Fractional Brownian Motion in a (Coco)Nutshell

Georgiy Shevchenko

Taras Shevchenko National University of Kyiv

January 2014

Georgiy Shevchenko (Kyiv University)

FBM in a nutshell

January 7, 2014 1 / 31

3

(日) (周) (日) (日)

Outline

Further reading

- 2 Definition and properties
- 3 Representations of fBm
- 4 Basic statistics for fBm

э

Contents

Further reading

- 2 Definition and properties
- 3 Representations of fBm
- 4 Basic statistics for fBm
- 5 Simulation

э

イロト イロト イヨト イヨト

💊 F. Biagini, Y. Hu, B. Oksendal, T. Zhang Stochastic Calculus for Fractional Brownian Motion and Applications Probability and Its Applications, Springer, 2008.

🔈 Yu. Mishura

Stochastic Calculus for Fractional Brownian Motion and Related Processes

Lecture Notes in Mathematics **1929**, Springer, 2008.

🍉 I. Nourdin

Selected Aspects of Fractional Brownian Motion Bocconi & Springer Series, Springer, 2012.

D. Nualart

The Malliavin calculus and related topics, 2nd Edition Probability and Its Applications, Springer, 2006.

Contents

Further reading

2 Definition and properties

3 Representations of fBm

4 Basic statistics for fBm

э

3 🖒 🖌 3

< 🗇 🕨

Popular model for randomness is Wiener process (white noise)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Popular model for randomness is Wiener process (white noise)Problem: no dependence (no memory)

3

∃ → (∃ →

Image: A matrix

Popular model for randomness is Wiener process (white noise)Problem: no dependence (no memory)However, processes with memory are encountered in:

Hydrology

- Hydrology
- Geophysics

- Hydrology
- Geophysics
- Other natural sciences

- Hydrology
- Geophysics
- Other natural sciences
- Financial mathematics

- Hydrology
- Geophysics
- Other natural sciences
- Financial mathematics
- Traffic research

- Hydrology
- Geophysics
- Other natural sciences
- Financial mathematics
- Traffic research
- ...

Definition

Definition

The fractional Brownian motion (fBm) with Hurst index $H \in (0,1)$ is a centered Gaussian process $B^H = \{B_t^H, t \ge 0\}$ with stationary increments and the covariance function

$$\mathsf{E}\left[B_{t}^{H}B_{s}^{H}\right] = \frac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}\right).$$

A B A A B A

Definition

Definition

The fractional Brownian motion (fBm) with Hurst index $H \in (0, 1)$ is a centered Gaussian process $B^H = \{B_t^H, t \ge 0\}$ with stationary increments and the covariance function

$$\mathsf{E}\left[B_{t}^{H}B_{s}^{H}\right] = \frac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}\right).$$

H = 1/2: $B_t^{1/2} = W_t$, standard Wiener process

▲椰子 ★ 田子 ★ 田子 二 田

Definition

Definition

The fractional Brownian motion (fBm) with Hurst index $H \in (0,1)$ is a centered Gaussian process $B^H = \{B_t^H, t \ge 0\}$ with stationary increments and the covariance function

$$\mathsf{E}\left[B_t^H B_s^H\right] = \frac{1}{2} \left(t^{2H} + s^{2H} - |t-s|^{2H}\right).$$

H = 1/2: $B_t^{1/2} = W_t$, standard Wiener process H = 1: $B_t^H = \xi t$ with ξ standard Gaussian

▲椰子 ★ 田子 ★ 田子 二 田

Covariance (Exercise)

$$\mathsf{E}\left[\left(B_{t_1}^H - B_{s_1}^H\right)\left(B_{t_2}^H - B_{s_2}^H\right)\right] = \frac{1}{2}\left(|t_2 - s_1|^{2H} + |t_1 - s_2|^{2H} - |t_1 - s_1|^{2H} - |t_2 - s_2|^{2H}\right).$$

- 2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Covariance (Exercise)

$$\mathsf{E}\left[\left(B_{t_1}^H - B_{s_1}^H\right)\left(B_{t_2}^H - B_{s_2}^H\right)\right] = \frac{1}{2}\left(|t_2 - s_1|^{2H} + |t_1 - s_2|^{2H} - |t_1 - s_1|^{2H} - |t_2 - s_2|^{2H}\right).$$

Dependence (Exercise)

If $s_1 < t_1 < s_2 < t_2$ (so the intervals $[s_1, t_1]$ and $[s_s, t_2]$ are non-intersecting), then the increments $B_{t_1}^H - B_{s_1}^H$ and $B_{t_2}^H - B_{s_2}^H$ are

• positively correlated for H > 1/2;

イロト イポト イヨト イヨト 二日

Covariance (Exercise)

$$\mathsf{E}\left[\left(B_{t_1}^H - B_{s_1}^H\right)\left(B_{t_2}^H - B_{s_2}^H\right)\right] = \frac{1}{2}\left(|t_2 - s_1|^{2H} + |t_1 - s_2|^{2H} - |t_1 - s_1|^{2H} - |t_2 - s_2|^{2H}\right).$$

Dependence (Exercise)

If $s_1 < t_1 < s_2 < t_2$ (so the intervals $[s_1, t_1]$ and $[s_s, t_2]$ are non-intersecting), then the increments $B_{t_1}^H - B_{s_1}^H$ and $B_{t_2}^H - B_{s_2}^H$ are

- positively correlated for H > 1/2;
- negatively correlated if H < 1/2;

Covariance (Exercise)

$$\mathsf{E}\left[\left(B_{t_1}^H - B_{s_1}^H\right)\left(B_{t_2}^H - B_{s_2}^H\right)\right] = \frac{1}{2}\left(|t_2 - s_1|^{2H} + |t_1 - s_2|^{2H} - |t_1 - s_1|^{2H} - |t_2 - s_2|^{2H}\right).$$

Dependence (Exercise)

If $s_1 < t_1 < s_2 < t_2$ (so the intervals $[s_1, t_1]$ and $[s_s, t_2]$ are non-intersecting), then the increments $B_{t_1}^H - B_{s_1}^H$ and $B_{t_2}^H - B_{s_2}^H$ are

- positively correlated for H > 1/2;
- negatively correlated if H < 1/2;
- uncorrelated (independent) for H = 1/2.

