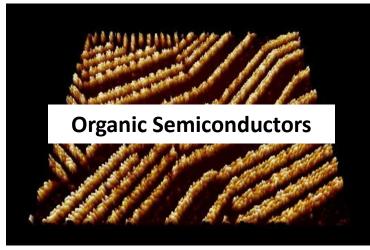
Fractional Brownian Modeled Linear Polymer Chains with One Dimensional Metropolis Monte Carlo Simulation

Jan Philippe B. Sambo, Jinky B. Bornales, Beverly V. Gemao Minadanao State University – Iligan Institute of Technology A paper presented in the 7th Jagna International Workshop, Jagna, Bohol

Polymer Applications

Source: http://greenliving4live.com/wp-content/uploads/2013/06/biodegradableplastic.jpg

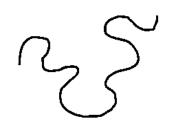


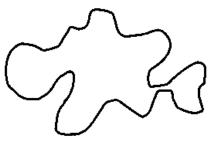
Source:http://upload.wikimedia.org/wikipedia/commons/8/82/ Selfassembly_Organic_Semiconductor_Trixler_LMU.jpg.

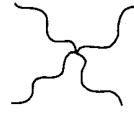
Source://http://www.popularmechanics.com/cm/popularme chanics/images/aE/dendrimer1-lg.jpg.

Source: http://images.motorcyclesuperstore.com/ProductImages/OG/0000-Bridgestone-Battlax-BT-023-GT-Sport-Touring-Rear-Tire.jpg

Polymer Architectures







Star



Linear

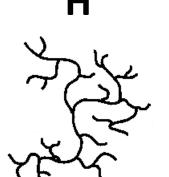
Comb

A

Ring

Ladder

Dendrimer

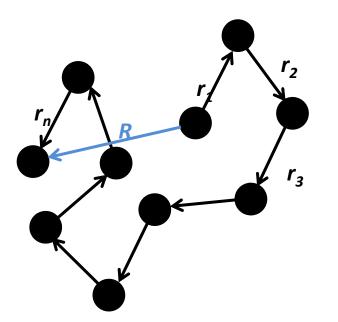


Randomly Branched

Polymer Models

- Ideal Chain Models
 - Freely Jointed Chain
 - Freely Rotating Chain
 - Worm-like Chain

- Edwards Model
- Excluded Volume Effect



Freely Jointed Chain

A collection of N statistically independent but connected rigid segments, with length / $R = R_N - R_0$ $= (R_N - R_{N-1}) + (R_{N-1} - R_{N-2}) + \dots$ $+ (R_1 - R_0)$ $= \sum_{i=1}^{N} r_i$ (1)

Properties of R (Brownian Case)

Next we look at $\langle R^2 \rangle$: First we look at (R) : $\langle R^2 \rangle = \langle R \cdot R \rangle$ (4) $\langle R \rangle = \langle \sum r_i \rangle$ (2) $= \sum_{i=1} \langle r_i \rangle \cdot \sum_{i=1} \langle r_j \rangle$ $=\sum_{i=1}^{n} \langle r_i \rangle$ N j≠=1 $\langle R^2 \rangle = \langle \sum_{i=1}^{n} r_i^2 \rangle + 2 \sum_{i=1}^{n} \sum_{i=1}^{n} \langle r_i r_j \rangle$ $= \langle r_1 \rangle + \langle r_2 \rangle + \langle r_3 \rangle + \dots + \langle r_N \rangle$ $= Nl^{2}$ $\langle R \rangle = 0$ (3) $R_{rms} = \sqrt{\langle R^2 \rangle} = \sqrt{Nl}$ (5)

Scaling Theory for Polymers

• Expression:

$$R \sim N^{\upsilon} \tag{6}$$

- -> R end-to-end distance
- -> N number of monomers
- *Flory Index* (real chain models in Brownian Case): 3

$$d - dimension$$
 $\frac{v}{d} - \frac{1}{d+2}$

Reference:

