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Motivation

Popular model for randomness is Wiener process (white noise)

Problem: no
dependence (no memory)However, processes with memory are encountered
in:

Hydrology
Geophysics
Other natural sciences
Financial mathematics
Traffic research
. . .
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Definition

Definition
The fractional Brownian motion (fBm) with Hurst index H ∈ (0,1) is a
centered Gaussian process BH = {BH

t , t ≥ 0} with stationary increments and
the covariance function

E
[

BH
t BH

s

]
= 1

2

(
t2H + s2H −|t− s|2H

)
.

H = 1/2: B1/2
t =Wt, standard Wiener process

H = 1: BH
t = ξt with ξ standard Gaussian
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Properties of increments

Covariance (Exercise)

E
[(

BH
t1
−BH

s1

)(
BH

t2
−BH

s2

)]
= 1

2

(
|t2 − s1|2H +|t1 − s2|2H −|t1 − s1|2H −|t2 − s2|2H

)
.

Dependence (Exercise)
If s1 < t1 < s2 < t2 (so the intervals [s1, t1] and [ss, t2] are
non-intersecting), then the increments BH

t1
−BH

s1
and BH

t2
−BH

s2
are

positively correlated for H > 1/2;
negatively correlated if H < 1/2;
uncorrelated (independent) for H = 1/2.

Hint: Use the convexity (concavity).
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fBm paths
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Properties of fBm

stationary increments

H-self-similarity

It can be shown (feel free to show this) that fBm with Hurst index H is the
only process with such properties
Fractional discrete noise: the stationary sequence ξn = BH

n+1 −BH
n .

Covariance:

ρH(n)= 1
2

(
(n+1)2H + (n−1)2H −2n2H

)
, n ≥ 1.

So
∑∞

n=1ρH(n)=+∞ for H > 1/2 (the long-range dependence).
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Continuity of fBm
The variance of increments is

E

[(
BH

t −BH
s

)2
]
= |t− s|2H .

Then it can be shown that fBm is γ-Hölder continuous:∣∣∣BH
t −BH

s

∣∣∣≤ C(ω) |t− s|γ

for any γ ∈ (0,H).

A nice way is the Garsia–Rodemich–Rumsey inequality:
For f ∈ C([0,T]) and p > 0, θ > 1/p

sup
0≤v<u≤T

| f (u)− f (v)|
(u−v)θ−1/p ≤ Cp,θ,T

(∫ T

0

∫ T

0

| f (x)− f (y)|p
|x− y|θp+1 dx d y

)1/p

.

Exercise
Deduce the Hölder continuity from the GRR inequality.
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Semimartingale and Markov properties

Reminder: a semimartingale is a local martingale + adapted process having
locally bounded variation.

What about fBm?
Fact: quadratic variation of a semimartingale is finite and is equal to that
of the local martingale in its decomposition. Moreover, a continuous
semimartingale has a continuous martingale in its decomposition.
For fBm, the quadratic variation is:

zero for H ∈ (1/2,1);
infinite for H ∈ (0,1/2);
finite and non-zero for H = 1/2.

Consequently, fBm is not a semimartingale.
It is neither a Markov process.
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The Mandelbrot–van Ness (moving average) representation

BH
t = 1

Γ(H+1/2)

∫
R

[
(t− s)H−1/2

+ − (−s)H−1/2
+

]
dWs

= 1
Γ(H+1/2)

[∫ t

0
(t− s)H−1/2dWs +

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dWs

]
.

Exercise
Check that this formula defines an fBm (up to a constant).

Open problem

Let BH be given by the above integral representation. Then BH share the
points of local extrema with its underlying Wiener process W.
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Volterra kernel representation

BH
t =

∫ t

0
KH(t, s)dWs,

where for H ∈ (1/2,1)

KH(t, s)= CH s1/2−H
∫ t

s
(v− s)H−3/2vH−1/2 dv,

with CH =
√

H(2H−1)
β(2−2H,H−1/2) .

Exercise
Check that this formula defines an fBm.
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Volterra kernel representation

BH
t =

∫ t

0
KH(t, s)dWs,

where for H ∈ (0,1/2)

KH(t, s)= CH s1/2−H
[

tH−1/2 − (H−1/2)
∫ t

s
uH−3/2(u− s)H−1/2du

]
,

with CH =
√

H(2H−1)
β(2−2H,H−1/2) .

Note that this works for H ∈ (0,1/2) as well. There is also an inverse
representation.
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Problem: we need to estimate H given observations of BH at the points
{kT/n,k = 1, . . . ,n}.