Covariance (Exercise)

$$\mathsf{E}\left[\left(B_{t_1}^H - B_{s_1}^H\right)\left(B_{t_2}^H - B_{s_2}^H\right)\right] = \frac{1}{2}\left(|t_2 - s_1|^{2H} + |t_1 - s_2|^{2H} - |t_1 - s_1|^{2H} - |t_2 - s_2|^{2H}\right).$$

Dependence (Exercise)

If $s_1 < t_1 < s_2 < t_2$ (so the intervals $[s_1, t_1]$ and $[s_s, t_2]$ are non-intersecting), then the increments $B_{t_1}^H - B_{s_1}^H$ and $B_{t_2}^H - B_{s_2}^H$ are

- positively correlated for H > 1/2;
- negatively correlated if H < 1/2;
- uncorrelated (independent) for H = 1/2.

Hint: Use the convexity (concavity).

イロト イポト イヨト イヨト 二日

fBm paths

• stationary increments

э

- stationary increments
- *H*-self-similarity

< 🗗 🕨

э

- stationary increments
- *H*-self-similarity

It can be shown (feel free to show this) that fBm with Hurst index H is the only process with such properties

- stationary increments
- *H*-self-similarity

It can be shown (feel free to show this) that fBm with Hurst index H is the only process with such properties

Fractional discrete noise: the stationary sequence $\xi_n = B_{n+1}^H - B_n^H$.

- stationary increments
- *H*-self-similarity

It can be shown (feel free to show this) that fBm with Hurst index H is the only process with such properties

Fractional discrete noise: the stationary sequence $\xi_n = B_{n+1}^H - B_n^H$. Covariance:

$$\rho_{H}(n) = \frac{1}{2} \left((n+1)^{2H} + (n-1)^{2H} - 2n^{2H} \right), \ n \ge 1.$$

So $\sum_{n=1}^{\infty}\rho_{H}(n)=+\infty$ for H>1/2 (the long-range dependence).

(日) (周) (日) (日) (日) (0)

Continuity of fBm

The variance of increments is

$$\mathsf{E}\left[\left(B_t^H - B_s^H\right)^2\right] = |t - s|^{2H}.$$

Then it can be shown that fBm is γ -Hölder continuous:

$$\left|B_t^H - B_s^H\right| \le C(\omega) |t - s|^{\gamma}$$

for any $\gamma \in (0, H)$.

э

Continuity of fBm

The variance of increments is

$$\mathsf{E}\left[\left(B_t^H - B_s^H\right)^2\right] = \left|t - s\right|^{2H}.$$

Then it can be shown that fBm is γ -Hölder continuous:

$$\left|B_t^H - B_s^H\right| \le C(\omega) |t - s|^{\gamma}$$

for any $\gamma \in (0, H)$.

A nice way is the Garsia–Rodemich–Rumsey inequality: For $f \in C([0,T])$ and $p > 0, \ \theta > 1/p$

$$\sup_{0 \le v < u \le T} \frac{|f(u) - f(v)|}{(u - v)^{\theta - 1/p}} \le C_{p,\theta,T} \left(\int_0^T \int_0^T \frac{|f(x) - f(y)|^p}{|x - y|^{\theta p + 1}} \, dx \, dy \right)^{1/p}$$

Georgiy Shevchenko (Kyiv University)

Continuity of fBm

The variance of increments is

$$\mathsf{E}\left[\left(B_t^H - B_s^H\right)^2\right] = |t - s|^{2H}.$$

Then it can be shown that fBm is γ -Hölder continuous:

$$\left|B_t^H - B_s^H\right| \le C(\omega) |t - s|^{\gamma}$$

for any $\gamma \in (0,H)$.

A nice way is the Garsia–Rodemich–Rumsey inequality: For $f \in C([0,T])$ and $p > 0, \ \theta > 1/p$

$$\sup_{0 \le v < u \le T} \frac{|f(u) - f(v)|}{(u - v)^{\theta - 1/p}} \le C_{p,\theta,T} \left(\int_0^T \int_0^T \frac{|f(x) - f(y)|^p}{|x - y|^{\theta p + 1}} \, dx \, dy \right)^{1/p}$$

Exercise

Deduce the Hölder continuity from the GRR inequality.

Georgiy Shevchenko (Kyiv University)

FBM in a nutshell

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

Image: A matrix

3 N 3

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

What about fBm?

3

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

What about fBm?

Fact: quadratic variation of a semimartingale is finite and is equal to that of the local martingale in its decomposition.

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

What about fBm?

Fact: quadratic variation of a semimartingale is finite and is equal to that of the local martingale in its decomposition. Moreover, a continuous semimartingale has a continuous martingale in its decomposition.

For fBm, the quadratic variation is:

• zero for $H \in (1/2, 1)$;

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

What about fBm?