[1]Rubinstein, M. & Colby, R. H. (2003). Polymer Physics. Great Clarendon Street, Oxford, United Kingdom: Oxford University Press
 [2] P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY, 1979.
 [3] J. Bois, Rudiments of Polymer Physics, California Institute of Technology, Pasadena, California, 2012

(7)

r,

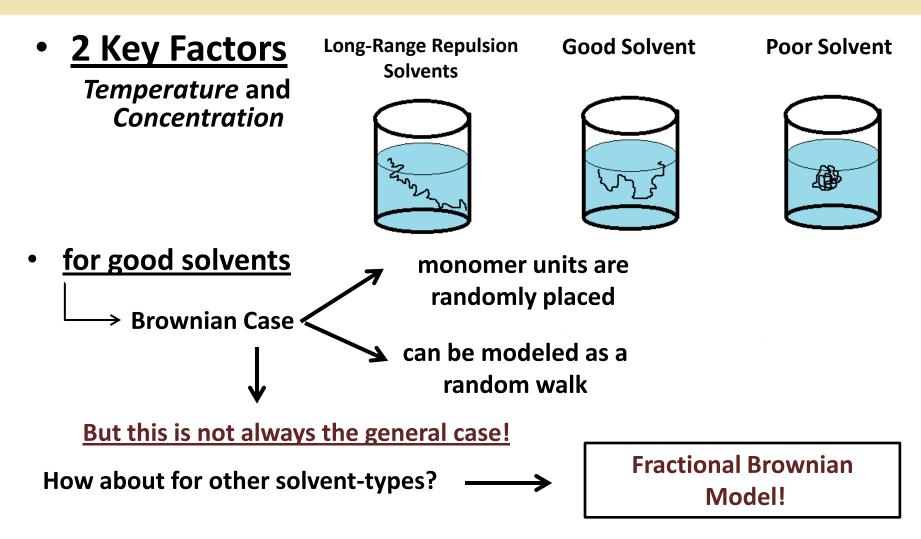
The Brownian Model

- Scaling Expression:
 - For Ideal Chains: $R \sim N^{\frac{1}{2}}$ $W = \frac{3}{R} \sim N^{\frac{1}{2}}$ w/ excluded volume: $R \sim N^{\frac{1}{2}}$ (Flory index)
 - Expression for Probability Distribution:

$$P(N,x) = \frac{1}{\sqrt{2\pi\langle x^2 \rangle}} \exp\left(-\frac{x^2}{2\langle x^2 \rangle}\right) \qquad (8)$$

Reference: [1]Rubinstein, M. & Colby, R. H. (2003). Polymer Physics. Great Clarendon Street, Oxford, United Kingdom: OxfordUniversity Press[2] J. Bois, Rudiments of Polymer Physics, California Institute of Technology, Pasadena, California, 2012University Press

Polymer Solvents



Fractional Brownian Motion

• a Gaussian chain:

$$P(N,x) \sim \frac{1}{\sqrt{2\pi \langle x^2 \rangle}} \exp\left(-\frac{x^2}{2 \langle x^2 \rangle}\right)$$
(9)

• self-similarity:

$$\frac{1}{a^H}B^H_{at} = b^H_t, \qquad t \ge 0; a > 0 \tag{10}$$

(where H is the Hurst Parameter)

Reference: [1]Rubinstein, M. & Colby, R. H. (2003). Polymer Physics. Great Clarendon Street, Oxford, United Kingdom: Oxford University Press [2] Hammond, A. and Sheffield S., Power law Pólya's urn and fractional Brownian motion, Springer-Verlag, Berlin, 2012.