Reminder: Realised quadratic variation is

V2,n =
n∑

k=1

(
BH

kT/n −BH
(k−1)T/n

)2
.

By the self-similarity,

V2,n
d= T2H n−2H

n∑
k=1

ξ2
k,

where {ξk,k ≥ 1} is a stationary standard Gaussian sequence with the
covariance

ρH(n)=E [ξ1ξn+1 ]= ρH(n)= 1
2

(
(n+1)2H + (n−1)2H −2n2H

)
, n ≥ 1.

Thanks to the ergodic theorem,

V2,n
d= T2H n1−2H 1

n

n∑
k=1

ξ2
k ∼ T2H n1−2H ,n →∞.
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We have
V2,n ∼ T2H n1−2H ,n →∞.

So
Ĥm = 1

2m
(
1− log2 V2,2m

)→ H,m →∞.

Also
H̃m = 1

2

(
1− log2

V2,2m

V2,2m−1

)
→ H,m →∞.

This is usually a better estimator.
To eliminate a possible drift, consider second order differences:

V ′
2,n =

n−1∑
k=1

(
BH

(k+1)T/n +BH
(k−1)T/n −2BH

kT/n

)2
,

the asymptotic is the same up to a constant (exercise), although the
variance is bigger.
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Ĥm = 1

2m
(
1− log2 V2,2m

)→ H,m →∞.

Also
H̃m = 1

2

(
1− log2

V2,2m

V2,2m−1

)
→ H,m →∞.

This is usually a better estimator.

To eliminate a possible drift, consider second order differences:

V ′
2,n =

n−1∑
k=1

(
BH

(k+1)T/n +BH
(k−1)T/n −2BH

kT/n

)2
,

the asymptotic is the same up to a constant (exercise), although the
variance is bigger.

Georgiy Shevchenko (Kyiv University) FBM in a nutshell January 7, 2014 20 / 31



We have
V2,n ∼ T2H n1−2H ,n →∞.

So
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What about the confidence intervals?

The situation is delicate:
For H ∈ (0,3/4), there is a usual central limit theorem:

n1/2
(
n2H−1V2,n −T2H

)
→ N(0,σ2

HT4H),n →∞,

in law, where

σ2
H = 1

2
+

∞∑
m=1

ρH(m)2.

Hence it is possible to construct an asymptotic confidence interval (the
limit variance contains H, but it is possible to plug in an estimator).
But for H ∈ (3/4,1), we have a non-central limit theorem! Namely,

n2−2H
(
n2H−1V2,n −T2H

)
→ ζHT2H ,n →∞,

in law, where ζH has some very special “Rosenblatt distribution”, essentially
depending on H!
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Confidence intervals
So one needs to consider alternatives, e.g. the realized cubic variation

V3,n =
n∑

k=1

(
BH

kT/n −BH
(k−1)T/n

)3
.

For H ∈ (0,1/2],
n3H−1/2V3,n → N(0,σ2

H,1T6H);

for H ∈ (1/2,1),
n2HV3,n → N(0,σ2

H,1T6H).

Here
σ2

H,1 =
1
6
+ 1

3

∞∑
m=1

ρH(m)3

for H ∈ (0,1/2) and σ2
H,1 = 3 for H ∈ (1/2,1). Again, the asymptotic variance

depends on H, but one can plug in an estimator.

Exercise
Write the confidence intervals for H explicitly in terms of V3,n.
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Simulation

Among many ways to simulate fBm, the circulant (Wood-Chan) method is
probably simplest and most efficient.

It is enough to simulate the increments on a sufficiently dense grid:
BH

T/N , BH
2T/N −BH

T/N , BH
3T/N −BH

2T/N , . . . , BH
T −BH

(N−1)T/N .
By the self-similarity, it is sufficient to simulate the fractional discrete noise
ξ1,ξ2, . . . ,ξN and multiply it by (T/N)H .
Reminder: fractional discrete noise is a stationary standard Gaussian
sequence with the covariance

ρH(n)=E [ξ1ξn+1 ]= ρH(n)= 1
2

(
(n+1)2H + (n−1)2H −2n2H

)
, n ≥ 1.
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So we have a centered Gaussian vector with known covariance matrix

Cov(ξ)=



1 ρH(1) ρH(2) . . . ρH(N −2) ρH(N −1)
ρH(1) 1 ρH(1) . . . ρH(N −3) ρH(N −2)
ρH(2) ρH(1) 1 . . . ρH(N −4) ρH(N −3)

...
...

...
. . .

...
...