Fact: quadratic variation of a semimartingale is finite and is equal to that of the local martingale in its decomposition. Moreover, a continuous semimartingale has a continuous martingale in its decomposition.

For fBm, the quadratic variation is:

- zero for $H \in (1/2, 1)$;
- infinite for $H \in (0, 1/2)$;

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

What about fBm?

Fact: quadratic variation of a semimartingale is finite and is equal to that of the local martingale in its decomposition. Moreover, a continuous semimartingale has a continuous martingale in its decomposition.

For fBm, the quadratic variation is:

- zero for $H \in (1/2, 1)$;
- infinite for $H \in (0, 1/2)$;
- finite and non-zero for H = 1/2.
Semimartingale and Markov properties

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

What about fBm?

Fact: quadratic variation of a semimartingale is finite and is equal to that of the local martingale in its decomposition. Moreover, a continuous semimartingale has a continuous martingale in its decomposition.

For fBm, the quadratic variation is:

- zero for $H \in (1/2, 1)$;
- infinite for $H \in (0, 1/2)$;
- finite and non-zero for H = 1/2.

Consequently, fBm is not a semimartingale.

Semimartingale and Markov properties

Reminder: a semimartingale is a local martingale + adapted process having locally bounded variation.

What about fBm?

Fact: quadratic variation of a semimartingale is finite and is equal to that of the local martingale in its decomposition. Moreover, a continuous semimartingale has a continuous martingale in its decomposition.

For fBm, the quadratic variation is:

- zero for $H \in (1/2, 1)$;
- infinite for $H \in (0, 1/2)$;
- finite and non-zero for H = 1/2.

Consequently, fBm is not a semimartingale.

It is neither a Markov process.

Contents

Representations of fBm 3

э

The Mandelbrot-van Ness (moving average) representation

$$\begin{split} B_t^H &= \frac{1}{\Gamma(H+1/2)} \int_{\mathbb{R}} \left[(t-s)_+^{H-1/2} - (-s)_+^{H-1/2} \right] dW_s \\ &= \frac{1}{\Gamma(H+1/2)} \left[\int_0^t (t-s)^{H-1/2} dW_s + \int_{-\infty}^0 \left((t-s)^{H-1/2} - (-s)^{H-1/2} \right) dW_s \right]. \end{split}$$

3

Image: A mathematical states and a mathem

The Mandelbrot-van Ness (moving average) representation

$$\begin{split} B_t^H &= \frac{1}{\Gamma(H+1/2)} \int_{\mathbb{R}} \left[(t-s)_+^{H-1/2} - (-s)_+^{H-1/2} \right] dW_s \\ &= \frac{1}{\Gamma(H+1/2)} \left[\int_0^t (t-s)^{H-1/2} dW_s + \int_{-\infty}^0 \left((t-s)^{H-1/2} - (-s)^{H-1/2} \right) dW_s \right]. \end{split}$$

Exercise

Check that this formula defines an fBm (up to a constant).

э

The Mandelbrot-van Ness (moving average) representation

$$\begin{split} B_t^H &= \frac{1}{\Gamma(H+1/2)} \int_{\mathbb{R}} \left[(t-s)_+^{H-1/2} - (-s)_+^{H-1/2} \right] dW_s \\ &= \frac{1}{\Gamma(H+1/2)} \left[\int_0^t (t-s)^{H-1/2} dW_s + \int_{-\infty}^0 \left((t-s)^{H-1/2} - (-s)^{H-1/2} \right) dW_s \right]. \end{split}$$

Exercise

Check that this formula defines an fBm (up to a constant).

Open problem

Let B^H be given by the above integral representation. Then B^H share the points of local extrema with its underlying Wiener process W.

$$B_t^H = \int_0^t K_H(t,s) \, dW_s,$$

3

$$B_t^H = \int_0^t K_H(t,s) \, dW_s,$$

where for $H \in (1/2, 1)$

$$K_H(t,s) = C_H s^{1/2-H} \int_s^t (v-s)^{H-3/2} v^{H-1/2} dv,$$

with $C_H = \sqrt{\frac{H(2H-1)}{\beta(2-2H,H-1/2)}}$.

H N

< 47 ▶

3. 3

$$B_t^H = \int_0^t K_H(t,s) \, dW_s,$$

where for $H \in (1/2, 1)$

$$K_H(t,s) = C_H s^{1/2-H} \int_s^t (v-s)^{H-3/2} v^{H-1/2} dv,$$

with
$$C_H = \sqrt{\frac{H(2H-1)}{\beta(2-2H,H-1/2)}}$$
.

Exercise

Check that this formula defines an fBm.

Georgiy Shevchenko (Kyiv University)

э

$$B_t^H = \int_0^t K_H(t,s) \, dW_s,$$

3

$$B_t^H = \int_0^t K_H(t,s) \, dW_s,$$

where for $H \in (0, 1/2)$

$$K_{H}(t,s) = C_{H}s^{1/2-H} \left[t^{H-1/2} - (H-1/2) \int_{s}^{t} u^{H-3/2} (u-s)^{H-1/2} du \right],$$

with $C_H = \sqrt{\frac{H(2H-1)}{\beta(2-2H,H-1/2)}}$.

표 문 문

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

$$B_t^H = \int_0^t K_H(t,s) dW_s,$$

where for $H \in (0, 1/2)$

$$K_{H}(t,s) = C_{H}s^{1/2-H} \left[t^{H-1/2} - (H-1/2) \int_{s}^{t} u^{H-3/2} (u-s)^{H-1/2} du \right],$$

with $C_H = \sqrt{\frac{H(2H-1)}{\beta(2-2H,H-1/2)}}$.