[3] S. Sarkar, Fractional Brownian Motion: Long range dependency, Markov property, Simulation strategy-A review, Term Paper submitted for Stochastic Process Course in Spring 2008

[4] Bornales, J., Oliveira, M. and Streit, L. Self-Repelling fractional Brownian motion – a generalized Edwards model for chain polymers. December 13, 2011

Fractional Brownian Motion

stationary increments:

$$\langle (B_t^H - B_s^H)^2 \rangle = E[(B_t^H - B_s^H)^2] = |t - s|^{2H}$$
(11)
$$E[(B_t^H B_s^H)^2] = \frac{1}{2}(t^{2H} + s^{2H} - |t - s|^{2H})$$
(12)

Note: *H* has values *0*<*H*<1

becomes the basis for different solvents

Reference: [1]Rubinstein, M. & Colby, R. H. (2003). Polymer Physics. Great Clarendon Street, Oxford, United Kingdom: Oxford University Press [2] Hammond, A. and Sheffield S., Power law Pólya's urn and fractional Brownian motion, Springer-Verlag, Berlin, 2012.

[3] S. Sarkar, Fractional Brownian Motion: Long range dependency, Markov property, Simulation strategy-A review, Term Paper submitted for Stochastic Process Course in Spring 2008

[4] Bornales, J., Oliveira, M. and Streit, L. Self-Repelling fractional Brownian motion – a generalized Edwards model for chain polymers. December 13, 2011

7th Jagna International Workshop Analysis of Fractional Stochastic Proceses: Advances and Applications Jagna, Bohol

The Hurst Parameter

Brownian Case – monomer units are not correlated

• For 0<H<1/2

negative correlation between monomer units

Relaxed Chain (Good Solvent)

Anti-persistent Chain (Poor Solvent)

Ex: High Concentration

Persistent Chain (Repulsive Solvent) Ex: High Temperature

Reference [1] S. Sarkar, Fractional Brownian Motion: Long range dependency, Markov property, Simulation strategy-A review, Term Paper submitted for Stochastic Process Course in Spring 2008

[2] Bornales, J., Oliveira, M. and Streit, L. Self-Repelling fractional Brownian motion – a generalized Edwards model for chain polymers. December 13, 2011

7th Jagna International Workshop Analysis of Fractional Stochastic Proceses: Advances and Applications Jagna, Bohol

Scaling Theory for fBm

• Average value of R² (in terms of Probability Distribution):

$$\langle R^2 \rangle = Z \int_0^N x^2 \exp\left(-\beta \frac{(x_t, H_0 x_s)}{2}\right)$$
(13)

where
$$E[(x_t \cdot x_s)^2]^{-1} = H_0$$
 (14)

using change of variables:

$$x = \beta^{-\frac{1}{2}a} \rightarrow x^2 = \beta^{-1}a^2$$
$$\langle R^2 \rangle = Z \int_0^N a^2 \exp\left(-\frac{H_0a^2}{2}\right)$$
(15)

Reference: [1]Rubinstein, M. & Colby, R. H. (2003). Polymer Physics. Great Clarendon Street, Oxford, United Kingdom: Oxford University Press [2] Hammond, A. and Sheffield S., Power law Pólya's urn and fractional Brownian motion, Springer-Verlag, Berlin, 2012. [3] Bornales, J., Oliveira, M. and Streit, L. Self-Repelling fractional Brownian motion – a generalized Edwards model for chain polymers. December 13, 2011

Scaling Theory for fBm

Note that:
$$\langle x^2 \rangle \sim \int a^2 \exp\left[-\frac{c^2}{2}x^2\right] dx$$
 (16)

Now eq. (15) becomes,

$$\langle R^2 \rangle \sim ZE[a^2] = ZE[(B_N^H)^2] \quad (17)$$

FBm is Self-Similar: $B_N^H = N^H b^H$
 $\langle R^2 \rangle \sim ZE[N^{2H}(b^H)^2] = ZN^{2H}E[(b^H)^2] \quad (18)$
 $\langle R^2 \rangle \sim N^{2H} \quad (19)$

7th Jagna International Workshop

Analysis of Fractional Stochastic Proceses: Advances and Applications Jagna, Bohol

