(n) ((n+l).”"G + abs(n-1)."G — 2.* n.”G)./2; % covariance
c = zeros(M,1); % initialize; Matlab counts starting from 1, so
g = rhoH((0:N1)") h = flipdim(g(2: (N1+1)),1); % some mess here
c(l:(N1+1)) = g; c((N1+2):M); % and here with c_0,...,c_{M-1}

lambda = fft(c); % compute lambda
zeta = randn(M,1); % generate standard Gaussians
Qz = ifft(zeta); % compute Q"x zeta /sqrt (M)

xi = real (fft (Qz.*lambda.”0.5)); % compute xi

fbmincrements = (T/N1)"H .* xi(1:N1); % those are your increments
fbmpath = zeros(N1l+1l,1); % and here is your path
fbmpath (2: (N1+1)) = cumsum(fbmincrements); % starting from zero
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Result

04 T

Georgiy Shevchenko (Kyiv University) FBM in a nutshell January 7, 2014 31 /31