Note that this works for $H \in (0, 1/2)$ as well. There is also an inverse representation.

Contents

Further reading

- 2 Definition and properties
- 3 Representations of fBm
- 4 Basic statistics for fBm

Georgiy Shevchenko (Kyiv University)

э

(日) (周) (日) (日)

Coeurjolly, J.-F.

Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study.

Journal of Statistical Software 5, 1–53.

э

イロト イポト イヨト イヨト

Reminder: Realised quadratic variation is

$$V_{2,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{2}.$$

3

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Reminder: Realised quadratic variation is

$$V_{2,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{2}.$$

By the self-similarity,

$$V_{2,n} \stackrel{d}{=} T^{2H} n^{-2H} \sum_{k=1}^{n} \xi_k^2,$$

where $\{\xi_k, k \ge 1\}$ is a stationary standard Gaussian sequence with the covariance

$$\rho_{H}(n) = \mathsf{E}[\xi_{1}\xi_{n+1}] = \rho_{H}(n) = \frac{1}{2} \left((n+1)^{2H} + (n-1)^{2H} - 2n^{2H} \right), \ n \ge 1.$$

Georgiy Shevchenko (Kyiv University)

Reminder: Realised quadratic variation is

$$V_{2,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{2}.$$

By the self-similarity,

$$V_{2,n} \stackrel{d}{=} T^{2H} n^{-2H} \sum_{k=1}^{n} \xi_k^2,$$

where $\{\xi_k, k \ge 1\}$ is a stationary standard Gaussian sequence with the covariance

$$\rho_{H}(n) = \mathsf{E}[\xi_{1}\xi_{n+1}] = \rho_{H}(n) = \frac{1}{2} \left((n+1)^{2H} + (n-1)^{2H} - 2n^{2H} \right), \ n \ge 1.$$

Thanks to the ergodic theorem,

$$V_{2,n} \stackrel{d}{=} T^{2H} n^{1-2H} \frac{1}{n} \sum_{k=1}^{n} \xi_k^2 \sim T^{2H} n^{1-2H}, n \to \infty.$$

We have

$$V_{2,n} \sim T^{2H} n^{1-2H}, n \to \infty.$$

So

$$\widehat{H}_m = \frac{1}{2m} \left(1 - \log_2 V_{2,2^m} \right) \to H, m \to \infty.$$

《曰》 《聞》 《臣》 《臣》

We have

$$V_{2,n} \sim T^{2H} n^{1-2H}, n \to \infty.$$

$$\widehat{H}_m = \frac{1}{2m} \left(1 - \log_2 V_{2,2^m} \right) \to H, m \to \infty.$$

Also

$$\widetilde{H}_m = \frac{1}{2} \left(1 - \log_2 \frac{V_{2,2^m}}{V_{2,2^{m-1}}} \right) \to H, m \to \infty.$$

This is usually a better estimator.

æ

We have

$$V_{2,n} \sim T^{2H} n^{1-2H}, n \to \infty.$$

$$\widehat{H}_m = \frac{1}{2m} \left(1 - \log_2 V_{2,2^m} \right) \to H, m \to \infty.$$

Also

$$\widetilde{H}_m = \frac{1}{2} \left(1 - \log_2 \frac{V_{2,2^m}}{V_{2,2^{m-1}}} \right) \to H, m \to \infty.$$

This is usually a better estimator.

To eliminate a possible drift, consider second order differences:

$$V_{2,n}' = \sum_{k=1}^{n-1} \left(B_{(k+1)T/n}^{H} + B_{(k-1)T/n}^{H} - 2B_{kT/n}^{H} \right)^{2},$$

the asymptotic is the same up to a constant (exercise), although the variance is bigger.

Georgiy Shevchenko (Kyiv University)

FBM in a nutshell

January 7, 2014 21 / 31

Ξ.

イロト イヨト イヨト イヨト

The situation is delicate:

For $H \in (0, 3/4)$, there is a usual central limit theorem:

$$n^{1/2} \left(n^{2H-1} V_{2,n} - T^{2H} \right) \to N(0, \sigma_H^2 T^{4H}), n \to \infty,$$

in law, where

$$\sigma_{H}^{2} = \frac{1}{2} + \sum_{m=1}^{\infty} \rho_{H}(m)^{2}.$$

< 47 > <

3

The situation is delicate:

For $H \in (0, 3/4)$, there is a usual central limit theorem:

$$n^{1/2} \left(n^{2H-1} V_{2,n} - T^{2H} \right) \to N(0, \sigma_H^2 T^{4H}), n \to \infty,$$

in law, where

$$\sigma_{H}^{2} = \frac{1}{2} + \sum_{m=1}^{\infty} \rho_{H}(m)^{2}.$$

Hence it is possible to construct an asymptotic confidence interval (the limit variance contains H, but it is possible to plug in an estimator).