Numerical Methods

Monte Carlo Simulation

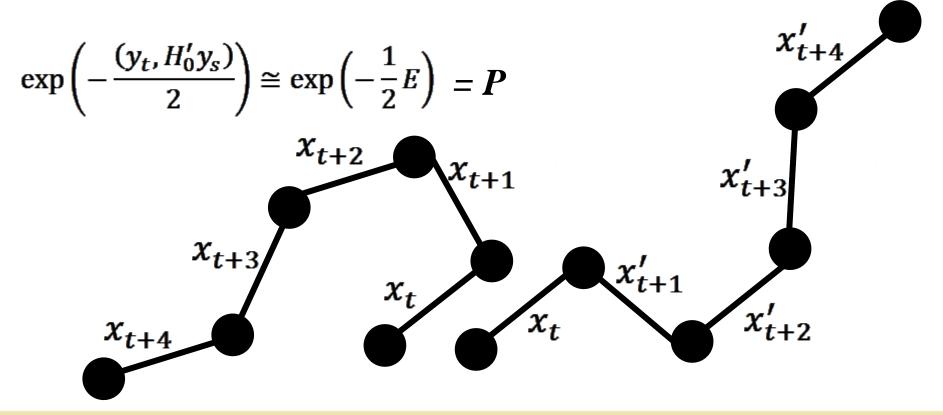
- > a method used for precise approximation
- widely used in polymer simulations
- > makes use of random generation of monomer positions

With the help of a filtering process, the process is iterated multiple times to reach close approximation

Reference: [1] Binder, K. Applications of Monte Carlo Methods to Statistical Physics. Rep. Prog. Physics, 1997. [2] Besold, G., Guo, H. and Zuckermann, M. Off-Lattice Monte Carlo Simulation of the Discrete Edwards model. Journal of Polymer Science, 2000 [3] Bhanot, G. 1988. The Metropolis algorithm. Rep. Prog. Phys. 51:429-457

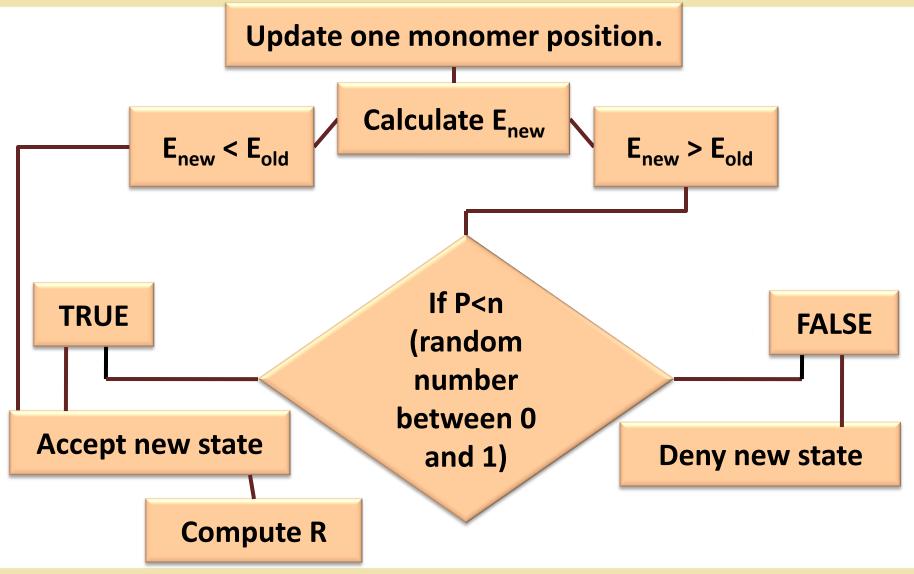
Monomer Randomization

 alteration of a single monomer position/ bond vector has the effect as illustrated:



7th Jagna International Workshop Analysis of Fractional Stochastic Proceses: Advances and Applications Jagna, Bohol