ρH(N −2) ρH(N −3) ρH(N −4) . . . 1 ρH(1)
ρH(N −1) ρH(N −2) ρH(N −3) . . . ρH(1) 1


We can obtain it by transforming linearly

(ξ1,ξ2, . . . ,ξN )> = S× (ζ1,ζ2, . . . ,ζN )>,

a vector (ζ1,ζ2, . . . ,ζN ) of independent standard Gaussians; S is an N ×N
matrix such that SS> =Cov(ξ).

So we need to find the square root S of the matrix Cov(ξ).
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We assume that N = 2q +1 (for technical reasons).

Idea: to extract the square root, enlarge the matrix Cov(ξ) by embedding it
into a circulant matrix

C =



c0 c1 c2 . . . cM−2 cM−1
cM−1 c0 c1 . . . cM−3 cM−2
cM−2 cM−1 c0 . . . cM−4 cM−3
...

...
...

. . .
...

...
c2 c3 c4 . . . c0 c1
c1 c2 c3 . . . cM−1 c0


where M = 2(N −1) and

c0 = 1,

ck =
{
ρH(k), k = 1,2, . . . , N −1,
ρH(M−k), k = N, N +1, . . . , M−1.
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The circulant matrix C is easily diagonalized:

C =QΛQ>,

where Λ= diag(λ1, . . . ,λM), Q = (
q j k

)M
j,k=1 with

λk =
M−1∑
j=0

c j exp
{
−i2π

jk
M

}
,

q j k =
1p
M

exp
{
−i2π

jk
M

}
.

Exercise
Check that C =QΛQ∗.
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Now finding square root is straightforward: R =QΛ1/2Q∗, where
Λ1/2 = diag(λ1/2

1 , . . . ,λ1/2
M ).

So we have that the vector

(ξ1, . . . ,ξM)> = R(ζ1, . . . ,ζM)> =QΛ1/2Q∗(ζ1, . . . ,ζM)>

is centered Gaussian with the covariance matrix C. Hence, ξ1, . . . ,ξN is a
fractional discrete noise, as well as ξN+1,ξN+2, . . . ,ξM . Warning: these two
vectors are dependent.
Another observation: λ1, . . . ,λM is just FFT of c0, . . . , cM−1; multiplying by
Q is taking FFT and dividing by

p
M; multiplying by Q∗ is taking inverse

FFT and multiplying by
p

M.
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Hence, ξ1, . . . ,ξN is a
fractional discrete noise, as well as ξN+1,ξN+2, . . . ,ξM . Warning: these two
vectors are dependent.
Another observation: λ1, . . . ,λM is just FFT of c0, . . . , cM−1; multiplying by
Q is taking FFT and dividing by

p
M; multiplying by Q∗ is taking inverse

FFT and multiplying by
p

M.
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Algorithm
1 Set N = 2q +1 and M = 2q+1

2 Calculate ρH(1), . . . ,ρH(N −1) and find c0, c1, . . . , cM−1

3 Take FFT to get λ1, . . . ,λM

4 Generate independent standard Gaussian ζ1, . . . ,ζM

5 Take inverse FFT of ζ1, . . . ,ζM to get 1p
M

Q∗(ζ1, . . . ,ζM)>

6 Multiply the last by
p
λ1, . . . ,

p
λM

7 Take FFT of result to get

(ξ1, . . . ,ξM)> =
p

MQΛ1/2 1p
M

Q∗(ζ1, . . . ,ζM)> = R(ζ1, . . . ,ζM)>

8 Take real part of ξ1, . . . ,ξN to get fractional discrete noise
9 Multiply by (T/N)H to get increments of fBm;
10 Take cumulative sums to get fBm
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Matlab code (guaranteed to work)

T = 3; H = 0.7; G = 2*H; % fBm with H = 0.7 on [0,3]
q = 20; N1 = 2^q; M = 2*N1; % about million values; N1 = N−1
rhoH = @(n) ((n+1).^G + abs(n−1).^G − 2.* n.^G)./2; % covariance
c = zeros(M,1); % initialize; Matlab counts starting from 1, so
g = rhoH((0:N1)'); h = flipdim(g(2:(N1+1)),1); % some mess here
c(1:(N1+1)) = g; c((N1+2):M); % and here with c_0,...,c_{M−1}
lambda = fft(c); % compute lambda
zeta = randn(M,1); % generate standard Gaussians
Qz = ifft(zeta); % compute Q^* zeta /sqrt(M)
xi = real(fft(Qz.*lambda.^0.5)); % compute xi
fbmincrements = (T/N1)^H .* xi(1:N1); % those are your increments
fbmpath = zeros(N1+1,1); % and here is your path
fbmpath(2:(N1+1)) = cumsum(fbmincrements); % starting from zero
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Result
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