The situation is delicate:

For $H \in (0, 3/4)$, there is a usual central limit theorem:

$$n^{1/2} \left(n^{2H-1} V_{2,n} - T^{2H} \right) \to N(0, \sigma_H^2 T^{4H}), n \to \infty,$$

in law, where

$$\sigma_{H}^{2} = \frac{1}{2} + \sum_{m=1}^{\infty} \rho_{H}(m)^{2}.$$

Hence it is possible to construct an asymptotic confidence interval (the limit variance contains H, but it is possible to plug in an estimator). But for $H \in (3/4, 1)$, we have a non-central limit theorem! Namely,

$$n^{2-2H}\left(n^{2H-1}V_{2,n}-T^{2H}\right) \to \zeta_H T^{2H}, n \to \infty,$$

in law, where ζ_H has some very special "Rosenblatt distribution"

The situation is delicate:

For $H \in (0, 3/4)$, there is a usual central limit theorem:

$$n^{1/2} \left(n^{2H-1} V_{2,n} - T^{2H} \right) \to N(0, \sigma_H^2 T^{4H}), n \to \infty,$$

in law, where

$$\sigma_H^2 = \frac{1}{2} + \sum_{m=1}^{\infty} \rho_H(m)^2.$$

Hence it is possible to construct an asymptotic confidence interval (the limit variance contains H, but it is possible to plug in an estimator). But for $H \in (3/4, 1)$, we have a non-central limit theorem! Namely,

$$n^{2-2H}\left(n^{2H-1}V_{2,n}-T^{2H}\right) \to \zeta_H T^{2H}, n \to \infty,$$

in law, where ζ_H has some very special "Rosenblatt distribution", essentially depending on H!

So one needs to consider alternatives, e.g. the realized cubic variation

$$V_{3,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{3}.$$

< 4 → <

∃ >

3

So one needs to consider alternatives, e.g. the realized cubic variation

$$V_{3,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{3}.$$

For $H \in (0, 1/2]$,

$$n^{3H-1/2}V_{3,n} \rightarrow N(0, \sigma_{H,1}^2 T^{6H});$$

э

So one needs to consider alternatives, e.g. the realized cubic variation

$$V_{3,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{3}.$$

For $H \in (0, 1/2],$ $n^{3H-1/2} V_{3,n} \to N(0, \sigma_{H,1}^2 T^{6H});$ for $H \in (1/2, 1),$

$$n^{2H}V_{3,n} \to N(0, \sigma_{H,1}^2 T^{6H}).$$

- 3

So one needs to consider alternatives, e.g. the realized cubic variation

$$V_{3,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{3}.$$

For $H \in (0, 1/2]$, $n^{3H-1/2}V_{3,n} \rightarrow N(0, \sigma_{H,1}^2T^{6H});$

for $H \in (1/2, 1)$,

$$n^{2H}V_{3,n} \to N(0, \sigma_{H,1}^2 T^{6H}).$$

Here

$$\sigma_{H,1}^2 = \frac{1}{6} + \frac{1}{3} \sum_{m=1}^{\infty} \rho_H(m)^3$$

for $H \in (0, 1/2)$ and $\sigma_{H,1}^2 = 3$ for $H \in (1/2, 1)$.

Image: Image:

So one needs to consider alternatives, e.g. the realized cubic variation

$$V_{3,n} = \sum_{k=1}^{n} \left(B_{kT/n}^{H} - B_{(k-1)T/n}^{H} \right)^{3}.$$

For $H \in (0, 1/2]$,

$$n^{3H-1/2}V_{3,n} \to N(0,\sigma_{H,1}^2T^{6H});$$

for $H \in (1/2, 1)$,

$$n^{2H}V_{3,n} \to N(0, \sigma_{H,1}^2 T^{6H}).$$

Here

$$\sigma_{H,1}^2 = \frac{1}{6} + \frac{1}{3} \sum_{m=1}^{\infty} \rho_H(m)^3$$

for $H \in (0, 1/2)$ and $\sigma_{H,1}^2 = 3$ for $H \in (1/2, 1)$. Again, the asymptotic variance depends on H, but one can plug in an estimator.

Exercise

Write the confidence intervals for H explicitly in terms of $V_{3,n}$.

Georgiy Shevchenko (Kyiv University)

FBM in a nutshell

Contents

Further reading

- 2 Definition and properties
- 3 Representations of fBm
- 4 Basic statistics for fBm

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Among many ways to simulate fBm, the circulant (Wood-Chan) method is probably simplest and most efficient.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Among many ways to simulate fBm, the circulant (Wood-Chan) method is probably simplest and most efficient.

It is enough to simulate the increments on a sufficiently dense grid: $B_{T/N}^{H}, B_{2T/N}^{H} - B_{T/N}^{H}, B_{3T/N}^{H} - B_{2T/N}^{H}, \dots, B_{T}^{H} - B_{(N-1)T/N}^{H}.$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Among many ways to simulate fBm, the circulant (Wood-Chan) method is probably simplest and most efficient.

It is enough to simulate the increments on a sufficiently dense grid: $B_{T/N}^{H}$, $B_{2T/N}^{H} - B_{T/N}^{H}$, $B_{3T/N}^{H} - B_{2T/N}^{H}$, ..., $B_{T}^{H} - B_{(N-1)T/N}^{H}$. By the self-similarity, it is sufficient to simulate the fractional discrete noise $\xi_1, \xi_2, ..., \xi_N$ and multiply it by $(T/N)^{H}$.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Among many ways to simulate fBm, the circulant (Wood-Chan) method is probably simplest and most efficient.

It is enough to simulate the increments on a sufficiently dense grid: $B_{T/N}^{H}, B_{2T/N}^{H} - B_{T/N}^{H}, B_{3T/N}^{H} - B_{2T/N}^{H}, \dots, B_{T}^{H} - B_{(N-1)T/N}^{H}$. By the self-similarity, it is sufficient to simulate the fractional discrete noise $\xi_1, \xi_2, \dots, \xi_N$ and multiply it by $(T/N)^{H}$.