The Metropolis Algorithm



7th Jagna International Workshop

Analysis of Fractional Stochastic Proceses: Advances and Applications Jagna, Bohol

Extraction of Scaling Expression

- Results from the simulation give the values for: $\ln(\langle R^2 \rangle^{\frac{1}{2}})$
- To get scaling expression, the ff. is employed:

$$\ln\left(\langle R^{2}\rangle^{\frac{1}{2}}\right) \approx v_{H}\ln(N) \quad (20)$$
$$\langle R^{2}\rangle^{\frac{1}{2}} \approx N^{v_{H}}$$
$$\langle R^{2}\rangle \sim N^{2v_{H}} \quad (21)$$

Analysis of Fractional Stochastic Proceses: Advances and Applications Jagna, Bohol

Actual Simulation Codes

 Codes were written by Wolfgang Bock and his team in Germany for their collaboration with the Physics Department – CSM, MSU-IIT.

 Simulation is run using C programming language

Summary of Results

$\langle R^2 \rangle {\sim} N^{2 \upsilon_H}$	 Theoretical 	$\langle \mathbf{p}^2 \rangle = \mathbf{w}^2 H$
	Prediction:	$\langle R^2 \rangle \sim N^{2H}$

Hurst Parameter (<i>H</i>)	Simulation Results for N=200-450	Simulation Results for N=500-850	Theoretical Result $(v_H = H)$
0.1	0.1205783	0.11700828	0.1
0.2	0.2262343	0.21894096	0.2
0.3	0.3400670	0.33257905	0.3
0.4	0.4436808	0.44101619	0.4
0.5	0.4997110	0.50125228	0.5

Summary of Results

$\langle R^2 \rangle \sim N^{2\upsilon_H}$	 Theoretical 	$\langle \mathbf{p}^2 \rangle = \mathbf{w}^2 H$
	Prediction:	$\langle R^2 \rangle \sim N^{2H}$

Hurst Parameter (<i>H</i>)	Simulation Results for N=200-450	Simulation Results for N=500-850	Theoretical Result $(v_H = H)$
0.6	0.51088970	0.50792676	0.6
0.7	0.50875442	0.50840673	0.7
0.8	0.50321720	0.49895897	0.8
0.9	0.50334768	0.50119497	0.9

Conclusions

 The scaling expression for fractional Brownian model for linear polymer chains has been theoretically derived.

 $\langle R^2 \rangle \sim N^{2H}$

 This result is similar to that shown in the study by Sarkar (Pennsylvania State University, Pennsylvania, USA) where the expectation value for is given by a general formula:

$$E\left[\left(B_t^H - B_s^H\right)^2\right] = c(H)|t - s|^{2H}$$

Reference S. Sarkar, Fractional Brownian Motion: Long range dependency, Markov property, Simulation strategy-A review, Term Paper submitted for Stochastic Process Course in Spring 2008

Conclusions

- Simulation results give a very close value or the Brownian case, H=0.5 (about 0.2% error). H-values less than 0.5 have approximately 10 - 20% difference from the theoretical prediction.
- For the case of H>1/2, the scaling constants remain to be the same as that of H=0.5, which is similar to that as theoretically predicted by the Bornales et al. in their work due to the limitations of scaling in one dimension

Reference : [1] Bornales, J., Oliveira, M. and Streit, L. Self-Repelling fractional Brownian motion – a generalized Edwards model for chain polymers. December 13, 2011

Acknowledgements

 Dr. Wolfgang Bock of University of Kaiserslautern, Germany and Dr. Samuel Eleuterio of Unibersidade Tecnica de Lisboa, Portugal for the codes.

• Sim Bantayan, Roel Bayabayon, and Cresente Cabahug for their help with the simulations.

Acknowledgements

 Dr. Ludwig Streit (BiBoS, Univ. Bielefeld and CCM, Univ. da Madeira) for initiating and providing new studies of Fractional Brownian motion in the field Polymer Science.

Thank Gou!