Reminder: fractional discrete noise is a stationary standard Gaussian sequence with the covariance

$$\rho_{H}(n) = \mathsf{E}[\xi_{1}\xi_{n+1}] = \rho_{H}(n) = \frac{1}{2} \left((n+1)^{2H} + (n-1)^{2H} - 2n^{2H} \right), \ n \ge 1.$$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙
Simulation

Among many ways to simulate fBm, the circulant (Wood-Chan) method is probably simplest and most efficient.

It is enough to simulate the increments on a sufficiently dense grid: $B_{T/N}^{H}, B_{2T/N}^{H} - B_{T/N}^{H}, B_{3T/N}^{H} - B_{2T/N}^{H}, \dots, B_{T}^{H} - B_{(N-1)T/N}^{H}$. By the self-similarity, it is sufficient to simulate the fractional discrete noise $\xi_1, \xi_2, \dots, \xi_N$ and multiply it by $(T/N)^{H}$.

Reminder: fractional discrete noise is a stationary standard Gaussian sequence with the covariance

$$\rho_{H}(n) = \mathsf{E}[\xi_{1}\xi_{n+1}] = \rho_{H}(n) = \frac{1}{2} \left((n+1)^{2H} + (n-1)^{2H} - 2n^{2H} \right), \ n \ge 1.$$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

So we have a centered Gaussian vector with known covariance matrix

$$\operatorname{Cov}(\xi) = \begin{pmatrix} 1 & \rho_H(1) & \rho_H(2) & \dots & \rho_H(N-2) & \rho_H(N-1) \\ \rho_H(1) & 1 & \rho_H(1) & \dots & \rho_H(N-3) & \rho_H(N-2) \\ \rho_H(2) & \rho_H(1) & 1 & \dots & \rho_H(N-4) & \rho_H(N-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho_H(N-2) & \rho_H(N-3) & \rho_H(N-4) & \dots & 1 & \rho_H(1) \\ \rho_H(N-1) & \rho_H(N-2) & \rho_H(N-3) & \dots & \rho_H(1) & 1 \end{pmatrix}$$

We can obtain it by transforming linearly

$$(\xi_1,\xi_2,\ldots,\xi_N)^{\top} = \mathbf{S} \times (\zeta_1,\zeta_2,\ldots,\zeta_N)^{\top},$$

a vector $(\zeta_1, \zeta_2, \dots, \zeta_N)$ of independent standard Gaussians; S is an $N \times N$ matrix such that $SS^{\top} = \text{Cov}(\xi)$.

So we have a centered Gaussian vector with known covariance matrix

$$\operatorname{Cov}(\xi) = \begin{pmatrix} 1 & \rho_H(1) & \rho_H(2) & \dots & \rho_H(N-2) & \rho_H(N-1) \\ \rho_H(1) & 1 & \rho_H(1) & \dots & \rho_H(N-3) & \rho_H(N-2) \\ \rho_H(2) & \rho_H(1) & 1 & \dots & \rho_H(N-4) & \rho_H(N-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho_H(N-2) & \rho_H(N-3) & \rho_H(N-4) & \dots & 1 & \rho_H(1) \\ \rho_H(N-1) & \rho_H(N-2) & \rho_H(N-3) & \dots & \rho_H(1) & 1 \end{pmatrix}$$

We can obtain it by transforming linearly

$$(\xi_1,\xi_2,\ldots,\xi_N)^{\top} = \mathbf{S} \times (\zeta_1,\zeta_2,\ldots,\zeta_N)^{\top},$$

a vector $(\zeta_1, \zeta_2, \dots, \zeta_N)$ of independent standard Gaussians; S is an $N \times N$ matrix such that $SS^{\top} = \text{Cov}(\xi)$.

So we need to find the square root S of the matrix $Cov(\xi)$.

We assume that $N = 2^q + 1$ (for technical reasons).

2

イロト イポト イヨト イヨト

We assume that $N = 2^q + 1$ (for technical reasons).

Idea: to extract the square root, *enlarge* the matrix $Cov(\xi)$ by embedding it into a *circulant* matrix

$$C = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{M-2} & c_{M-1} \\ c_{M-1} & c_0 & c_1 & \dots & c_{M-3} & c_{M-2} \\ c_{M-2} & c_{M-1} & c_0 & \dots & c_{M-4} & c_{M-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ c_2 & c_3 & c_4 & \dots & c_0 & c_1 \\ c_1 & c_2 & c_3 & \dots & c_{M-1} & c_0 \end{pmatrix}$$

where M = 2(N-1) and

$$c_0 = 1, \\ c_k = \begin{cases} \rho_H(k), & k = 1, 2, \dots, N-1, \\ \rho_H(M-k), & k = N, N+1, \dots, M-1. \end{cases}$$

3

26 / 31

The circulant matrix C is easily diagonalized:

$$C = Q \Lambda Q^{\top},$$

where $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_M), \; Q = \left(q_{jk}\right)_{j,k=1}^M$ with

$$\begin{split} \lambda_k &= \sum_{j=0}^{M-1} c_j \exp\left\{-i2\pi \frac{jk}{M}\right\},\\ q_{jk} &= \frac{1}{\sqrt{M}} \exp\left\{-i2\pi \frac{jk}{M}\right\}. \end{split}$$

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

≣▶ ≣ ୍ର୍ବ୍

The circulant matrix C is easily diagonalized:

$$C = Q \Lambda Q^{\top},$$

where $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_M), \; Q = \left(q_{jk}\right)_{j,k=1}^M$ with

$$\begin{split} \lambda_k &= \sum_{j=0}^{M-1} c_j \exp\left\{-i2\pi \frac{jk}{M}\right\},\\ q_{jk} &= \frac{1}{\sqrt{M}} \exp\left\{-i2\pi \frac{jk}{M}\right\}. \end{split}$$

Exercise

Check that $C = Q \Lambda Q^*$.

Georgiy Shevchenko (Kyiv University)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

So we have that the vector

$$(\xi_1,\ldots,\xi_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top} = Q\Lambda^{1/2}Q^*(\zeta_1,\ldots,\zeta_M)^{\top}$$

is centered Gaussian with the covariance matrix C.

3

So we have that the vector

$$(\xi_1,\ldots,\xi_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top} = Q\Lambda^{1/2}Q^*(\zeta_1,\ldots,\zeta_M)^{\top}$$

is centered Gaussian with the covariance matrix C. Hence, ξ_1,\ldots,ξ_N is a fractional discrete noise

3

$$(\xi_1,\ldots,\xi_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top} = Q\Lambda^{1/2}Q^*(\zeta_1,\ldots,\zeta_M)^{\top}$$

is centered Gaussian with the covariance matrix C. Hence, ξ_1, \ldots, ξ_N is a fractional discrete noise, as well as $\xi_{N+1}, \xi_{N+2}, \ldots, \xi_M$.

$$(\xi_1,\ldots,\xi_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top} = Q\Lambda^{1/2}Q^*(\zeta_1,\ldots,\zeta_M)^{\top}$$

is centered Gaussian with the covariance matrix C. Hence, ξ_1, \ldots, ξ_N is a fractional discrete noise, as well as $\xi_{N+1}, \xi_{N+2}, \ldots, \xi_M$. Warning: these two vectors are dependent.

$$(\xi_1,\ldots,\xi_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top} = Q\Lambda^{1/2}Q^*(\zeta_1,\ldots,\zeta_M)^{\top}$$

is centered Gaussian with the covariance matrix C. Hence, ξ_1, \ldots, ξ_N is a fractional discrete noise, as well as $\xi_{N+1}, \xi_{N+2}, \ldots, \xi_M$. Warning: these two vectors are dependent.

Another observation: $\lambda_1, \ldots, \lambda_M$ is just FFT of c_0, \ldots, c_{M-1} ;

$$(\xi_1,\ldots,\xi_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top} = Q\Lambda^{1/2}Q^*(\zeta_1,\ldots,\zeta_M)^{\top}$$

is centered Gaussian with the covariance matrix C. Hence, ξ_1, \ldots, ξ_N is a fractional discrete noise, as well as $\xi_{N+1}, \xi_{N+2}, \ldots, \xi_M$. Warning: these two vectors are dependent.

Another observation: $\lambda_1, \ldots, \lambda_M$ is just FFT of c_0, \ldots, c_{M-1} ; multiplying by Q is taking FFT and dividing by \sqrt{M} ;

∃ ► = √20

$$(\xi_1,\ldots,\xi_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top} = Q\Lambda^{1/2}Q^*(\zeta_1,\ldots,\zeta_M)^{\top}$$

is centered Gaussian with the covariance matrix C. Hence, ξ_1, \ldots, ξ_N is a fractional discrete noise, as well as $\xi_{N+1}, \xi_{N+2}, \ldots, \xi_M$. Warning: these two vectors are dependent.

Another observation: $\lambda_1, \ldots, \lambda_M$ is just FFT of c_0, \ldots, c_{M-1} ; multiplying by Q is taking FFT and dividing by \sqrt{M} ; multiplying by Q^* is taking inverse FFT and multiplying by \sqrt{M} .

IN I NOR

1 Set
$$N = 2^{q} + 1$$
 and $M = 2^{q+1}$

= 990

イロト イポト イヨト イヨト

- Set $N = 2^{q} + 1$ and $M = 2^{q+1}$
- 2 Calculate $\rho_H(1), \dots, \rho_H(N-1)$ and find c_0, c_1, \dots, c_{M-1}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- Set $N = 2^q + 1$ and $M = 2^{q+1}$
- 2 Calculate $\rho_H(1), \ldots, \rho_H(N-1)$ and find $c_0, c_1, \ldots, c_{M-1}$
- **③** Take FFT to get $\lambda_1, \ldots, \lambda_M$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - のへで

- Set $N = 2^{q} + 1$ and $M = 2^{q+1}$
- 2 Calculate $\rho_H(1), \ldots, \rho_H(N-1)$ and find $c_0, c_1, \ldots, c_{M-1}$
- **③** Take FFT to get $\lambda_1, \ldots, \lambda_M$
- **4** Generate independent standard Gaussian ζ_1, \ldots, ζ_M

Image: A matrix

- Set $N = 2^{q} + 1$ and $M = 2^{q+1}$
- 2 Calculate $\rho_H(1), \ldots, \rho_H(N-1)$ and find $c_0, c_1, \ldots, c_{M-1}$
- Take FFT to get $\lambda_1, \ldots, \lambda_M$
- Generate independent standard Gaussian ζ_1, \ldots, ζ_M
- **5** Take inverse FFT of ζ_1, \ldots, ζ_M to get $\frac{1}{\sqrt{M}}Q^*(\zeta_1, \ldots, \zeta_M)^\top$

Image: A matrix

- Set $N = 2^{q} + 1$ and $M = 2^{q+1}$
- $\label{eq:calculate} \textbf{2} \mbox{ Calculate } \rho_H(1), \dots, \rho_H(N-1) \mbox{ and find } c_0, c_1, \dots, c_{M-1}$
- Take FFT to get $\lambda_1, \ldots, \lambda_M$
- Generate independent standard Gaussian ζ_1, \ldots, ζ_M
- **5** Take inverse FFT of ζ_1, \ldots, ζ_M to get $\frac{1}{\sqrt{M}}Q^*(\zeta_1, \ldots, \zeta_M)^\top$
- Multiply the last by $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_M}$

A I > A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Set $N = 2^q + 1$ and $M = 2^{q+1}$
- 2 Calculate $\rho_H(1), \ldots, \rho_H(N-1)$ and find $c_0, c_1, \ldots, c_{M-1}$
- **③** Take FFT to get $\lambda_1, \ldots, \lambda_M$
- Generate independent standard Gaussian ζ_1, \ldots, ζ_M
- **5** Take inverse FFT of ζ_1, \ldots, ζ_M to get $\frac{1}{\sqrt{M}}Q^*(\zeta_1, \ldots, \zeta_M)^\top$
- Multiply the last by $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_M}$
- Take FFT of result to get

$$(\xi_1,\ldots,\xi_M)^{\top} = \sqrt{M}Q\Lambda^{1/2}\frac{1}{\sqrt{M}}Q^*(\zeta_1,\ldots,\zeta_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top}$$

- Set $N = 2^q + 1$ and $M = 2^{q+1}$
- $\label{eq:calculate} \textbf{2} \mbox{ Calculate } \rho_H(1), \dots, \rho_H(N-1) \mbox{ and find } c_0, c_1, \dots, c_{M-1}$
- Take FFT to get $\lambda_1, \ldots, \lambda_M$
- Generate independent standard Gaussian ζ_1, \ldots, ζ_M
- **5** Take inverse FFT of ζ_1, \ldots, ζ_M to get $\frac{1}{\sqrt{M}}Q^*(\zeta_1, \ldots, \zeta_M)^\top$
- Multiply the last by $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_M}$
- Take FFT of result to get

$$(\xi_1,\ldots,\xi_M)^{\top} = \sqrt{M}Q\Lambda^{1/2}\frac{1}{\sqrt{M}}Q^*(\zeta_1,\ldots,\zeta_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top}$$

3 Take real part of ξ_1, \ldots, ξ_N to get fractional discrete noise

- Set $N = 2^q + 1$ and $M = 2^{q+1}$
- 2 Calculate $\rho_H(1), \ldots, \rho_H(N-1)$ and find $c_0, c_1, \ldots, c_{M-1}$
- Take FFT to get $\lambda_1, \ldots, \lambda_M$
- Generate independent standard Gaussian ζ_1, \ldots, ζ_M
- **5** Take inverse FFT of ζ_1, \ldots, ζ_M to get $\frac{1}{\sqrt{M}}Q^*(\zeta_1, \ldots, \zeta_M)^\top$
- Multiply the last by $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_M}$
- Take FFT of result to get

$$(\xi_1,\ldots,\xi_M)^{\top} = \sqrt{M}Q\Lambda^{1/2}\frac{1}{\sqrt{M}}Q^*(\zeta_1,\ldots,\zeta_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top}$$

O Take real part of ξ₁,...,ξ_N to get fractional discrete noise
 O Multiply by (T/N)^H to get increments of fBm;

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- Set $N = 2^q + 1$ and $M = 2^{q+1}$
- $\label{eq:calculate} \textbf{2} \mbox{ Calculate } \rho_H(1), \dots, \rho_H(N-1) \mbox{ and find } c_0, c_1, \dots, c_{M-1}$
- Take FFT to get $\lambda_1, \ldots, \lambda_M$
- Generate independent standard Gaussian ζ_1, \ldots, ζ_M
- **5** Take inverse FFT of ζ_1, \ldots, ζ_M to get $\frac{1}{\sqrt{M}}Q^*(\zeta_1, \ldots, \zeta_M)^\top$
- Multiply the last by $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_M}$
- Take FFT of result to get

$$(\xi_1,\ldots,\xi_M)^{\top} = \sqrt{M}Q\Lambda^{1/2}\frac{1}{\sqrt{M}}Q^*(\zeta_1,\ldots,\zeta_M)^{\top} = R(\zeta_1,\ldots,\zeta_M)^{\top}$$

- **3** Take real part of ξ_1, \ldots, ξ_N to get fractional discrete noise
- Multiply by $(T/N)^H$ to get increments of fBm;
- Take cumulative sums to get fBm

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Matlab code (guaranteed to work)

```
T = 3; H = 0.7; G = 2 H; \% fBm with H = 0.7 on [0,3]
q = 20; N1 = 2^q; M = 2*N1; % about million values; N1 = N-1
rhoH = Q(n) ((n+1).^{G} + abs(n-1).^{G} - 2.* n.^{G})./2; % covariance
c = zeros(M,1); % initialize; Matlab counts starting from 1, so
q = rhoH((0:N1)'); h = flipdim(g(2:(N1+1)),1); % some mess here
c(1:(N1+1)) = q; c((N1+2):M); % and here with c_0, \ldots, c_{M-1}
lambda = fft(c); % compute lambda
zeta = randn(M,1); % generate standard Gaussians
Oz = ifft(zeta); % compute O^* zeta /sqrt(M)
xi = real(fft(Qz.*lambda.^0.5)); % compute xi
fbmincrements = (T/N1)^H .* xi(1:N1); % those are your increments
fbmpath = zeros(N1+1,1); % and here is your path
fbmpath(2:(N1+1)) = cumsum(fbmincrements); % starting from zero
```

▲□▶ ▲掃▶ ★臣▶ ★臣▶ = 臣 = の久()

Result

イロト イヨト イヨト イヨト

э.